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Let the first-order linear non-linear non-homogeneous system of difference equations be 
in general form:1 
 

11 ++ += ttt fAzz  (1) 
 

where A is a  matrix of time invariant coefficients and z and f are  vector of 
dated variables. The variable  is typically the state vector of the system at time t;  is 
a vector of (possibly time-dependent) forcing terms often thought of as exogenous. For 
illustrative purposes we will work with a 2 x 2 system of the form: 
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We can write the general solution to any linear system like in (1) in the form of a 
complementary homogeneous system plus the particular solution, or: 
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This result (4), allows us to solve for the equilibrium of the system in (1) in two stages: 
we start with the homogeneous system tt Azz =+1 , and complete the task by finding the 
particular solution to the full system. Particular solutions are easy to find when the 

                                                 
1 Alternatively the analysis can be done in terms of differential equations, changing 
notation x(t). Recall by Kolmogorov’s continuity theorem, that for the discrete 
process  and ∀  if there exist positive constants 

→tx
{ } ≥ttx 0 0>T D,,βα  s.t. 

[ ] TtstxxE t ≤−⋅− +1 s≤ ,0;βDs ≤α , then there exists a continuous version of x, x(t). 
 
 



forcing terms are time invariant because in the steady state  and 
. Thus, 
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regrouping terms, 
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that is iff (  is invertible, i.e. non-singular. Plugging (6) into (3): )A
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Regrouping terms, we get the homogeneous linear system of first-order difference 
equations: 
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Assume we know the initial condition 
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Hence, the system converges to the steady state iff . This can be determined 

through a spectral or eigenvalue representation of .  To do this we need to use Jordan 
decomposition, which requires that matrix  has 
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eigenvectors, i.e. distinct eigenvalues (could have some but never all eigenvalues 
repeated). The Jordan decomposition of  is: tA
 
  (11) 1−Λ= eeA tt

 



where e is the matrix of eigenvectors and Λ  is the matrix of eigenvalues, a diagonal 
matrix with the eigenvalues along the principal diagonal and zeros elsewhere. For the 2×2 
system: 
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and because  is diagonal, it must be: Λ
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The eigenvalues are obtained as follows. Without loss of generality drop the time 
superscript in (11), then it must be that: 
 
  (14) eeA ×Λ=×

 
define λ  as the vector of eigenvalues and I an nn×  identity matrix, then  I×=Λ λ , and  
 
 ( ) 0=××−⇒××=× eIAeIeA λλ  (15) 

 
Thus, iff e is non-singular, then it must be that: 
 
 ( ) 0det =×− IA λ  (16) 
 
(16) is known as the characteristic equation from where we obtain the eigenvalues. 
Notice, that for the 2 x 2 system: 
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where  and ( ) TATraceda ==+ )( ( ) DAbcad ==− )det( . Then, the characteristic 
equation can be re-written in terms of the T and D as follows: 
 
 0  (18) 2 =+− DTλλ



Solving the quadratic equation for the eigenvalues: 
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1λ  is the largest eigenvalue and 2λ  is the smallest eigenvalue. Also, T=+ 21 λλ   and 

D=× 21 λλ . Recall that, , then we can assess the local stability properties 

of the planar system from the discriminant  (a parabola) of the 
characteristic equation: 
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1) Iff DT 42 >  then both eigenvalues are real and distinct. 
 
2) Iff DT 42 =  then both eigenvalues are equal and matrix A cannot be diagonalizable 
and we need another method to find the eigenvalues. 
 
3) Iff DT 42 < , then both eigenvalues are distinct and complex conjugates: 
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Also: 
A) Iff 1<iλ  , the modulus of the eigenvalues lie within the unit circle (SINK), 

i.e. the steady state is stable as  as 

i∀

0→t
iλ ∞→t .  

B) Iff 1>iλ  , the modulus of the eigenvalues lie outside the unit circle 

(SOURCE), i.e. the steady state is unstable as  as t . 

i∀

±∞→t
iλ ∞→

C) Iff 1.. >itsi λ∃ , there exists some eigenvalue which modulus lies outside the 
unit circle (but not all) (SADDLE), then the steady state is neither stable nor 
unstable. Only a very specific set of initial conditions will take the system to the 
steady state along the saddle path (stable manifold) driven by the stable 
eigenvalues. 

 
Finally factorizing the characteristic equation p, we obtain the straight lines 

, which jointly with the discriminant parabola divides the plane in 
each regions for the characterization of the stability properties of the system in terms of 
the eigenvalues (roots), or equivalently from the trace (T) and the determinant (D) of the 
coefficient matrix A (see graph below): 
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Real eigenvalues zones: 
Region 1: Saddle, 
Region 2: Source, oscillatory divergence, 
Region 3: Saddle, 
Region 4: Source, monotone divergence, 
Region 7: Sink,  
7a & 7c – monotone convergence,  
7b – oscillatory convergence, 
Region 8: Source, monotone divergence, 
 
Complex eigenvalues (conjugate pairs) zones: 
Region 5: Source, oscillatory divergence, 
Region 2: Sink, oscillatory convergence. 
 



FINAL REMARK: For the nonlinear case, we linearized the system using Taylor’s 
expansion and finding the Jacobian (J) evaluated at the steady state. Then we can proceed 
with the previous analysis changing A for J. 


