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1. An Introduction to Dynamic Optimization --  

Optimal Control and Dynamic Programming 

AGEC 642 - 2024 

I. Overview of optimization 

Optimization is a unifying paradigm in most economic analysis. So, before we start, let’s 

think about optimization. The tree below provides a nice general representation of the 

range of optimization problems that you might encounter. There are two things to take 

from this. First, all optimization problems have a great deal in common: an objective 

function, constraints, and choice variables. Second, there are lots of different types of 

optimization problems and how you solve them will depend on the branch on which you 

find yourself.  

 

In terms of the entire tree of all optimization problems, the ones that could be solved 

analytically would represent a couple of leaves at best – numerical methods must be used 

to solve the rest. Fortunately, a great deal can be learned about economics by studying 

those problems that can be solved analytically.  

 

 
Source: The Optimization Technology Center: http://www.ece.northwestern.edu/OTC/ (very old!) 

 

In this course we will use both analytical and numerical methods to solve dynamic 

optimization problems, problems that have two common features: the objective function 

is a linear aggregation over time, and a set of variables called the state variables are 

constrained across time. And so, we begin …   
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II. Introduction – A simple 2-period consumption model 

Consider the simple consumer's optimization problem: 

 
( )

xzpzp

tszzu

bbaa

ba
z

≤+

..,max
 

[pay attention to the notation: z is the vector of choice variables and x is the consumer's 

exogenously determined income. This use of z and x will be used throughout this course.] 

 

Solving the one-period problem should be familiar to you. Now consider what happens if 

the consumer lives for two periods but must survive off the income endowment provided 

at the beginning of the first period.  That is, what happens if her problem is  

 ( ) ( )1 1 2 2 1 2 1 2 1max , , , , s.t. ' ' ,a b a b
z

U z z z z U z z z z x= + ≤p p  

where the constraint uses matrix notation with [ ],a bp p=p  refers to a price vector and 

[ ]1 1 1,a bz z z= ? We now have a problem of dynamic optimization. When we choose z1, we 

must consider how it will affect our choices in period 2.  

 

We are going to make a huge1 (though common) assumption and maintain that 

assumption throughout the course: utility is additively separable across time: 

 ( ) ( ) ( )21 zuzuu +=z . 

Clearly one way to solve this problem would be just as we would a standard static 

problem: set up a Lagrangian and take four first-order conditions for the z variables and a 

fifth for the Lagrange multiplier, then solve for all optimal choices simultaneously. This 

may work here, when there are only 2 periods, but if we have 100 periods (or even an 

infinite number of periods) then this would get really messy. This course will develop 

methods to solve such problems.  

 

This is a good point to introduce some very important terminology: 

• All dynamic optimization problems have a time step and a time horizon. In the 

problem above time is indexed with t. The time step is 1 period, and the time horizon 

is from 1 to 2, i.e., t={1,2}. However, the time step can also be continuous, so that t 

takes on every value between t0 and T, and we can even solve problems where T →∞. 

• xt is what we call a state variable because it is the state that the decision-maker faces 

in period t. Note that xt is parametric (i.e., it is taken as given) to the decision-maker's 

problem in t, and xt+1 is parametric to the choices in period t+1. However, xt+1 is 

affected by the choices made in t. The state variables in a problem are those that a 

decision maker takes as given when making his or her choices in each period, but 

future values are either determined by current choices or unknown at t. 

• A state equation defines the intertemporal changes in a state variable. This equation 

is sometimes referred to as the equation of motion or the transition equation. 

 
1 See Deaton and Muellbauer (137-142) on the negative implications of assuming preferences are additive. 
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• zt is the vector of tth period choice variables. Choice variables determine the 

(expected) payoff in the current period and the (expected) state next period. These 

variables are also referred to as control or action variables and I will use all these 

terms interchangeably. 

To distinguish state & control variables, I like to say, “You wake up in the 

morning, look at your state variables, make decisions about your control 

variables, then go back to sleep.” 

• pa and pb are parameters of the model. They are held constant or change 

exogenously and deterministically over time. [Note that the difference between 

parameters and state variables is subtle; parameters are not controllable at all, state 

variables are not controllable at time t but decisions at t can affect future values].  

• Finally, we have what I call intermediate variables. These are variables that are 

actually functions of the state and control variables and the parameters. For example, 

in the problem considered here, the utility at a moment in time might be carried as an 

intermediate variable for analytical convenience when you solve the problem. In firm 

problems, production might be an intermediate variable. When you formulate a 

problem, it is very important, but often difficult, to distinguish intermediate variables 

so that you do not treat them incorrectly (see PS#1). Intermediate variables are never 

critical to the solution, i.e., the problem could be specified and solved without any 

intermediate variables.  

• The benefit function tells the instantaneous or single period net benefits that accrue 

to the planner during the planning horizon. In our problem u(zt) is the benefit 

function. The benefit function should probably be called the net benefit function 

(benefits minus costs) and can be positive or negative. For example, in a problem in 

which the goal is to minimize the costs over the time horizon, the cost in each period 

would be the (net) benefit function.  

• In many problems there are benefits (or costs) that accrue after the planning horizon. 

This is captured in models by including a salvage value, which is usually a function 

of the terminal stock. Since the salvage value occurs after the planning horizon, it 

cannot be a function of the control variables, though it can be a separate optimization problem 

in which choices are made.  

• The sum (or integral) over the planning horizon plus the salvage value determines the 

objective function. We usually use discounting when we sum up over time. Pay 

close attention to this – the objective function is not the same as the benefit function.  

• All the problems that we will study in this course fall into the general category of 

Markov decision processes (MDP). In an MDP the probability distribution over the 

states in the next period is wholly determined by the current state and current actions. 

One important implication of limiting ourselves to MDPs is that, typically, history 

does not matter, i.e., xt+1 depends on zt and xt, irrespective of the value of xt−1. When 

history is important in a problem, then the relevant historical variables must be 

explicitly included as state variables. We will consider stochastic MDPs in much 

more depth in Lecture 9.  
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• A Formal Statement of the Optimization Problem is a set of mathematical 

expressions including the objective function and all the constraints. The constraints 

include the state equation(s), any conditions that must be satisfied at the beginning 

and end of the time horizon, and any constraints that restrict choices between the 

beginning and end. At a minimum, dynamic optimization problems must include the 

objective function, the state equation(s) and initial conditions for the state variables. 

In sum, the problems that we will study will have the following features. In each period 

or moment in time the decision maker takes as given the state variables and parameters, 

then makes optimal choices for the control variables considering the objective function 

and state equations. Instead of using brute force to the solve for the optimal value of all 

the z’s in the two-period consumer problem in one step, we reformulate the problem. Let 

x1 be the endowment, which is available in period 1, and x2 be the endowment that 

remains in period 2. Following from the budget constraint, we can see that x2= x1−p'z1, 

with x2≥0. In this problem x2 defines the state that the decision maker faces at the start of 

period 2. The equation which describes the change in the x from period 1 to period 2, 

x2−x1=−p'z1, is the state equation.  

 

We now rewrite our consumer’s problem, this time making use of the state equation: 

 

( )
2

1

1

1

1

max . .
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 (1) 

We now have a nasty little optimization problem with four constraints, two of them 

inequality constraints. Not fun. This course will help you solve and understand these 

kinds of problems. Note that while (1) looks complicated, it is quite general since you 

could easily write the T-period problem by simply replacing the 2’s with T. 

III. The OC (optimal control) way of solving the problem 

We will solve dynamic optimization problems using two related methods. The first of 

these is called optimal control. Optimal control makes use of Pontryagin's maximum 

principle.  

 

First, note that for most specifications, economic intuition tells us that x2>0 and x3=0. 

Hence, for t=1 (t+1=2), we can suppress inequality constraint in (1). We’ll use the fact 

that x3=0 at the very end to solve the problem.  

 

Write out the Lagrangian of (1): 

 ( ) ( )
2

1

1

, 't t t t t t t

t

L u z x x x zλ +
=

= + − −   p  (2) 

where we include xt in u(⋅) for completeness, though in this case 0u x∂ ∂ = . 
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Sometimes it is helpful to write out all the terms of a summation, to make sure that you 

know what is being said. In this case 

 
( ) ( )

( ) ( ) ( ) ( )

2

1

1

1 1 1 1 1 2 1 2 2 2 2 2 3 2

, '

, ' , ' .

t t t t t t t

t

L u z x x x z

u z x x x z u z x x x z

λ

λ λ

+
=

= + − −  

= + − − + + − −      

 p

p p

 

 

More terminology 

In optimal control theory, the variable λt is called the costate variable. Following the 

standard interpretation of Lagrange multipliers, at its optimal value λt is equal to the 

marginal value of relaxing the constraint. In this case, that means that λt is equal to the 

marginal value of the state variable, xt. The costate variable plays a critical role in 

dynamic optimization and has important economic meaning. 

The first-order conditions (FOCs) for (2) are standard: 

 0, , , 1,2
ti t iti

L z u z p i a b tλ∂ ∂ = ∂ ∂ − = = =   

021

2

2 =+−
∂
∂=∂∂ λλ
x

u
xL   

[note that x1 is not a choice variable since it is fixed at the outset and x3 is equal to zero] 

 ( )1 ' 0 ,t t t tL x x zλ +∂ ∂ = − − =p  t=1,2. 

We now use a little notational change that simplifies this problem and adds some 

intuition (we'll see how the intuition arises in later lectures). That is, we define a function 

known as the Hamiltonian where 

 ( ) ( ) ( ), , , 't t t t t t tH z x u z x zλ λ= + −p .  

Some things to note about the Hamiltonian: 

• the tth Hamiltonian only includes current variables: zt, xt and λt,  

• unlike in a Lagrangian, only the right-hand side of state equation appears after λt. 

 

In the left column of the table below we present the familiar FOCs of the Lagrangian. On 

the right we present the derivative of the Hamiltonian with respect to the same variables. 

Comparing the two sides, we can see what we need to put on the right-hand side of the 

derivatives of the Hamiltonian to obtain the same result as when using the Lagrangian.  
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Lagrangian  Hamiltonian 

( ) ( )( )[ ]
=

+ +−−λ+=
2

1

1,
t

tbbtaattttbtat zpzpxxzzuL   ( ) ( ), '
t g t t

H u z x zλ= + −p  

Standard FOCs  ∂H / ∂__ 

0t
t i

ti ti

L u
p

z z
λ∂ ∂= − =

∂ ∂
, t=1,2, i=a,b zti 0t

t

ti ti

uH
p

z z
λ∂∂ = − =

∂ ∂
 

( )
1 2

2 2

0
uL

x x
λ λ

∂ ⋅∂ = − + =
∂ ∂

 x2  
( )2 2

2 1

2 2

,u z xH

x x
λ λ

∂∂ = = −
∂ ∂

 

1 ' 0t t t

t

L
x x z

λ +
∂ = − − =
∂

p , t=1,2, i=a,b λt 2 1'
t

t

H
z x x

λ
∂ = − = −
∂

p  

Hence, we see that for the solution using the Hamiltonian to yield the same maximum the 

following conditions must hold: 

1. 0
t

H

z

∂ =
∂

    
The Hamiltonian should be maximized w.r.t. the control 

variable at every point in time. 

2. 1t t

t

H

x
λ λ−

∂ = −
∂

 for t>1  
The costate variable changes over time at a rate equal to minus 

the marginal value of the state variable to the Hamiltonian.   

3. 1t t

t

H
x x

λ +
∂ = −
∂

  The state equation must always be satisfied.  

 

When we combine these with a 4th condition, called the transversality condition (how we 

transverse over to the world beyond t=1,2) we are able to solve the problem. In this case 

the condition that x3 =0 (which for now we will assume to hold without proof) serves as 

the transversality condition. We will discuss the transversality condition in more detail in 

a few lectures.  

 

These four conditions are the starting points for solving most optimal control problems 

and sometimes the FOCs alone are sufficient to understand the economics of a problem. 

However, if we want an explicit solution, then we would solve this system of equations.  

 

In this class most of the OC problems we will face are in continuous time. The parallels 

between the discrete time case presented here and the continuous time case should be 

obvious when we get there. 

IV. The DP (Dynamic Programming) way of solving the problem 

The second way that we will solve dynamic optimization problems is using Dynamic 

Programming. DP is about backward induction – thinking backwards about problems. 

Let's see how this is applied in the context of the 2-period consumer's problem. 

 

Imagine that the decision-maker in our consumer choice problem is in period 2, having 

already used up part of her endowment in period 1, leaving x2 to be spent. In period 2, her 

problem is simple: 
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 ( ) ( )
2

2 2 2 2 2 2max s.t. ' .
z

V x u z z x= ≤p  

If we solve this problem, we can easily obtain the function V(x2), which tells us the 

maximum utility that can be obtained if she arrives in period 2 with x2 dollars remaining. 

The function V(⋅) is equivalent to the indirect utility function with pa and pb suppressed. 

The period 1 problem can then be written  

 ( ) ( ) ( )
1

1 1 1 2 2 2 1 1max . . '
z

V x u z V x s t x x z= + = − p . (3) 

The value of having x1 in period one is the solution to this problem. This equation is 

known as a Bellman’s equation, and it is the cornerstone of dynamic programming.  

 

Note that we have implicitly assumed an interior solution so that the constraint requiring 

that x3≥0 is assumed to hold with an equality and can be suppressed.  

 

Once we know the functional form of V(⋅), (3) becomes a simple static optimization 

problem and its solution is straightforward. If the functional form of V(x2) has been 

found, then we can use the state equation to eliminate x2 to obtain:  

 ( ) ( ) ( )
1

1 1 1 2 1 1max '
z

V x u z V x z= + − p .   

A major challenge with the DP approach, however, is that we do not have a priori a 

functional form for V(⋅), and as problems become more complicated, obtaining a 

functional form becomes more difficult, even impossible for many problems. Hence, the 

trick to solving DP problems is to find or approximate the function V(⋅). 

V. Are OC and DP equivalent? Yes.2 

As we will see throughout this course, either of these approaches can be used to solve a 

dynamic optimization problem. In this section we will quickly show that the first-order 

conditions for a simple problem are equivalent.  

Consider the continuous-time dynamic optimization problem,  

 ( ) ( )
0

max ,   s.t.  ,
t

T

t t t t t
z

t

u x z dt x f x z
=

= ɺ , 

where, as we will discuss in Lecture 2, 
t t

x x t≡ ∂ ∂ɺ . The discrete-time analog of this 

problem is 

 ( ) ( )
0

max ,   s.t.  ,
j

T

j j t t t t
z

j

u x z x x f x z
∆

+∆
=

∆ − = ∆ , 

where ∆ is some fraction of a period and ( ),
j j

u x z  is the rate at which utility is generated 

per full period. For example, if ∆=0.5, then there are two increments per period that go 

from j=0 to j=2T=T/0.5 and in each of these intervals the utility obtained is ( ),
j j

u x z∆ ⋅ . 

The Hamiltonian and Bellman equations for these two problems are: 

 
2 This discussion may be difficult to follow based only on the discussion above. After reading later lectures, 

especially Lectures 3 and 5, you should review this section. 
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 ( ) ( ) ( ), , , ,t t t t t t t tH x z u x z f x zλ λ= ∆ + ∆ , and (4) 

 ( ) ( ) ( ) ( ), max , ,   s.t.  , .
t

t t t t t t t t
z

V x t u x z V x t x x f x z+∆ +∆= ∆ ⋅ + + ∆ = + ∆ ⋅   (5) 

 

Equivalence for optimal choice 

First, we show the equivalence of the FOCs w.r.t the control variable as ∆→0. The first 

order condition for the Hamiltonian is, as above, 0
z t z

t

H
u f

z
λ∂ = ∆ + ∆ =

∂
. Dividing by ∆, 

this yields 0
z t z

t

H
u f

z
λ∂ = + =

∂
. 

For the Bellman’s equation, we know that at the optimum value for z, 0V z∂ ∂ = , i.e.  

( ) ( ),
0

t

z z

t t

V x tV
u f

z x

+∆

+∆

∂ + ∆∂ = ∆ ⋅ + ∆ ⋅ =
∂ ∂

. Dividing by ∆ and taking the limit as ∆→0 so 

that t+∆→t, we have 
( ),

0
t

z z

t

V x t
u f

x

∂
+ =

∂
.  

Now, recall that  λt is a shadow price, its economic interpretation is the marginal value of 

relaxing the state equation constraint or a marginal increase in xt, i.e., 
( ),

t

t

t

V x t

x
λ

∂
=

∂
. 

Hence, it follows that 
0

lim 0,
t t

V H

z z∆→

∂ ∂= =
∂ ∂

 so the FOC’s with respect to z of the optimal 

control and dynamic programming specifications are equivalent.  

 

Equivalence for optimal value of future x 

Next, we can show the equivalence of the FOC w.r.t. the state variable, xt, as ∆→0. 

Again, we stated above that the FOC of the Hamiltonian for the state variable is  

 
t t t

t t t

H u f

x x x
λ λ λ +∆

∂ ∂ ∂= ∆ + ∆ = −
∂ ∂ ∂

.  (6)  

We can then divide the middle and last part of this equality by ∆ to obtain  

 t t
t

t t

u f

x x

λ λλ +∆−∂ ∂+ =
∂ ∂ ∆

  

and then take the limit as ∆→0 so that, using the definition of a partial derivative, this 

becomes  

 t
t

t t

u f

x x t

λλ ∂∂ ∂+ = −
∂ ∂ ∂

.  (7)  

For the Bellman’s equation, xt is not a choice variable at time t – it is fixed at time t. 

However, we can take the derivative of the Bellman’s equation (5) with respect to xt 

using the chain rule to obtain:  

 
( ) ( ), ,

t t t

t t t t

V x t V x t xu

x x x x

+∆ +∆

+∆

∂ ∂ + ∆ ∂∂= ∆ +
∂ ∂ ∂ ∂

. (8)  
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Notice that there is some nice intuition in (8): the marginal value of the state variable is 

equal to the sum of what you get out of it in the first interval of length ∆, ∆⋅ux, plus what 

you get in the future because you have more xt: ( )1
t

t
t x

t t

xV
f

x x
λ

+∆
+∆

+∆
+∆

∂∂ = + ∆
∂ ∂

, where we 

are using the equation ( ),t t t tx x f x z+∆ = + ∆ . Hence, (8) can be rewritten 

( )1t x t xu fλ λ +∆= ∆ + + ∆ , subtracting λt+∆ from both sides and dividing by ∆ we obtain 

( )t t
x t x

u f
λ λ λ+∆

+∆
− = +
∆

. Again we take the limit at ∆→0, which in this case gives us 

t

λ∂−
∂

 on the LHS, to obtain 
x t x

u f
t

λ λ∂− = +
∂

, which is the same as FOC for the 

Hamiltonian, (7).  

Finally, it is obvious that the state equation in both formulations must hold, regardless of 

the length of ∆. Hence, we have shown that the two approaches are equivalent.  

VI. Summary 

• OC problems are solved using the vehicle of the Hamiltonian, which must be 

maximized at each point in time.  

• DP is about backward induction.  

• Both techniques are equivalent to standard Lagrangian techniques and the 

interpretation of the shadow price, λ, is the same.  

VII. Additional reading for next lecture 

Leonard and Van Long, chapter 2.  

VIII. References 

Deaton, Angus and John Muellbauer. 1980. Economics of Consumer Behavior. New 

York: Cambridge University Press. 


