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14. Stochastic Optimal Control 

AGEC 642 –2024 

To Ngoc Nguyen is the co-author of these notes.  

Andrew McMartin provided a helpful derivation of equation 1 

These notes are based largely on Section 22, “Stochastic Optimal Control” in 

Kamien and Schwartz (1991). The other principal sources are Xepapadeas (1997), 

chapters 3 and section 7.7 and Malliaris and Brock (1982) Chapter 1.  

Equation numbers are taken from the original sources 

I.  Stochastic processes in continuous time 

In discrete time it is easy to imagine that from t to t+1 there is a random shock so that 

xt+1=xt + f(⋅)+εt. But what happens to ε as the time that elapses from t to t+1 goes to zero? In 

continuous time problems, the very notion of a stochastic process is a little hard to understand. 

Randomness that continues no matter how short the time increment was first studied in the 

physical sciences when Robert Brown noticed the random movements of pollen particles floating 

in water.1  Its mathematical formalization is attributed to the mathematician Norbert Wiener. 

Hence, such random processes are typically referred to as either Brownian Motion or a Wiener 

Process. 

Brownian motion can most easily be thought of as a random walk in continuous time. Let’s start 

with the discrete time example in which xt+∆=xt +εt. Assume that the distribution of the random 

parameter ε is symmetric, constant over time, and has a mean of zero. Figure 1 presents a series 

of simulated paths in which the size of ∆ decreases from 5 periods to one-hundredth of a period. 

As you can see, the paths do not become smooth, but are instead fractal in nature – no matter 

how close you look they still jump around in a seemingly jittery fashion with sharp peaks and 

troughs. 

x t0.01( =0) x t0.01( =0) 

x t0.1( =0) 

x t0.2( =0) 

x t1( =0) 

x t3( =0) 

x t5( =0) 

x t0.5( =0) 

 

Figure 1: Random paths of 
t t tx x ε+∆ = +  for levels of ∆ from 5 to 0.01 and the variance of ε 

declining to ensure that the variance over a single period is constant 
 

1  According to Wikipedia, Jan Ingenhousz observed a similar process over 40 years prior to Brown. However, 

Brown is typically attributed with this discovery (e.g., Bryson, Bill, 2003. A Short History of Nearly Everything, 

Broadway Books.) 
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Figure 2 presents a collection of simulated random walks. Since this is a random walk process, 

Et(xt+j)=xt no matter how far out in the future you forecast. However, the variance of xt+j increases 

in j, var(xt+10)>var(xt+5). 

 
Figure 2: Random walks starting at zero with ε~uniform(−0.5,+0.5) 

The random shock, which we will refer to as Z, is the Brownian motion drift. It can be expressed 

as the limit as the time between one shock and the next goes to zero as presented in Figure 1. If 

εk is the kth independently and identically distributed shock with mean zero and variance 1, then 

0
1

limt k
tk

Z ε
∆→

≤ ≤ ∆

= ∆   is a Standard Wiener Process. 2 

Wiener processes have a number of interesting characteristics. First, the expectation is zero so 

that if xt+∆t =xt+Z
∆t , the Et(xt+k)=xt. Second, the variance of the random variable increases linearly 

in t, i.e., and vart(xt+∆t)= k⋅∆t. The increasing variance can be seen in Figure 2. Together, these 

characteristics mean that the changes in the variable over non-overlapping periods, e.g., 

x(t1)−x(t0), x(t2)−x(t1), x(t3)−x(t2), …, are independently distributed with means equal to zero and 

variances proportional to the time lag considered, i.e., t1−t0, t2−t1, etc. If (t2−t0)=2⋅(t1−t0) then the 

variance of  [x(t2)−x(t0)] will be exactly double the variance of  [x(t1)−x(t0)].  

A. Stochastic differential equations 

Now let’s formalize and generalize following Kamien and Schwartz (KS hereafter). A standard 

deterministic state equation would take the form  

 ( ), ,
x

x g t x u
t

∂= =
∂

ɺ  

 

2 The use of z is standard notation. Obviously it is important to not confuse it with zt which we use to define the 

choice variable.  

xt  
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where u is the control variable and x is the state variable.3 This can be written as a difference 

equation, ( ), ,dx g t x u dt= , which holds exactly for lim 0dt → .  

When the state equation is stochastic, the changes in x are a function not only of time but also of 

the random shocks that occur. From 0 to t, the change in x would have a deterministic part, 

( ), ,g t x u dt , and a stochastic part, σ(⋅)Zt, where σ(⋅) is a “volatility parameter” that scales the 

cumulative standard Wiener process, Zt, which evolves like the lines in Figure 2. Hence, we can 

write ( ) ( )0
, ,

t t
x x g t x u dt Zσ= + + ⋅ . It follows that  

( ) ( )0

0

t

t
E x x g dt= + ⋅ ,  

( ) ( ) ( ) ( )2 2
var var

t
x z tσ σ= ⋅ = ⋅

 

( ) ( )( )2
~ ,t tx N E x tσ ⋅   

Hence, taking the total differential of the standard diffusion yields  

 ( ) ( ), , , ,dx g t x u dt t x u dzσ= +  (1) 

where z is the standard Wiener process and dz is “the increment of a stochastic process.”  That is, 

z is a uniform Brownian motion term, which is scaled by σ  for the particular problem that we’re 

working with.  

So, the evolution of x is governed not only by choices, u, and time, t, but also by the stochastic 

process, z. Figure 3 shows an example of Brownian motion characterized by (1), in which an 

increment in x, i.e., dx, includes 2 components: a deterministic linear drift, g(.)dt , and a random 

diffusion with standard error σ(.). If g(⋅) = 0 and σ(.) = 1 the stochastic process x becomes the 

standard Wiener process z.  

timet+dtt

g t( )

diffusion σ

t+ dt2
 

Figure 3: Two components of a generalized Brownian motion 

 

3 Apologies for the change in notation here. The use of u as a control variable is pretty common in the optimal 

control literature, so while it is terribly confusing for economists, we have to get used to it. 
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Recall that the variance of z increases in t, that z is independently distributed over time, and time, 

which is purely deterministic. Hence, for a standard Wiener process three key equalities are 

satisfied:  

 (dz)2 =dt,    dzdt=dtdz=0    and    (dt)2= 0. (2) 

The first of these terms is particularly important, it means the distribution of (zt − zs) depends 

only on the difference in time, t−s: the greater the difference in time between t and s, the greater 

the variance. The second equalities indicate that time and z are independent, and the third 

equality means that time is deterministic. 

The mathematical usefulness of the equalities in (2) can be seen if we consider a second-order 

Taylor series expansion for a stochastic process. Suppose y=F(t,z) is a random variable that is 

defined by a deterministic part, i.e., is a function of t, and a random part, z, where z is a Wiener 

process. A Taylor series expansion of dy would be 

 ( )2 21
higher order terms

2
t z tt zz tz

dy F dt F dz F dt F dz F dtdz= + + + + + , 

where ( )22dt dt=  and ( )22dz dz= . Using the fact that dzdt=dt2=dtdz=0 and ignoring the higher 

order terms, we obtain 

 21

2
t z tt

dy F dt F dz F dt= + + ( )2

( )
zz tz

dt
F dz F dtdz

=
+ +  

 
1

2
t zz zdy F F dt F dz

 = + + 
 

. (3) 

More generally, if y=F(t,x) where ( ) ( ), , , ,dx g t x u dt t x u dzσ= + , then  

 ( )2 21
higher order terms

2
t x tt xx tx

dy F dt F dx F dt F dx F dtdx= + + + + +
 

 

 
( ) ( )( ) ( ) ( )( )( )

( ) ( )( )

221

2
t x tt xx

tx

dy F dt F g dt dz F dt F g dt dz

F dt g dt dz

σ σ

σ

≈ + ⋅ + ⋅ + + ⋅ + ⋅

+ ⋅ + ⋅
 

where the underlined pieces are equal to dx. Expanding and cancelling,  

( ) ( ) 21

2
t x x ttdy F dt F g dt F dz F dtσ≈ + ⋅ + ⋅ + ( )2 2

xxF g dt+ ⋅ ( ) ( )g dzdtσ+ ⋅ ⋅ ( )( )
( )

2 2

2

tx

dz

F g dt

σ + ⋅ 
 

+ ⋅ ( )txF dzdtσ+ ⋅
 

so 

 ( ) ( ) ( )2 21

2
t x x xx

dy F dt F g dt F dz F dzσ σ≈ + ⋅ + ⋅ + ⋅  

 ( ) ( ) ( )2 , ,
, , , , .

2
xx

t x x

F t x u dt
dy F dt F g t x u dt F t x u dz

σσ≈ + + +  

This brings us to the differential equation that we can actually use:  

 ( ) ( ) ( )21
, , , , , ,

2
t x xx xdy F F g t x u F t x u dt F t x u dzσ σ = + + +  

, (6) 
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in which we drop the ≈ symbol by assuming that dt is sufficiently small.  

 

This expression can be extended to multiple state variables, x1,…, xn, with correlations σij as 

indicated in equation (7) and (8): 

 ( ) ( )
1

, , , , 1,...,
n

i i ij j

j

dx g t x dt t x u dz i nσ
=

= + = , (7) 

 
2

1 1 1

1

2

n n n

i i j

i i ji i j

F F F
dy dx dt dx dx

x t x x= = =

∂ ∂ ∂= + +
∂ ∂ ∂ ∂  . (8) 

Equations (3) and (6) are special cases of what is known as Itô’s Lemma, which is presented in a 

general form in equation (8).  

B. Solving stochastic differential equations 

Example #1 (KS, 266): Recall that if 1
y

y
=
ɺ

, then y=C⋅et where C is the constant of integration 

(which we will suppress from here forward). Or, using a difference equation presentation, 

dy ydt=   t
y e= . However, if dy=ydz and z is a Wiener process, then 2z t

y e
−= . 

Why does stochastic integration work like this? Reproducing (3) from above, recall that if  

y=F(t,z), then 

 
1

2
t zz zdy F F dt F dz

 = + + 
 

.  (3) 

So, we need a function y=F(t,z) such that dy satisfies (3) and dy=ydz. One way that this equality 

will be satisfied is if the first term in (3) equals zero, i.e., 
2

zz
t

F
F = − , and Fz=y . Using a carefully 

chosen “guess” that ( ) 2 2, z t z t
F t z e e e

− −= = , we see that ( )2z t

z zzF F e F
−= = = ⋅ , and 

( )21
 2

2

z t

t
F e F−= − = − ⋅ . Hence, if ( ) 2, z t

F t z e
−= , then  

2 2 2 21 1 1
0

2 2 2

z t z t z t z t

t zz zdy F F dt F dz e e dt e dz e dz ydz
− − − −   = + + = − + + = + =   

   
. Hence, 

2z t
y e

−=  is the solution to the differential equation, dy=ydz when z a Wiener process. 

Example #2 (KS, 266): Let’s look at another case: dy aydt bydz= + . Again, we start with  

 
1

2
t zz zdy F F dt F dz

 = + + 
 

. (3) 

In this case  

 (i)  
1

2
t zz

ay F F= +  and (ii) 
z

by F= .  
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We use another carefully chosen “guess,” ( )
2

2

0,

b
a t bz

F t z y e

 
− +  

 =  and then confirm that this works. 

In this case, we see that ( ) ( )( ) ( )2, so =
z zz

F by bF F b bF b F= = ⋅ = ⋅ ⋅ . This can be substituted into 

(i) and simplified to obtain ( )
2

2
t

b
F a F

 
= − ⋅ 
 

.  

So we can rewrite the first term on the RHS of (3), 

( ) ( ) ( )
2

21 1

2 2 2
t zz

b
F F dt a F b F dt aF dt

   + = − ⋅ + ⋅ = ⋅   
    

 and the second term is 

( )zF dz bF dz= ⋅ . Hence, if ( )
2

2

0,

b
a t bz

y F t z y e

 
− +  

 = =  then dy aydt bydz= + . So, this is the 

solution to the stochastic differential equation. 

One other example taken from K&S has been placed in an appendix at the end of these notes. 

II. Stochastic Control 

With the background above (yes, it was just background!), we now turn to a stochastic 

optimization problem: 

( ) ( ) ( )( ) ( ) ( )
0

0 0, max , , ,   s.t. , , , ,
t

T

u
t t

J t x E f t x u dt x T T dx g t x u dt t x u dzφ σ
=

  = + = + 
  
  

in which:  

• J(t0,x0) is the value function, a measure of the value of being at time t with a state variable x, 

• x is our state variable and u is our control variable (for economists this is a confusing 

notational change, but it this is common to use u in this way in the control literature), 

• f(⋅) is the benefit function 

• φ(⋅) is the salvage value, and 

• the state equation, dx, is composed of two parts, a deterministic part g(⋅), and a stochastic 

component with possibly time-varying standard deviation, σ(⋅).  

In a form reminiscent of  the approach used by Dorfman (1969, see Lecture 5 notes), we can 

approximate J(⋅) by holding u constant for an interval from t to t+∆t and then assuming 

maximizing behavior beyond that time: 

 ( ) ( ) ( ), max , , ,
u

J t x E f t x u t J t t x x ≈ ∆ + + ∆ + ∆  . (14) 

Using a second-order Taylor series approximation and assuming twice-differentiability of J, we 

obtain 

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )2 2

, , , ,

1 2 , 2 , ,

t x

xx xt tt

J t t x x J t x J t x t J t x x

J t x x x tJ t x J t x t

+ ∆ + ∆ ≈ + ∆ + ∆ +

 ∆ + ∆ ∆ + ∆
 

 

Since we will let ∆t go to zero, we can drop the (∆t)2 and (∆x∆t) terms, leaving us with equation 

(15): 
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 ( ) ( ) ( ) ( ) ( ) ( )( )2
, , , , 1 2 ,

t x xx
J t t x x J t x J t x t J t x x J t x x+ ∆ + ∆ ≈ + ∆ + ∆ + ∆ . (15) 

Since ( ) ( )dx g dt dzσ= ⋅ + ⋅ , we can rewrite  

 ( ) ( )( ) ( ) ( ) ( )22 2 22 2x g t z g t zσ σ∆ = ⋅ ∆ + ∆ + ⋅ ∆ ∆ .  

Then, using the equalities from above,  

 (dz)2 =dt,    dzdt= dtdz=0    and    (dt)2= 0, (2) 

we see that 

 ( ) ( )( ) ( )22 2
x g t∆ = ⋅ ∆ ( )2 2dt g t zσ σ+ + ⋅ ∆ ∆ 2 tσ= ∆ .  

Hence, (14) can be rewritten 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 21
, max ,

2t

t x xx
u

J t x Ef t J t x J t J g t z J tσ σ≈ ⋅ ∆ + + ⋅ ∆ + ⋅ ⋅ ∆ + ∆ + ⋅ ∆ . 

Using the fact that E(Δz)=0 and canceling ∆t we can simplify this as follows: 

 

( ),J t x ( ) ( )max ,
tu

Ef t J t x≈ ⋅ ∆ + ( ) ( ) ( ) ( )

( ) ( ) ( )

21

2

0 max
t

t x xx

t x
u

J t J g t z J t

Ef t J t J g t z

σ σ

σ

+ ⋅ ∆ + ⋅ ∆ + ∆ + ⋅ ∆

≈ ⋅ ∆ + + ⋅ ∆ + ⋅ ∆ + ∆( ) ( )

( )

21

2

0 max
t

xx

u

J t

Ef t

σ+ ⋅ ∆

≈ ⋅ ∆ ( )t
J t+ + ⋅ ∆ ( )x

J g t+ ⋅ ∆( ) ( ) 21

2
xx

J tσ+ + ⋅ ∆

( ) ( ) ( )( ) ( ) 21
0 max

2t

t x xx
u

Ef J J g J σ≈ ⋅ + + ⋅ + ⋅ + + ⋅

 

 

 ( ) ( ) ( ) ( ) ( ) 21
max .

2
t x xx

u
J Ef J g J σ− ⋅ ≈ ⋅ + ⋅ ⋅ + ⋅   (18) 

As KS say, “This is the basic condition for the stochastic optimal control problem.”  It is also the 

stochastic version of the Hamilton-Jacobi-Bellman equation.  

As shown by Xepapadeas (1997), from (18) we can obtain the stochastic version of a present-

value Hamiltonian: 

 ( ) ( ) 21

2
x

H Ef gµ µ σ= ⋅ + ⋅ +  (7.51.1)4 

where 
x

Jµ =  and ( )2 2

x xx
J J xµ = = ∂ ⋅ ∂ .  

 

As in deterministic problems, there are three canonical conditions for the optimum: 

 ( )* arg max , , ,
x

u

u H x u µ µ=  

 ( ) x

H
d dt dz

x
µ σ µ∂= − + ⋅

∂
 (7.51.2) 

 

4 If σ2
=0 so that uncertainty does not matter in this problem, then 7.51.1 would become the standard Hamiltonian. 
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where 
x

x

µµ ∂=
∂

. The boundary condition requires that  

 ( ) ( ), ,
T T

J T x x Tφ= , 

or, without a boundary condition (vertical terminal problems), the transversality condition is  

 0
T

µ = . (7.51.4) 

If the problem is infinite horizon with standard discounting, i.e. 

 ( ) ( ) ( ) ( )0

0

max ,   s.t.  .
rt

u
t

V x E e f x u dt dx g dt dzσ
∞

−

=

= = + ⋅  

Then ( ) ( ), rt

t t
J t x e V x

−=  and ( ) ( )( ) ( )0,  or, at 0 rt

t t t t
J t x re V x t J rV x−− = − − = − =  and (18) 

becomes  

 ( ) ( ) ( ) ( ) ( ) 2

0

1
max .

2
x xx

u
rV x Ef V g J σ≈ ⋅ + ⋅ ⋅ + ⋅   (30) 

The Hamiltonian specification of the problem is just as in (7.51.1). The key difference is in the 

second optimization conditions, which now takes the form: 

 ( ) x

H
d r dt dz

x
µ µ σ µ∂ = − + ⋅ ∂ 

 

Noting that Vx is the shadow price on the state variable at time t, which we usually refer to as µ, 

then the right-hand side of (30) is the same as the Hamiltonian except for the additional term, 

21

2
x

µ σ . 

III. Applications of stochastic control 

A. A simple mathematical example 

Let’s start with the simple example from KS page 268. In this case the benefit function is 

( )2 2ax bu− +  and the stochastic state equation is dx udt xdzσ= +  with σ constant over time. In 

this case (18) takes the form 

 ( )2 2 2 21
min

2

rt

t x xx
u

J e ax bu J u x Jσ− − = + + +  
. 

This leads to the FOC 

 2 0
rt

xe bu J
− ⋅ + = , or 

 2

rt

x
J e

u
b

−=
, (22) 

which can be substituted into the objective function to obtain  

 

2

2 2 2

2 2 2
2 2 2

1

2 2 2

1

4 2 2

rt rt
rt rt rtx x

t x xx

rt rt
rt rtx x

t xx

J e J e
e J ax b J e x J e

b b

J e J e
e J ax x J e

b b

σ

σ

    − −− = + + +         

− = + − +
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2 2

2 2 21

4 2

rt
rt rtx

t xx

J e
e J ax x J e

b
σ− = − +  (23) 

This differential equation (
t

J J t= ∂ ∂ ) can be integrated to obtain the solution. “Guessing” that it 

takes the form ( ) 2, rt
J t x e Ax

−= , we can obtain the partial derivatives: 

 
2
, 2 , 2

rt rt rt

t x xxJ re Ax J e Ax J e A
− − −= − = = . 

Substituting these into (23) we can rewrite that equation: 

 
2 22 2 2 2A xrAx ax x A

b
σ= − +  

 
2 2ArA a A
b

σ= − +  (23b) 

 ( )2 2 0.A r A a
b

σ+ − − =  (25) 

Returning to (22), it is possible to rewrite u: 

  2
2 2

rt rt rt
x

AxJ e e Axeu
b b b

−−= = = −  (27) 

Finally, using the quadratic equation to solve 23b, we can find specific form for A: 

 

( )
( )
( ) ( )( )

2 2

2 2

2
2 2

0

0

4

2

A r A a
b

A b r A ab

b r b r ab
A

σ

σ

σ σ

+ − − = 

+ − − = 

− − ± − +
=

. 

Hence, since from (27) we know that u is a function of A, it follows that the optimal value of u 

will depend upon the degree of uncertainty, i.e., the value of σ2. 

B. An economic example: Xepapadeas (1997) 

Xepapadeas (1997) constructs a relatively simple presentation of a stochastic control problem. 

The problem he considers is optimal management of greenhouse gases in which there is 

uncertainty surrounding the uptake by oceans. That is 

 ( ) ( ) ( )i

i

dS t e t bS t dt Sdzσ = − + 
 
 , S(0)=S0,  (3.63) 

where S is the stock of CO2, ei is emissions from the ith source, and z is a Wiener process. 

Emissions lead to benefits, Bi(ei), and the stock leads to damages, D(S).  

Suppressing the time subscripts, the optimization problem solved by the planner is  

 
( ){ }

( ) ( )
0

0

max
i

rt

i i
e t

i

E e B e D S dt

∞
−

≥

 − 
 
  s.t. (3.63). 

The stochastic Hamiltonian is  

 ( ) ( ) 21

2
i i i S

i i

H B e D S e bS Sλ σ λ   = − + − +  
   
  . 

Note that 
S

Vλ = , 
S SS

Vλ =  and that this is a current value Hamiltonian.  



Stochastic Control   p. 

 

10

The optimality conditions for this problem are: 

 
( ) ( )

0
i i i i

i i i

B e B eH

e e e
λ λ

∂ ∂∂ = + =  = −
∂ ∂ ∂

, and (3.64) 

 ( ) ( ) ( )21
'

2
S S S

H
d r dt dz r D S b dt dz

S
λ λ σ λ λ λ σ λ σ λ ∂   = − + ⋅ = − − − + + ⋅    ∂    

. 

The second of these conditions can be simplified to  

 ( ) ( ) ( )21
'

2
S Sd r b D S dt dzλ λ σ λ σ λ = + + − + ⋅ 

 
. (3.65) 

The transversality condition for this infinite horizon planning problem is 

( ) ( )( )*

0lim 0rt

t
E e t S tλ−

→∞
= , i.e., from the perspective of t=0, the value of stocks in period t will 

go to zero as t→∞.  

The first-order condition w.r.t. the choice variable, (3.64), is intuitive: at the optimum the 

marginal benefit of emissions from each source must be equal and they all must equal the 

marginal value (in terms of future net expected value) of the costs, i.e., MB=MC. We can easily 

see how this might be implemented through a tax on emissions equal to λ. The second condition, 

(3.65), tells us that the path of λ is stochastic. Hence, while we know the optimal level of 

emissions in t, we only know the distribution over that in the future.  

Xepapadeas shows that for any level of S, the tax rate will be higher as uncertainty increases. He 

shows this by looking at the expected change in λ and S so that the terms dz drop out of (3.63) 

and (3.65),  

 
( ) ( ) ( )( ) 21

'
2

S

E
r b E E D S

t

λ
λ σ λ

∂
= + + −

∂
 and  

( ) ( )*

i

i

E S
e E bES

t
λ

∂
= −

∂  . 

If it is assumed that D is convex, then the isoclines in S, E(λ) space, i.e. the points where

0E tλ∂ ∂ =  (referred to as λm by Xepapadeas) are below the equivalent 0λ =ɺ  locus in S,λ space 

for the deterministic model (Figure 3.1 in the book reproduced below). When interpreting the 

figure, remember that λ<0 because it reflects the marginal benefit of additional S, which is 

negative. Hence, when there is uncertainty the certainty equivalent equilibrium level of S is 

lower than in the deterministic model. The risk aversion of the policy maker is captured in the 

term 
1

2
S

σλ− .  



Stochastic Control   p. 

 

11

 
Adapted from Xepapadeas (1997) p. 76 

The policy implications of this are relatively straightforward –lower levels of missions, ei, are 

required for any level of St, meaning that the tax rate under uncertainty would be higher.  

C. An economic example: McDonald and Hanf (1992)5 

For a second economic example, I turn to one of the earliest applications of stochastic control in 

a natural resource application, McDonald and Hanf’s 1992 analysis of a shrimp management 

problem. In their model there are three stochastic variables (though only 2 seem really 

important). Price evolves according to the equation 

 p p
dp pdt pdzα σ= + , (MH 1) 

where zp is a standard Wiener process and σp is the (constant) standard error term. In addition, 

the change in the stock is stochastic  

 ( ) s sds s G M dt s dzσ= − + , (MH 2) 

where G is the growth rate and M is the mortality rate and 
s s
dzσ is the random shock to the 

stock. The fishermen get benefits equal to price times harvest pt⋅q, where harvests are a function 

of the stock, s, and effort, h. The fisherman’s costs are proportional to effort, k⋅h. This leads to 

the optimization problem:  

 

5 I apologize for yet another example drawn from the area of environmental and resource economics. If you know of 

a relatively straight-forward example from other areas of economics, please share it with me and I will attempt to 

include it. 
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 ( ) ( ) ( )
0

, , max , ,

T

rt

t t t t t t t t
h

J p s t E p q h s kh s p e dt
− = −   

subject to (MH 1), (MH 2), and  

 
( )1 th

t t

t
t

s h e
q

h

ρ µρ
ρ µ

− −−
= +  

where ρ is the “catchability coefficient” that controls what percentage of the stock can be 

harvested by a given level of effort and µ is the natural mortality rate of the shrimp.  

The Hamilton-Jacobi-Bellman equation for the problem, therefore, can be written  

 

[ ] ( ){
( ) ( )2 2 2 2

max

1 1

2 2

rt

t t t t p s
h

pp p ss s

J p q kh e J p J G M s

J p J s

α

σ σ

−− = − + + −

+ + 


 (MH 6) 

McDonald and Hanf take the first-order condition of (MH 6) and simplify (using substantial 

algebra and Ito’s lemma as shown in their appendix) to reach 

 

( ) ( )

( )

1
2 2 1 2 1 3 3 2 2

1

3 3 2 2 2 1

2 1 2

1

2

1
.

2

p

s p p s s

dh d q dh r dq dh kp kp q h h

q h h kp dt h dz h dz

σ δ

δ σ α δ σ δ σ

− − −

−

   = − + − ∂ ∂     

− ∂ ∂ − + +


 (MH 18) 

To obtain some intuition behind this expression, first consider the case where there is no 

uncertainty, σs=σp=0, and there is no deterministic drift in prices, α=0. In this case (MH 18) 

reduces to  

 ( )2 2q k
h r d q dh

h p

 ∂= − ∂ 
ɺ . 

Hence, the rate of adjustment in the harvest rate is related to the curvature of the catch function; 

at the extreme, if q is linear in h, then h = ∞ɺ , i.e., adjustment to the equilibrium is instantaneous. 

Further, the equilibrium and adjustment to the equilibrium is defined by the numerator: 

 0
q k q

h p k
h p h

∂ ∂= ⇔ = ⇔ =
∂ ∂

ɺ , 

i.e., where marginal benefit of effort, 
q

p
h

∂
∂

 equals the marginal cost.6  

Equation (MH 18), therefore, defines the optimal adjustment in effort over time. The other terms, 

α,  σs and σp are adjustments to how effort would tend to adjust over time, but do not affect the 

overall economic story. 

 

6 There may be a sign error somewhere in MH’s expression, because as shown above, 0h <ɺ  if 
q

p k
h

∂ >
∂

 when 

2 2 0q h∂ ∂ < , which is what one would typically expect.  
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Equations (MH 1) and (MH 2) define the stochastic evolution of the stock and the price. These 

three equations “make up a recursive system of equations for which econometric estimation and 

inference are possible” (MH p. 44). That estimation is then carried out in the rest of their paper.  
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Appendix 

Example #3 (KS, 267): As a final example, we look at a problem in which the state equation is 

formulated as proportional change in the state variable, i.e.  

2dy
cdt b dt adt bdz

y
= + − − . In this case, the trick to solving the differential equation involves 

defining two new variables, P and Q, ( ), ,y F P Q t=  where dP P adt bdz= +  and dQ Q cdt=  

so that we can write 
dx dQ dP

x Q P
= − , which, by integrating both sides we can obtain 

( ) ( ) ( )ln ln lnx Q P x Q P= −  = . Given this specification, we now apply the more general form 

of Itô’s Lemma, (8) for two random variables, 

( )2 2

1 1 2 2 11 1 22 2 12 1 2

1
2

2
t

dy F dx F dx F dt F dx F dx F dx dx= + + + + +  

which for ( ), ,y F P Q t=  becomes 

( )2 21
2

2
P Q PP QQ Q PQ t

dy F dP F dQ F dp F dx F dPdQ F dt= + + + + +   
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Since ( ), ,y F P Q t Q P= = , 
2 3 2

1 1
,   0,   ,   2 ,  and 

Q QQ P PP PQ

Q Q
F F F F F

P P P P
= = = − = = − , so 

2

2 3 2

Q dQ Q dPdQ
dy dP dp

PP P P

 = − + + − 
 

 

2

2 3 2

2

dy P Q dQ Q dPdQ
dP dP

y Q PP P P

dy dP dQ dP dQ dP

y P Q P Q P

  = − + + −  
  

 = − + + − 
 

 

Now, using the definitions of dQ Q  and dP P , we get 

( ) ( ) ( )2dy
adt bdz cdt adt bdz cdt adt bdz

y
= − + + + + − +  

noting that dtdz=dt2=0, we can simplify 

2 2dy
adt bdz cdt b dz

y
= − − + + . Then, finally recalling the dz2=dt, 

( )2dy
c b a dt bdz

y
= + − − . 

What KS do not show us is the solution. We now know that y Q P= , but what are Q and P?  If 

dQ Q cdt= , then, integrating both sides we get ( )ln ct
Q ct Q e=  = . P is a bit trickier, 

 or dP P adt bdz dP aPdt bPdz= + = + . This is of the form of Example #2, so 

2

2

0

b
a t bz

P P e

 
− +  

 = . 

Hence 

2

2

2

0
2

0

1
b

ct c a t
bz

b
a t bz

Q e
y e e

P P
P e

 
− +   − 

 
− +  

 

= = = . 


