
This document was generated at 4:27 PM on Thursday, February 24, 2022

An introduction to programming in Visual Basic

AGEC 642 - 2022

I. Introduction

The purpose of this tutorial is to provide you with the basic tools needed to write very simple

programs for numerical analysis in Visual Basic (VB). VB is extremely powerful and can

create nice user interfaces and do lots of fancy formatting. There are a number of references

that can help you learn these tools. If you want a book you can borrow my copy of the book

by Albright. But these days, I just google to find the answers I need. For the programs

required for this class, the vast majority of these tools will be unnecessary and this tutorial

covers everything that you need to do basic programming to solve dynamic programming

problems. While powerful, however, VB is quite slow. For small programs this is not an

impediment, but if you’re interested in solving large problems, use the programming skills

you learn here and then learn a more efficient language such as Matlab or Fortran.

As you work through this tutorial, make sure you understand what you’re doing. You’ll need

to follow these or similar steps many times in the future. If you understand instead of just

repeating, you’ll be much happier in the long run. Not every piece of example code in these

notes will work by itself. For example, there may be an example that makes use of a variable

x, but if your program has not defined that variable or given it values, you may get

nonsensical results. This is intentional. You need to think about what you’re doing, not just

copy it blindly.

There is a quiz at the end of these notes will test to see if you have learned the basics of

programming in VB. All students using VB for PS#3 should complete this quiz before

working on in problem 2. You may choose to look at the quiz first – if you can solve it, you

probably have all the knowledge you need for the programming assignment.

II. Overview

VB has much in common with many other programming languages. A VB program is a series

of commands that creates and manipulates variables. VB programs are also called Macros.

Several different programs (called Subs in VB) can be in a single file. These Subs can act

separately or they can be interconnected. With few exceptions, all your commands must be

contained in a Sub, i.e., after a line that opens a sub and before the End Sub line that that

ends the sub.

Unlike the command-prompt version of Matlab, a VB program does not run until you tell it

to. Further, and very importantly, VB does not give you any output unless you explicitly tell

it to put the output into an Excel spreadsheet.

III. A word of warning!!!

1. Save your work every 5-10 minutes. There is usually no autosave working in Excel and even

if it is, don’t trust it. VB programs frequently crash; unless you’ve saved your file, you can

easily lose hours of work.

IV. First step - your first program for writing output

2. Open Excel. If you do not see the Developer menu, you need to activate it. Under the File
menu, click Options, then Customize Ribbon. On the right you will see a list of the menus

that are visible. Be sure that Developer is checked, then click OK.

 2

3. By default, Excel is usually set up to not allow subs to run for security reasons. You need to

turn this off.

From the Developer menu, click on Macro Security. On the Macro Settings tab, select

Disable all macros except digitally signed macros. This seems to work. If your computer

is not recognizing your macros, you may need to switch to the last option, Enable all
macros, save and close the file, then re-open it.

4. Start with a blank Excel worksheet and, using Save As, and choose the option for a Macro-

Enabled Workbook. Give it any name you like (e.g., something like “VBintro.xlsm”).

5. Load the VB editor (alt-F11). The VB editor is an interface where you can create and edit

subs and run them.

6. From the Tools menu in VB, choose the Options and on the Editor page, select “Require
Variable Declaration.” (Tools, Options 2nd box on the Editor page). Click OK. This

means that every time you use a new variable, you need to explicitly introduce that variable

with a Dim command. (This is just like in Matlab, where a syms command must be used

before using a variable can be used on the right-hand-side of an expression.)

7. Make sure that you are Viewing the Project Explorer and make sure that your current

project is highlighted in the project explorer. If the Project Explorer is not visible, press

Ctrl-R to view it.

8. Using the Insert menu, Insert a Module (not a class module). A module is a work space

where you can write your programs. The new module you create will appear under your file

in the Project Explorer window (on the left). The words Option Explicit should appear at the

top of module screen. You can have as many modules as you like and can interact between

modules in other programs. But for now, just stick with one.

9. You can also associate VB code with Microsoft Excel Objects (e.g., a sheet or the workbook).

This seems to work OK, but I prefer to place them in a Module, where they can easily be

found and saved independently of a particular Excel file.

 3

10. In the VB editor, type the words

sub FirstProgram
and press [enter]. This will create your first subroutine. Note that the editor automatically

completes the lines with () and writes End Sub. It should look something like this

A Sub is a computer program. Unlike in some other languages, in VB there is no difference

between the main program and a subroutine. Most Subs can be run by themselves or called by

other subs.

Tip: The help menu in the VB editor (F1) is quite useful and typically has a lot of examples.

V. Running a program

11. The parts of the screen are important. You may want to refer back to the image below later in

the notes as we introduce ideas like placing stops and watching variables. Some of these

windows may not be visible. You can always activate any of these windows from the View

menu.

12. Look at the Sub entitled FirstProgram in the image above. This program initializes x,

specifying that it has to be an integer. Then it sets the value of x to 637. Then it writes that

value into the cell in the first row and first column of the spreadsheet that you have open.

Type this simple 3 line program.

Project Explorer

Window where

you write your

code

Window where

you can watch

variables

Properties Window.

We won’t use this.

Bar where “stops”

can be placed

Sub

currently

selected

 4

13. There are a number of ways to run a program. To start, I suggest you always run the program

one line at a time. First, make sure your cursor is inside the Sub you want to run. Then, start

pressing the F8 button. Each time you press F8 a new command is run and you can watch the

program progress. Try it.

You can also run the program all at once by pressing the F5 button or clicking on the

icon at the top of the screen. Finally you can run the program in pieces by placing a “stop” by

clicking on the grey bar to the left of your code, then running the program with the F5 button

up to that point.

Try all of these approaches. Go back to Excel (Alt F11) and you should see 637 in cell B1.

Then change the program to put the number 63 in cell C2.

14. Important Tip. Always build your program up in pieces, making sure that each piece runs

before you proceed to work on the next step.

VI. Simple variable manipulation

15. Because of the Option Explicit statement in your program, every variable that you use must

be explicitly defined with a Dim statement. What a Dim statement does is tells VB that you

will be using that variable. If you forget to dimension a variable, when you attempt to run

your program VB will tell you that you didn’t warn it that the variable was coming by giving

you an error message that looks like this.

16. There are four main types of variables that we will use:

Double – double precision, a pseudo real number (16 zeros after the decimal point),

Integer – A number that only takes on integer values, used for counting.

String – A variable that is used to carry text, such as a name

Variant – A variable that change type during your program.

It is important to understand the difference between these variable types. Computers make

small numerical errors fairly regularly. For example, suppose you’ve defined a variable x as

real number (double) with a value of 1.0. After some manipulations, the computer might store

this as 0.99999999999999999999, which is close enough for most purposes; it is as good as

1.0 to you and me. But it looks like a very different number to a computer. If you want to find

the first element in an array, for example, if you ask the computer to give you element

number x, it won’t know what to do; the 0.999th element does not exist. Hence, it is important

to always distinguish between integers and real numbers in your programs and use the right

variable type for the task at hand.

How might this affect you? Suppose your program includes a line like,

 if x = 7 then …

Most of the time this will work when x should equal 7.0. But then, all of a sudden, it may

make a mistake because of machine error. So what should you do? Either, only use

inequalities with real numbers, e.g.

 5

 if x > 6.999 and x < 7.001 then …

or, if possible, use integers

 if ix = 7 then …

Tip: To distinguish between integers and real numbers straight, I usually start my integer

variables names with the letter i, or j, such as ix or jStage, and variables that I will use to

define dimensions of a problem with an n or m, such as nx or mT.

17. Local vs. Global variables

VB code consists primarily of one or many subroutines, such as the one you’ve created

above. If you Dim a variable inside a Sub, its value will local, so that only one Sub is

prepared for that variable. However, if you put the Dim statement at the top of your Module,

before all of the Subs, then it will be global variable. This means two things. First a global

variable has been defined for all the subs; you cannot Dim it again within a Sub. Second, it

means that the value of global variables will be passed between the subs. Local variables, in

contrast, must be redefined (Dim) in each sub and its value will start over in each one. Except

in special cases you will probably want all your variables to be global, i.e., dimensioned

above all of your Subs.

18. In the code above, we initialized x as an integer. Now let’s initialize a variable named a:

Dim a As Double
Note that as you start typing the word Double a list will appear that gives you all the

different types of variables you could use. You can use the Tab button to auto-complete your

line of code.

19. If you don’t explicitly identify the type of variable, then it becomes a Variant. In my

experience VB does a pretty good job of choosing correctly. If a variant type variable is

specified as a scalar, it can be Redimensioned to create a multidimensional variable (like a

matrix).

Note that you can dimension a bunch of variables in a single line. E.g.,

Dim b, c As Double, d, i As Integer, n As Integer
In this case b and d would be variants, c would be a double, and i would be an integer.

VII. Formatting and comments

Good computer code contains comments that help you, the outside reader, and the user to

understand what is going on. If you get in the habit of keeping your programs clear as you

write them, you will save lots of time later. In VB, any time you write a single apostrophe,

the rest of the line will be treated as a comment and ignored when the program is run

Here’s what my program looks like so far with comments and notation to divide pieces of the

 6

code.

20. See step #1.

VIII. Stepping through a program and watching your variables

21. Place your cursor inside the sub, then press the F8 key. This will highlight the first line of

your code. Press F8 again and it will step to the next line. You can always step through your

program line by line in this way. If you wave the cursor over the variable x you will see that

when the program starts it has a value of 0, and then will change after you have given it a

value.

22. If you right-click on a variable you will be given a list of options. Choose Add Watch and a

list should appear at the bottom of the screen with the variables that you’re watching. If the

list is not visible, from the View menu, choose Watch Window. Now you can see variables’

values as you step through the code without having to use the mouse.

IX. Simple variable manipulation

23. You can easily assign values to variables, e.g.,

a = 6.21
b = 3.0
c = a + b

Note that as you are typing VB usually automatically changes 3.0 to 3#, indicating that this

will be zero to 16 digits of precision.

24. Suppose we want b to be an array with two elements. To accomplish this, we need to

dimension b differently, say

Dim b(1 to 2)
This means that b is now a one-dimensional array with 2 elements, b(1) and b(2).

The reason we have to write “1 to 2” instead of just “2” is because the default in VB is to

start the index with 0. If you typed instead

Dim b(2)
then b would have three elements, b(0) , b(1) and b(2).

 7

25. To create a two-dimensional array (a matrix), you simply add another range of indices, as in

Dim b(1 to 2, 1 to 1) for a matrix with 2 rows and 1 column (i.e. a vector). When using

matrix operations, you must define your vectors as matrices with 1 column. For example, to

define b to be a vector with two rows and one column, you would write

Dim b(1 to 2, 1 to 1).
You can also have 3 or higher-order arrays e.g. b(1 to 2, 1 to 5, 1 to 3, 1 to 14).

26. The best way to think of a VB array is as a container, with discrete boxes (see image below).

For example, the array defined by the command Dim b(1 to 2, 1 to 3). would have six

elements: b(1,1), b(1,2), b(1,3), b(2,1), b(2,2), and b(2,3). You cannot use real numbers to

refer to these cells; the command b(1.5, 2.3) doesn’t make any sense. Similarly, b(x, y)
wouldn’t make any sense if x and/or y are not dimensioned integers.

27. To avoid the need to always dimension your arrays so that they start at 1, you can add the

command

Option Base 1
directly below the Option Explicit command at the top of your program. If you do this, then

Dim b(2, 1) would be the same as Dim b(1 to 2, 1 to 1).

28. It is often useful to allow the dimensions of your program to be dynamic so that you can

determine the size of your arrays during your program, perhaps based on other variables. You

cannot do this directly using a Dim command; you must use the ReDim command. For

example:

Dim b(), c() ' This creates a variable b and tells VB that it will be an array
n = 8

ReDim b(1 to n,1 to 1) ‘ this defines a row vector with n elements.
ReDim c(1 to n) ‘ this defines a one dimensional array with n elements.

If you wanted to restrict the b so that its contents must be real numbers, then the following

syntax is required:

Dim b() as double

29. Variables can only be initialized with a Dim statement one time in a single program (either in

the program or in a global statement), but they can be redimensioned with a ReDim

statement as many times as you like. Each time an array is redimensioned, the values in the

array are set to zero.

 8

X. Loops

30. We will use lots of loops in our problems. Here are two simple ways to write a loop:

' --
' The first loop
' --
 i = 1
 Do Until i > 4
 b(i, 1) = i*0.3#
 i = i + 1
 Loop

' --
' A second loop
' --
 i = 1
 a = 2#
 For i = 1 to 4
 a = a * a
 Next i

Before you run the code above you have to Dim the variable b so that it has the appropriate

size and dimension.

What will the array b look like when the first loop is complete? What will be the value of the

variable a when the second loop is done?

Note: There is something that can be a bit confusing about these loops: i and a appear on

both the right and left sides of some equations. This does not make sense in algebra, but it is

perfectly o.k. in computer programming. The right-hand side is treated as happening before

the left-hand side, so the value of the variables i and a may be different on the right and left.

For example, if the computer enters the line of code i = i + 1 with i=8, then before the line is

executed i=8, and after the line is executed, i=9.

Note how the lines between “Do”

and “Loop” are indented so that it

is easy to see where a loop begins

and ends. The same convention

is useful for “ if ” statements.

IMPORTANT: Use indentations

like this for programs submitted

in this class.

 9

31. Infinite loops and their termination. Suppose, in the first loop above we accidentally wrote i =
i - 1. In this case the termination criterion, i> 4, would never be reached since i would be

declining forever. The program would, therefore, theoretically continue running forever.

Eventually Excel would crash and you’d lose all your work.

You can stop a program in the middle using the key stroke ctrl-Break (the Break key is

usually located at the top right of your keyboard). This should pause the program and give

you the option of stopping or debugging. When you do this you will be shown a message like

this:

Usually you will want to press debug your code, since that will take you to the point in your

program where it currently is and, by rolling the mouse over variables, you can see their

values and figure out what is going on. This doesn’t always work however, so be careful; you

may end up closing the program, losing all of your work.

Hence, pay attention to step #1 on page 1.

Below we’ll see how you can catch infinite loops before they happen.

32. Summing up numbers. Suppose you want to add up all the numbers in a one-dimensional

array, say X, which has elements numbered 1 to nx. It would be nice if there were a simple

sum function that would do this, but as far as I know there is no such function in VB; you

have to do it by yourself. The way you do this is by using a loop:

‘ Global Variables
Dim SumX
Dim X(), i, nx

Sub ProgramToSub

‘ Redimension X as an array with elements, 1, 2, … up to nx

ReDim X(nx)

… A bunch of operations that give us values for the elements of X would be here

 ‘ Now loop from 1 to nx, adding up the values of X
SumX = 0
for i = 1 to nx

 SumX = SumX + X(i)
next i

At the end of this loop, SumX will be equal to the sum of all the elements of X.

Summing up the elements of the array X(⋅)

 10

33. Nested loops. Suppose that you want to work with a function for all possible combinations of

x
1
 and x

2
, e.g. f(xi

1
, xj

2
) for all i, j. In this case you would nest your loops, one inside the other

like this:

‘Start of first loop
 for i = 1 to nx1
 x1 = x1array(i)
 ‘ Start of second loop
 for j = 1 to nx2
 x2 = x2array(j)

 do whatever you need to do with f(x1, x2)

 next j
 ‘ End of second loop
next i
‘ End of first loop

XI. Debugging

34. Suppose that you have a watch window like this

The symbol indicates that b is an array. Clicking on a will open up a dimension.

Opening up both dimensions of b I see the following:

XII. Passing values back & forth to Excel

Except towards the beginning of these notes, for the most point we have created and

manipulated variables in VB. Such variables only exist in the memory of the computer for the

short time that your program is running – then they disappear. In Excel VBA you save your

results by passing the numbers to an excel spreadsheet. Similarly, you can also read data from

the spreadsheet.

35. The easiest way to write the output of your program into Excel is to include a line like

Cells(1, 1) = a

This command will place the value of a in the first row, first column of the currently open

worksheet of your spreadsheet.

36. Insert such a line of code into your program, run it, then toggle over to your spreadsheet

(alt-F11) and verify that it worked.

 11

37. You can also read a variable from the spreadsheet in the same fashion, e.g.

a=Cells(1, 1)

38. You will often find it convenient to write to spaces that vary within a loop. For example, you

could write:

cells(i,1) = x(i)
cells(i,2) = SumX
which would write the ith element of x in row i, column 1 of the open sheet and SumX in row

i, column 2.

To practice, in the loop created in step 32 above, to write out your output on rows 1 through n
and in columns A and B.

XIII. Introduction to object oriented programming (not critical for AGEC 642)

39. The command cells(1,1) refers to the first row and column of the open worksheet. If you

accidentally changed the worksheet that was open, then it would be looking at a different

sheet. To avoid this problem, you may want to specify exactly which worksheet you’re

writing to. To do this, you need to define which object you’ll be writing to. The cell, is an

object in a worksheet, which is an object in a workbook. Using VB you can change the

characteristics of any object.

 12

Follow these steps very carefully to see how VB helps you work with objects.

First we identify that we’ll be working with an object that is a member of a workbook object.

(a) On a new line, type

ActiveWorkbook.
(including the period). Notice that when you type the “.” a window pops up indicating the

objects that are associated with the ActiveWorkbook object.

Using the arrows to scroll up and down this list, look for the object you want, or start typing

and it will automatically move to the one you want. (b) Now start typing

Worksheets
as you type the program will automatically identify the correct field. As soon as the word is

selected you can press [tab] and the editor will automatically complete the word. (c) Now

type an open parentheses,

 (
when you do this, instructions will appear on the appropriate characteristics of the current

Worksheet object. In this case you’ll see the bolded word Index which means that we have to

identify which worksheet we want to choose. You can type the number 1, referring to the first

worksheet in your file, or the word “sheet1” including the quotation marks (or any other

name you might give a sheet). (d) Complete the statement

ActiveWorkbook.Worksheets(1).Cells(2, 1) = b(1,1)
and run the program (F5) and verify that cell A2 of the first worksheet now has a value.

40. Note that in the previous step we have to identify which element of b we want to use. Try

eliminating the index on b, i.e. change it to

ActiveWorkbook.Worksheets(1).Cells(2, 1) = b

This will put the first element of b in cell A2. If your array b has more than one element, you

will not be able to print the entire array in this manner. You should get an error since the

program is trying to put an entire array into a single cell of the spreadsheet.

This alternative command should work:

ActiveWorkbook.Worksheets(1).Cells(2, 1) = b(1,1)
Do you understand why the change helped your code to work?

41. Now change the code to read “…Worksheets(6)…” and press run (F5). An error will appear

like that discussed below in step 55. Why? In this case the “6” is the “index” that is

problematic.

42. Change the code to read “…Worksheets(“Sheet1”)…” and verify that that works too.

Using the name of your sheet is more stable since if you add worksheets, changing the order,

your code still writes to the correct place.

 13

XIV. Using named arrays in Excel

A named array in Excel allows you to refer to a cell or cells by a name, e.g. “beta,” instead of

the cell address, e.g. “F23”. In Excel (not VB), a named range is created using the

Define Name command on the Formulas ribbon. These names can then be

referred to in both VB and Excel using the name, rather than the cell

address. For example, this screenshot from Excel shows a cell named

sigma in D2, and a formula in E2 with the equation 3*sigma, yielding a

value of 12.3.

An alternative way to name a range is by simply selecting the cell or cells you want to name,

and then typing the name in the box at the top left where the address usually appears, so that

becomes

There are some names that cannot be used; “c” and “r” are two that I know of. So when I

want to use them, I use “cc” and “rr” instead. Names can refer to ranges of multiple cells too.

43. Create a named array consisting of a single cell named n and another named array consisting

of a 2×2 array called b. (You’ll need to use your mouse or the shift key to select the 4 cells in

your 2×2 array).

44. In Excel, after creating a named cell with the name of “n” in any other cell you can refer to

that value simply by typing its name. For example if A1 has a value of 7, and you give it a

name of “n” then you can get an answer of 49 by typing “=A1^2” or “=n^2” Obviously, the

second of these is easier to understand and you can type it without having to hunt down

where “n” is placed.

45. One of the advantages of named ranges is that when working with VB you can refer to them

easily. Toggle back to VB (alt-F11) and add the lines to your program

Range("n") = 2
Range("b") = 3
Range("b").Cells(2, 1) = 1

46. If you run the sequence of commands above, and the spreadsheet should now include the

following cells:

n b

2 3 3

 1 3

 (Note that the statement Range("b").Cells(2, 1) refers to the 2nd row and 1st column of the

named range, b. It is convenient that you are not limited to 1,1, through 2, 2. For example,

Cells(0, 0), Cells(1, 7), or even Cells(5, -1), would also be valid. This can be quite helpful

as we will frequently want to use the number 0 as an index and because it allows you to write

output in an area around a named cell, without having to go to Excel to change the size of

your named range.

47. You can also read from your worksheet. For example, replace the line

n = 2, with

n=Range("n")
This way you can use the worksheet to both input and output data.

Note that the range in Excel and the variable in VB are totally independent. Unless you

explicitly place a number into Excel it will not be saved. Unless you read it into VB, VB will

never know about it.

 14

XV. Some other issues

48. It is frequently useful to break up your programs into pieces. For example, we might have a

sub that evaluates the utility function. This is very easy in VB, particularly if all your

variables are global. For example you might have a subroutine that simply reads:

 Sub UtilityFunction()
 utility = Log(z)
 End Sub

You can then call this sub by writing

 Call UtilityFunction
in your main program. This structure allows you to write general code that can more easily be

modified for the problem at hand.
(note: in VB, Log takes the natural log, while in Excel, log() is the base 10 log, and ln() is the natural log.)

Similarly, you can create stand-alone functions as follows

 Function UtilityFunction(z)
 UtilityFunction = Log(z)
 End Sub
You can then call this function just like you would any other:

 utility = UtilityFunction(z)

49. We will also frequently use if statements. For example the utility function might be:

 Function UtilityFunction(z)
 ‘ --
 ‘ for positive value of z, u=ln(z+1)
 ‘ for all other values of z, u=0
 ‘ --
 If z > 0 Then
 UtilityFunction = log(z+1)

 Else
 UtilityFunction = 0
 End If
 End Function

50. Finding the maximum or minimum with VB, is easily done by checking each point that you

evaluate. For example suppose there was some complicated function u(x). We could find the

value from the array x that maximizes u (·) as follows:

 imax =0
 umax = -99999
 for ix = 1 to nx
 if UtilityFunction(x(ix)) > umax then
 umax = UtilityFunction(x(ix))
 imax = i
 end if
 next ix
Note that in this code we initialize umax at a large negative number. That way we are assured

that the maximum will be found, even if the maximum is less than zero.

 15

51. If you want to use a function from Excel on numbers in excel, you can do this by simply

writing the Application. before the command. For example, to set c equal to the max of a &

b, use Excel's max function,

c = Application.Average(a, b)
or,
c = Application.max(a, b)

52. If you want to break a line of your code into two lines, then place an underscore symbol, “_”,

at the end of the line (after a space) then continue the command on the next line. For

example:

c = Application.Average(a+b*x^2 – c*x^3, _
 b+c*x^2 – c&x^3)

53. So, have you remembered step #1?

XVI. Running your programs directly from Excel

54. It is often convenient to insert buttons so that you can run your programs without having to

go to VB. This is easily done.

Toggle back to Excel. From the Developer ribbon (see image below), select the Insert

menu, then choose the button icon, . Using a click-and-drag process, create a button of the

size you wish on your spreadsheet. After defining the size of the button, Excel will prompt

you to choose a macro, i.e. the sub you want to start when you push the button. Choose the

one you want to use from the list. After that, you can right-click on the button and change its

properties, including the text presented and the Sub with which it is associated.

 16

XVII. Common VB Error statements

55. A frequent error message is

This occurs when the “subscript” (i.e. the index) is “out of range.”

For example, the following lines of code would lead to this type of error:

Dim b(1 to 4), i
for i = 1 to 5
 b(i) = i
next i
If you step through this code using F8, you will see when i=5, the error message appears

since b(5) does not exist.

 17

After completing this tutorial, you should

be able to do the following quiz in about 10 minutes.

Students using VB for their programming assignments in AGEC 642 must submit a

spreadsheet that includes a correct and complete version of this quiz before working on

the programming problems on problem set #3 or any programming Mastery Tests.

Quiz

(This will not be graded, but you must turn it in before you can take MT I.A.3)

1. Create a new spreadsheet with a VB module.

2. The spreadsheet must contain five named ranges, one named a, one named b, one

named n, one named step, and one named results.

3. Put the numbers 5, -.1, 0.8, and 10 in the ranges a, b, step and n, respectively.

You must insert comments in your program that identify where your program

accomplishes each of the tasks 4.a through 4.g.

4. Write a program that accomplishes the following tasks:

a. Dimension a, b , step and n as global variables and i as a local variable.

b. Read the parameters a, b, step and n from your spreadsheet.

c. Define a new variable and redimension it using a ReDim statement to be an

n×1, two-dimensional VB array.

d. Using a loop, calculate the numbers a*(i*step)+b*((i*step)^2), for

i=1,2,…,n.

e. Store each of these values in the new variable that you created in step c.

f. Identify the largest value from among the n values calculated.

g. Write each of the n values to the spreadsheet below a range named “results,”

placing a “*” in the cell to the right of the one that has the maximum value.

h. Save by copying and pasting your results into a separate worksheet 4 sets the

results of runs in which each of the parameters, a, b, step and n, have been

changed one at a time. The “*” must be repositioned automatically each time

you run the program.

5. Optional but recommended: Set up your spreadsheet so that you can run your

program from the spreadsheet using a button. You should be able to easily change the

values of a, b, step and n to quickly see how your results change.`

