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15 – Econometric Applications of Dynamic Programming 

AGEC 642 - 2025 

I. Positive analysis using a DP foundation: Econometric applications of DP 

An active area of research involving numerical dynamic optimization, is the use of DP 
models in positive analysis. This work seeks to understand the nature of a particular 
problem being solved by a decision maker.1  By specifying explicitly the optimization 
problem being solved, the analyst is able to estimate the parameters of a structural model, 
as opposed to the easier and more common reduced form approach. This approach was 
first developed by John Rust (1987), and I draw here directly on his original paper to 
explain how this is done. He provides a more complete description of his approach in 
Rust (1994a and 1994b).  
 
My focus here will be quite narrow and serves only as an introduction to this literature. A 
more general review of approaches for the estimation of the parameters of dynamic 
optimization problems is provided by Keane et al. (2011) and surely more up-to-date 
surveys are now available.  
 
Rust’s paper is entitled “Optimal Replacement of GMC Bus Engines: An Empirical 
Model of Harold Zurcher.” It is, in effect, an econometric estimate of the structural 
parameters that govern the decisions of Harold Zurcher, who was the superintendent of 
maintenance at the Madison (Wisconsin) Metropolitan Bus Company. The state variable 
xt denotes the accumulated mileage (since last replacement) of the GMC bus engines of 
the bus fleet. Zurcher must make the choice as to whether to carry out routine 
maintenance, i=0, or replace the engine, i=1. Each period the operating costs, c(xt, θ1) 

where θ is a vector of parameters to be estimated. He assumes that mileage traveled in a 
period, say ∆x, is distributed exponentially so that the cdf of ∆x is ( ) ( )21 expF x xθ∆ = − ∆ . 

If you replace the engine, i=1, then 1tx x+ = ∆ , and if the engine is not replaced, i=0, then  

1t tx x x+ = + ∆ . 

 

An old engine has scrap value P and a new one costs P . Hence, the additional cost to 

replace an engine is equal to ( )P P− .  

 
The problem he is solving, therefore, is what Rust calls a regenerative optimal stopping 

problem: 

(3.5) ( )
{ }

( ) ( )1
0,1

max , , ,
t

t t t t t
i

V x u x i EV x iθ θθ β
∈

= +    

where 

 
1 Adda and Cooper’s textbook focuses particularly on this application of DP and the 

interested reader is referred to them for an introduction. 
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(3.6) ( ) ( ) ( ) ( )20
, | , , .t t t tEV x i V y p y dy x iθ θ θ

∞
=  2 

where y is the index of the integral, i.e., what is used in place of xt+1 inside the integral, 

and p(y) being a density function, i.e., ( )F y y∂ ∂ . The econometric task is to estimate the 

parameter vector θ. To express this in more familiar notation, this would be equivalent to 
the Bellman’s equation 

 
( )

{ }
( ) ( )( )

( )
1 1

0,1

1 2

max , ,

. . , , ,

t

t t t t
i

t t t t

V x u x i E V x

s t x f x i

θ β

θ ε

+∈

+

= +

=
 

where εt~is a continuously distributed random variable with density equivalent to p(y) in 
(3.6). 

 
As Rust notes, the problem above has much in common with standard models of discrete 
choice in which the econometric problem is to identify the parameters θ that maximize 
the likelihood of observing the set of data. That is, if we let  

( ) ( ) ( )1, , , ,t t t t t tV x i u x i EV x iθ θθ β= +  
ɶ  

i.e., the value function with the choice it, then, for a given value for the parameter vector 
θ, we can write the probability of observing it=1, as the probability that 

( ) ( ),1 ,0
t t

V x V xθ θ>ɶ ɶ . This is essentially the same discrete-choice econometric problem as 

considered by McFadden (1973). In standard discrete choice models, however, the 
objective function is a static optimization problem that can be evaluated quickly. In a 

dynamic problem the function ( ),1
t

V xθ
ɶ  is the solution to a dynamic optimization 

problem.  

A. The approach he doesn’t like 

In earlier papers, Rust had shown that using the Bellman’s equation, … there is an 
optimal stationary, Markovian replacement policy Π=( f,f,…) where f  is given by  

(3.7) ( ) ( )
( )

1 2

1 2

1 ,
,

0 ,

t

t t

t

if x
i f x

if x

γ θ θ
θ

γ θ θ
>= = 
≤

 

where ( )1 2,γ θ θ  is the solution to  

(3.8) ( ) ( ){ } ( )( )1 2,

1
2

0

1 ,
1 exp 1

c y
P P y dy

yr

γ θ θ θβ β θ β ∂ 
 − = − − −   ∂ 

  

where γ represents a threshold value of mileage. This equation is complicated, and we 
will not attempt to understand every term. However, there is clear intuition for each side 
of the equation. The left-hand side is the present value of the cost of replacing the engine 
in the next period. The right-hand side is the capitalized value (note 1 r ) of the stream of 

expected savings that result from having a new engine. 
 

 
2 I follow Rust’s notation here.  Following the notation more common in this series of 

lecture notes, ( ),
t t

EV x iθ  would be written ( )1t
EV xθ + , ( )1 ,

t t t
x f x i+ = . 
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He goes on to state: 

“The likelihood function ( )1 1,..., , ,..., ,
T T

l i i x x θ  specifies the conditional 

probability density of observing the sequence of states and replacement 
decisions for a single bus in periods 1 to T. Under the assumption that 
monthly mileage and replacement decisions are independently distributed 
across buses, the likelihood function L(θ) for the full sample of data is 
simply the product of the individual bus likelihoods l. “(p. 1007) 

This estimation approach, however, depends critically on functional form assumptions 
that are unlikely to hold. As Rust writes,  

The solution of the likelihood function depends critically on specific 
choice of functional form: namely, that monthly mileage (xt+1-xt) has an 

i.i.d. exponential distribution. Unfortunately, my sample of data flatly 
refutes this assumption. 3 

The more general problem faced is provided in paragraphs on pages 1008-1009: 

A basic result in Markovian decision theory (cf. Blackwell (1968)) shows 
that under quite general conditions the solution to the class of infinite horizon 
Markovian decision problems takes the general form  

(3.9) ( ),
t t
i f x θ=  

where f is some deterministic function relating the agent’s state variables xt to his 
optimal action it. Suppose we assume that there are no unobserved state variables, 
i.e., that the econometrician observes all of xt. The theory then implies that the data 
obey the deterministic relation (3.9) for some unknown parameter value θ*. 
However, in general, real data will never exactly obey (3.9) for any value of the 
parameter θ : the data contradict the underlying optimization model. The typical 
solution to this problem is to “add an error term” εt in order to reconcile the 
difference between f(xt, θ) and the observed choice it  

(3.10)  ( ), .
t t t
i f x θ ε= +  

By making a convenient distributional assumption for εt, one might use the model 
(3.10) to estimate θ. The difficulty with this procedure is that it is internally 

inconsistent: the structural model was formulated on the hypothesis that the agent’s 
behavior is described by the solution of a dynamic optimization problem, yet the 
statistical implementation of that model implies that the agent randomly departs from 
this optimal solution. If error terms εt are to be introduced to a structural mode in an 
internally consistent fashion, they must be explicitly incorporated into the solution of 
the dynamic optimization problem. When this is done, a correct interpretation of the 
“error term” εt is that it is an unobservable, a state variable which is observed by the 
agent but not by the statistician . 

 
3 Remember this statement, and compare his response here to the response to that he 

adopts in a similar situation in Rothwell and Rust. 
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B. The approach he does like 

Rust (1987) proposes an alternative structural model. He notes that Zurcher’s Bellman’s 
equation is  

(4.4)  ( ) ( ) ( ) ( )1, max , , , ,
t t t t t t

i
V x u x i i EV x iθ θε θ ε β ε = + +  , 

which is a function of the distance that the engine has traveled, xt, and an unobserved 

state variable, εt, which is known by Zurcher but not by the analyst. Writing out the 

expected value on the RHS of the Bellman’s equation, we have 

(4.5) ( ) ( ) ( )2 3, , , , | , , , ,t t t t

y

EV x i V y p dy d x iθ θ
η

ε η η ε θ θ=   . 

The function p(⋅) is a continuous Markov transition density function, which allows us to 
estimate the expected value of xt+1  conditional on the choice i, the current state, xt, and 

the parameters θ2 and θ3, and y is the variable of integration for xt+1 and η is the variable 

of integration for the unobserved state variable, εt+1. 

Rewriting (4.4) in way more familiar to us, we obtain 

(4.4’)  ( ) ( ) ( ) ( )1 1 1, max , , ,
t t t t t t

i
V x u x i i EV xθ θε θ ε β ε+ + = + +  . 

Hence, Rust’s preferred approach involves having the unobserved state variable, εt, enter 

linearly into the benefit function. As we can see in (4.5), however, there is the possibility 
that εt will be correlated across time since the density function for xt+1 and εt+1, 

( )1 1 2 3, | , , , ,
t t t t

p x x iε ε θ θ+ + , is conditional on xt and εt. That would be a problem because 

the distribution at t+1, is a function of the variable in t, which is itself unknown. Hence, 
the distribution grows geometrically as we look from t to t+1, to t+2 and so on, making 
the problem intractable for both the computer and Zurcher.  
 
To achieve an estimable model, Rust makes a critical assumption of Conditional 
Independence (CI) (p. 1011). This assumption “implies that any statistical dependence 
between εt and εt+1 is transmitted entirely through the vector xt+1. Second, the probability 
density of xt+1 depends only on xt and not εt.”  

 
As an important practical matter, the CI assumption means that the transition density, can 
be written in a multiplicative form: 

(4.7) ( ) ( ) ( )1 1 2 3 1 1 2 1 3, | , , , , | , | , ,
t t t t t t t t

p x x i q x p x x iε ε θ θ ε θ θ+ + + + += , 

where θ2 and θ3 are parameters governing the dynamics of the state variables ε and x 

respectively. In other words,  q(⋅) and p(⋅) are independent Markov transition 
probabilities. Note that neither q not p are conditional on εt. 

 

Making the CI assumption leads to his Theorem 1, which implies, (p. 1012) “that the 
conditional choice probabilities P(i|x,θ) [i.e., the conditional probability of choosing 
action i given the state variable x ] can be computed using the same formulas used in the 

static case with the addition of the term ( ),EV x iθβ  to the usual static utility term 
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( )1, ,u x i θ . Notice that McFadden’s (1973), (1981) static model of discrete choice appears 

as a special case of Theorem  1 when p(⋅|x,i,θ3) is independent of i.”   

 
Following on McFadden, if we make the assumption that q(ε|x,θ2) is multivariate extreme 

value, then the probability of observing choice i, P(i|x,θ), can be written as a multinomial 
logit:  

(4.13) ( )
( ) ( )( ){ }

( ) ( )( ){ }
( )

1 1

1 1

exp , , ,
| ,

exp , , ,

t t t

t t

j C x

u x i EV x x i
P i x

u x j EV x x j

θ

θ

θ β
θ

θ β
+

+
∈

+
=

+
 . 

The log likelihood function, therefore, can be written  

 ( )
1

ln | ,
n

k k

k

LL P i x θ
=

= , 

where 
k

i  and 
k

x  are the kth observation observed in the data set. 

 
Hence, Rust suggests “the following nested fixed-point algorithm: an ‘inner’ fixed point 
algorithm computes the unknown function EVθ for each value of θ and an “outer” hill 
climbing algorithm searches for the value of θ which maximizes the likelihood function.” 
That is: 

1) Choose a vector of parameters of 1θ̂ θ=   

2) Solve the DP to find Vθ  with ˆθ θ=  

3)  Calculate the likelihood function for your data set (and slopes of the likelihood 
function w.r.t the elements of θ) 

4) Update 2θ̂ θ=  and return to step 1. 
 
Since we will be iterating repeatedly on this, efficient solutions to the DP (step 2) is 
critical. Collocation methods (see Lecture 11) are frequently used for this step.  
 
Rust is not overly optimistic about the ability to apply this approach to a wide range of 
problems. The computational burden is great. Each time we calculate the Bellman’s 
equation it is necessary to solve an infinite horizon DP problem, and then you need an 
efficient algorithm for searching over the parameter space. He cites his own work, which 
showed that the contraction mapping Tθ  (i.e., the successive approximation algorithm) is 
Fréchet differentiable.4 This gives him two numerical advantages. He uses a method to 
obtain EVθ and, as a by-product of this method, gets analytic solutions for the θ 
derivatives for EVθ, which can then be used by the hill-climbing algorithm to maximize 
the likelihood function. (p. 1013)   

 

4 According Weisstein, a function  is Fréchet differentiable at a if 
( ) ( )( ) ( )lim

x a
f x f a x a

→
− −

 
exists. That is Fréchet differentiability is essentially the standard concept of continuous 
differentiability. 
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C. Applications 

There have been many applications of Rust’s nested fixed-point approach and with the 
increasing speed of computers and the use of efficient solution methods, there is great 
scope for expanding the applications of the nested fixed-point algorithm. Some 
applications by applied economists include papers that have studied the cow replacement 
problem (Miranda and Schnitkey, 1995), the value of recreationa fishing (Provencher, 
1995, Baerenklau and Provencher, 2005) and the value of opportunities to hunt (Reeling, 
Verdier and Lupi, 2020).  
 
An interesting extension of this approach was provided by Hendel and Nevo (2005) who 
consider the consumer problem of a storable good – laundry detergent.5 In their 
application, the problem is further complicated by the fact that they never observe the 
state variable, the stock of laundry detergent in the household, and they do not observe 
withdrawals from the stock either, only additions when the individual makes a purchase. 
The bottom line is that they do find substantial differences between the static and 
dynamic models, with static models overestimating demand elasticities by 30%.  

D. Other methods and critiques 

Although these notes focus on Rust’s nested fixed-point algorithm, his is not the only 
method that has been developed for estimating dynamic structural models. Other 
approaches include Keane and Wolpin (1994), Pakes et al., (2007) and Bajari et al., 
(2007, 2009). Rust (1994b) describes an alternative “forward” approach that “abandons 
the pretense of starting with an ‘a priori’ specification for u and instead conducts a 
specification search over the value functions v directly, using the estimated v functions to 
‘back out’ estimates of the single-period utility functions u from the fixed-point 
condition” (p. 149). This approach is computationally much less burdensome, and he 
notes that in his 1988 paper, he finds that both methods generate “basically similar 
estimates of u and v.”   
 
The structural approach advocated by Rust, however, is not without its detractors. 
Heckman and Navarro (2007) describe Rust’s approach as follows:  

[Rust (1994a)] shows that without additional restrictions, a class of infinite 
horizon dynamic discrete choice models for stationary environments is 
nonparametrically nonidentified. His paper has fostered the widespread 
belief that dynamic discrete choice models are identified only by using 
arbitrary functional form and exclusion restrictions. The entire dynamic 
discrete choice project thus appears to be without empirical content, and 
the evidence from it at the whim of investigator choices about functional 
forms of estimating equations and application of ad hoc exclusion 
restrictions. 

Not surprisingly, they go on to offer an alternative.  

 
5 Hendel and Nevo (2005) is a testament to the lengths that researchers have gone to understand 

the deep mysteries behind the demand for laundry detergent, one of the most important 
social issues of the last century ;-).   



15 - 
 

7

 

II. References 

Adda, Jérôme and Russell Cooper, 2003. Dynamic Economics: Quantitative Methods and 

Application. MIT Press: Cambridge, Mass. 

Bajari, Patrick, C. Lanier Benkard and Jonathan Levin. 2007. Estimating dynamic models 
of imperfect competition. Econometrica, 75(5):1331–1370. 

Baerenklau, Kenneth A. and Bill Provencher. 2005. “Static modeling of dynamic 
recreation behavior: implications for prediction and welfare estimation”, Journal 

of Environmental Economics and Management, 50(3): 617-636. 

Heckman, James J, and Salvador Navarro. 2007. Dynamic Discrete Choice and Dynamic 
Treatment Effects. Journal of Econometrics 136(2):341-96. 

Hendel, Igal, and Aviv Nevo. 2006. Measuring the Implications of Sales and Consumer 
Inventory Behavior. Econometrica 74(6):1642-73. 

Keane, Michael P. and Kenneth I. Wolpin. 1994. The Solution and Estimation of Discrete 
Choice Dynamic Programming Models by Simulation and Interpolation: Monte 
Carlo Evidence. The Review of Economics and Statistics 76(4):648–672. 

Keane, Michael P., Petra E. Todd, and Kenneth I. Wolpin. 2011. The Structural 
Estimation of Behavioral Models: Discrete Choice Dynamic Programming 
Methods and Applications. Handbooks in Economics - Handbook of Labor 

Economics, Edited by: Orley Ashenfelter and David Card Vol 4(A):331-461. 

McFadden, D. 1973. “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. 
Zarembka (ed.), Frontiers in Econometrics, New York: Academic Press. 

Miranda, M.J. and G.D. Schnitkey. 1995. “Estimation of Dynamic Agricultural Decision 
Models: The Case of Dairy Cow Replacement.” Journal of Applied Econometrics 

10:41-56.  

Pakes, Ariel, Michael Ostrovsky, and Steven Berry. 2007. Simple estimators for the 
parameters of discrete dynamic games (with Entry/Exit examples). The RAND 

Journal of Economics 38(2):373–399. 

Provencher, Bill. 1995. Structural Estimation of the Stochastic Dynamic Decision 
Problems of Resource Users: An Application to the Timber Harvest Decision. 
Journal of Environmental Economics and Management 29:321-338. 

Reeling, C., Verdier, V. and Lupi, F. (2020) ‘Valuing goods allocated via dynamic 
lottery’, Journal of the Association of Environmental and Resource Economists, 
7(4), pp. 721–749. Available at: https://doi.org/10.1086/709142. 



15 - 
 

8

Rust, J. 1987. “Optimal Replacement of GMC Bus Engines: An Empirical Model of 
Harold Zurcher.” Econometrica 55:999-1033  

Rust, John. 1994a. Structural Estimation of Markov Decision Processes. Handbook of 

Econometrics IV. edited by RF Engle and DL McFadden IV (1994): 3082-3143. 
New York: Elsevier, 3082-3143 

Rust, J. 1994b, “Estimation of dynamic structural models, problems and prospects: 
discrete decision processes,” Chapter 4, pp. 119-170 of Advances in 

Econometrics: Proceedings of the 6th World Congress of the Econometric 

Society, edited by J.J. Laffont and C. Sims. 

Weisstein, Eric W. "Fréchet Derivative." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/FrechetDerivative.html  


