
This document was generated at 10:34 AM on Monday, April 01, 2024
Copyright 2024 Richard T. Woodward

12 – Numerical Issues #2: Acceleration methods

for solving infinite-horizon DP problems

AGEC 642 - 2024

I. Introduction

The value function iteration method to solve infinite-horizon DP problems converges
linearly at a rate proportional to 1/β: the greater the discount rate (i.e., the smaller that β
is) the faster your problem will converge. For relatively small problems this is not a
problem. As the state space grows, however, it is not uncommon for the method to take
hundreds or thousands of iterations before convergence is achieved, meaning hours or
even days to find the solution. Hence, the value-function iteration method and the related
Euler equation iteration method covered in the previous lecture become less applicable
for large problems. Fortunately, there are alternative methods that can be used to solve
large DP problems that can be applied when the curse of dimensionality begins to affect
your ability to solve a problem.

Improved computational efficiency is an area of great growth in the literature in recent
years, spurred on by the increasing use of dynamic programming in econometrics. As a
result, these notes are becoming increasingly dated. Some papers that have not been
incorporated here include Mrkaic (2002), Judd et al. (2009), and Cai et al. (2013).
Nonetheless, to explore the state of the art, some understanding of more basic methods is
required. Hence, these notes should be seen primarily as providing that background on
more rudimentary methods, though the methods here can be fruitfully employed for
relatively small DP problems.

II. Accelerated methods of successive approximation of the value function

Recall that in finite horizon dynamic programming problems, backward induction is used
in which V(xt, t) is found by solving the Bellman’s equation with V(xt+1, t+1) on the right-

hand side. The process is similar for infinite-horizon problems, but each time you solve
the Bellman’s equation you should think of it as having the previous approximation of the
value function on the right-hand side, which will be used to obtain the next
approximation. In this section, we consider several methods to obtain better guesses at
the infinite-horizon value function between iterations.

A. Successive approximation with error bounds

In some problems, the successive approximation algorithm can be accelerated by the
McQueen-Porteus Error Bounds. This algorithm takes advantage of the contraction
mapping feature of the successive approximation algorithm. (This can be applied directly
for DD problems. The method can be adapted for CD or CC problems too.

Suppose that you have solved the Bellman’s equation for all x∈X with VRHS(x) on the
right-hand side, yielding the vector VLHS(x). As you will recall, from the contraction
mapping theorem referred to in Lecture 8, we know that we can obtain bounds for the
true infinite-horizon value function V(x):

 () () ()LHS LHS

k kV x b V x V x b+ ≤ ≤ +

12-

2

where () () () ()min and max
1 1

LHS RHS LHS RHS

kk
x x

b V x V x b V x V x
β β

β β
 = − = − − −

.1

Hence, after each successive approximation loop, we know the bounds between which
the true value function must lie. Furthermore, these bounds will get tighter as the number
of iterations increases.

The McQueen-Porteus Error Bounds approach is to make use of these bounds to get a
better update of the value function. Specifically, instead of simply setting
VRHS(x)=VLHS(x) as in a standard value-function iteration, use the midpoint of your
bounds, i.e., for the next iteration use

 () ()'

2
RHS LHS kk

b b
V x V x

 +
= +

.

Bertsekas (1987) has shown that this approach can significantly speed up the conversion.2
Further, this approach can be coded quite easily, requiring only a couple of extra lines of
programming beyond the standard successive approximation approach, so it is often
worth using.

B. Pre-Gauss-Seidel method (not recommended, but of pedagogical interest)

For DD problems or when using rounding for CD problems, the standard successive
approximation method can also be accelerated by making use of the new information
about the value function immediately as you are looping through the points in your state
space. This technique is known as the Pre-Gauss-Seidel method (Judd 1998).

In the kth iteration of the standard successive-approximation algorithm, the stage loop
consists of solving the following problem for each point in your state space:

1 Note that () 11 rβ β −− = .

2 Rust (1996) notes that Bertsekas also showed that if the optimal Markov transition matrix has multiple
ergodic sets there is little improvement in the speed of convergence.

12-

3

 V x E u z x V x
k

t
z

t t t

k

t
t

b g b g b g= + −
+max , ,ε β 1

1 .

The purpose of the kth iteration of the successive approximation algorithm is to obtain an
improved estimate of V*, using Vk−1(⋅) on the right-hand side of the Bellman’s equation.
So, for example, if attempting to find Vk(xi), the value function at the ith point in the state

space, the algorithm has already found Vk(xj), j=1,…, i−1. When the Vk(xi) has been

found, we have i new estimates of V*(·) that are better than Vk−1(⋅). The pre-Gauss-Seidel
method takes advantage of this by using on the RHS of the Bellman’s equation Vk(xj) for

j<i and Vk−1(xj) for j≥i.

This method is also easy to implement. Recall that in the successive approximation
algorithm, you need to retain two value function arrays, Vk(x) and Vk−1(x) for all x∈X. In
this method, we only need to hold onto one value function array, replacing the old
estimate of V(xi) with the new estimate as we loop through the points. The difference
between the value function approximations from one iteration to the next that is used to
test for convergence needs to be calculated incrementally at each point in the state space
prior to replacing the old estimate with the new estimate.

C. Policy Iteration & Modified Policy Iteration (review, covered in Lecture 9)

An alternative method for solving infinite-horizon DP problems is a technique known as
policy iteration. This is the approach that is used by Burt and Allison (1963) that we saw
in Lecture 9. Like successively approximating the value function, this technique has
strong intuitive appeal.

The basic idea of policy iteration involves three steps:
1. Pick some arbitrary value function,V0(x), and find a policy rule, z0(x), that solves the

associated Bellman's equation at each point in the state space.
2. Using z0(x) and the associated candidate Markov transition matrix, find V1(x) using

the matrix operations we saw in Lecture 9. This yields the value that would be
obtained if the rule z0(x) were followed indefinitely.

3. Put V1(x) on the right-hand side and solve Bellman's equation for all x again to obtain

z1(x). Repeat steps 2&3 until () ()1k k
z x z x

−≈ .

Policy iteration has many similarities to the value-function iteration method. The key
difference lies in step 2 where the update of the value function is obtained. Let us look at
this step in detail. Let Pk be the candidate Markov transition matrix that follows from the
decision rule zk(x). The i, jth cell of Pk indicates the probability of being in state j next
period given that you're in state i this period and you follow the policy zk(x). The present-
discounted value of following this policy can be written

 () ()() (),k k k kV x Eu z x x P V xβ= + ⋅ . (1)

Except for β, everything in this equation is either a matrix or a vector. If the state variable

takes on n values, then ()k
V x and ()(),ku z x x are n×1 vectors and kP is an n×n

matrix. Finding the values of the ()k
V x can, therefore, be found by solving this

(possibly very large) system of linear equations. Using matrix algebra, we see that

12-

4

 () ()()1
,k k kV x I P Eu z x xβ

−
 = − ⋅ . (2)

When the problem being considered is relatively small (|X|<500)3 with a discount factor
relatively close to 1 (β>0.95) the policy iteration method is regarded as one of the fastest
methods for solving infinite-horizon DP problems (Rust, 1996). Policy iteration typically
requires many fewer iterations than successive approximations of the value function.
However, because of the need to invert a matrix, each iteration is much more
computationally intensive. For small problems, therefore, it may be slower than value
function iteration.

If there are n total combinations of state variable values, then solving the system of
equations in (2) involves inverting an n×n matrix or solving a system of n equations for n
unknowns – computationally intensive tasks. If you have access to a library of
subroutines, you will certainly be able to invert large matrices or solve (1) directly.4

Regardless of the approach that you use to solve the problem, it is recommended that you
use step 2 of the policy iteration algorithm to obtain your final estimate of the value
function. This will ensure that the values you present are associated with an infinite
horizon.

As noted in the discussion of the Burt and Allison paper, an alternative to inverting the
matrix in (2) is to approximate the value function by applying the decision rule zk(x)
numerous times. Rust (1996) points out that for large problems approximating the value
function in this manner can be done at substantially less computational expense an
approach known as the Modified Policy Iteration Method. That is, we could find Vk by
repeatedly applying the system of equations

 () ()() (), , 1,k l k k k lV x Eu z x x P V xβ −= + ⋅ (3)

for l=0,1,2,…,m. Once Vk,l(x) is quite close to Vk,l−1, then we stop and apply step 3 of the
policy iteration method once again. Rust also suggests that the modified policy iteration
method can be sped up by using McQueen-Porteus error bounds in the updating step,
(3).5

D. Summary of solution methods discussed so far.

The four methods discussed above fall into essentially the same pattern, presented in the
pseudo-code below.

3 The notation |X| indicates the cardinality of X, i.e., the total number of states that you are considering.

4 A matrix inversion subroutine is included in the VB Matrix Operations subroutines available from class
web page.

5 Mrkaic (2002) shows how Krylov methods can be used to greatly accelerate policy iteration methods,
resulting in convergence that can be up to an order of magnitude faster than policy iteration and value
function iteration.

12-

5

Set VRHS(x)=0 (or some other starting value) for every state x∈X.

For iteration 1,2,…, max iter

State loop.

For every point in your state space, xt∈X

Solve Bellman’s Equation:

 Find the z that maximizes

 E{u(⋅)+βVRHS(⋅)}

 This can be done using a control loop.

 This will yield z* and VLHS(xt)
 {if using Pre-Gauss Seidel, set VRHS(xt)= VLHS(xt) immediately}

Save (candidate) optimal policy

 R = u(z*) and
P = the Markov transition matrix associated with z*

Check for Convergence of the value function. i.e.

 find () ()max RHS LHS
x

diff V x V x= − .6

 If diff<convergence criterion, exit stage loop

Update the Value Function (choose 1 of these 4 methods)

Option 1: Value Function iteration: VRHS = VLHS

Option 2: Value Function iteration with error bounds:

2
k k

RHS LHS

b b
V V

 += +

Option 3: Policy Iteration: VRHS=(I-βP)-1⋅R

Option 4: Modified Policy Iteration:
iterate Vk =R+βP⋅Vk−1

until Vk ≈Vk−1
VRHS=Vk

End of Stage loop: If convergence is not satisfied, start next stage

III. Comparison of the computational time of various methods

Rust (1996) compares the computational time of some of the methods outlined above.
He uses a variety of numerical approaches to solve a problem with a known analytical
result, which allows him to compare how closely the numerical results get to the true
value function, V*. The results presented in Table 1 and Figure 1 are quite revealing of
the relative numerical efficiencies of the various methods. When β=0.95 in his problem,
the successive approximation algorithm took 48 seconds of CPU. Applying error bounds
cut the time to 29.7 seconds and the modified policy iteration method cut it even further

6 Convergence can also be checked by looking at the difference in the optimal policy function, i.e.,

() ()*, *, 1max k k

z
x

diff z x z x
−= − . When policy iteration is used, this criterion should be used and continued

until 0
z

diff = .

S
ta

te
 L

o
o

p

S
ta

g
e

L
o

o
p

12-

6

to 21.8 seconds. However, when β=0.9999, as when the time-step is daily rather than
annual, the successive approximation algorithm took over 4,600 seconds to converge
compared with 75.7 and 50.0 seconds for the error-bounds and modified policy iteration
approaches respectively. From these results, we see that substantial gains, indeed most of
the computational gains possible, can be achieved at a rather small cost, simply by
applying the McQueen-Porteus error bounds, one of the easiest of the above-mentioned
methods.

 β=0.95 β=0.9999

 Iterations
CPU

Seconds |V−V*| Iterations
CPU

Seconds |V−V*|

Successive Approximations 114 48.9 571.7 >10,000 >4600 >30,000

Error Bounds 65 29.7 503.4 166 75.7 4.4E-1

Policy Iteration 6 46.1 1.9E-9 8 71 2.9E-7

Modified Policy Iteration 5 21.8 52.3 11 50 174.9

Table 1: Comparison of run-times for various methods

(Source: Tables 5.1 and 5.2 in a draft copy of Rust, 1996, page 69)

Figure 1: Comparison of the value function over various iterations

(Source: Figure 5.2 in Draft version of Rust, 1996, p. 69.)

IV. DP as LP

For DD problems, it is possible to redefine our optimization problem as a linear
programming (LP) minimization problem. To see this, we need to explicitly use the
Markov transition matrix P. Let P=[qij(z)]for all i,j. That is, qij is the probability that we

12-

7

will be in state j next period given that we're in state i this period and we follow the
decision rule z. Hence, the Bellman's equation can be written

 V x Eu z x q z V xi
z

i t ij

j

jb g b g b g d i= + max , ,ε β .

When the solution is found, the V(⋅) function on the left, must be the same as the one on
the right. This problem can be equivalently written using a dual representation:

()

()

() () () ()()
,
min

, , , , .

i i

i
z V x x

x X

i i t ij j i

j

V x

V x Eu z x q z V x x zε β ε

∀ ∈

≥ +

This problem is linear in the V(xi) and can, therefore, be solved using a linear
programming algorithm. Trick and Zin (1997) found that it can be solved quite
efficiently using constraint generation techniques (Rust 1996).7

V. Collocation methods8

The approaches that are outlined above are directly applicable to DD problems and most
can be adapted to CD or CC problems. Collocation methods, on the other hand, are
specifically designed for problems with a continuous state space.

Recall from Lecture 11 that one way to approximate the value function in problems with
a continuous state space is to define a continuous function to approximate the true value

function,
~

;V x cb g , where c is a vector of coefficients. If we followed a successive

approximation approach, convergence would be reached when
~

,
~

,V x c V x ck kc h c h≈ −1

where ck is the kth set of coefficients of the function
~

V .

If
~

V is a polynomial (e.g., a standard polynomial, or a Chebyshev polynomial – see
Lecture 11 on CD problems), then it can be written

 () ()
1

,
n

i i

i

V x c c xφ
=

=ɶ ,

where φi(x) is the ith order polynomial of the variable x (e.g., xi for standard polynomials)
and n is the order of the polynomial being used. At the infinite-horizon optimum, the
following Bellman's equation must be satisfied at each of the m points in X:

 () () () () ()
1 1 1

; max ,
n m n

i j j i i il j j l
z

j l j

V x c c x u x z q z c xφ β φ
= = =

= = +

or,

 () () () ()
1 1 1

max , 0
n m n

j j i i il j j l
z

j l j

c x u x z q z c xφ β φ
= = =

− + =

 . (4)

7 The methods proposed by Cai et al. (2013) are described a nonlinear programming approach, analogous to
the LP approach described here, which allows the authors to handle continuous state and control variables.

8 These methods were originally developed by Judd 1992. The discussion here is based on Miranda and
Fackler section 6.8. These sources provide substantially more detail on their implementation.

12-

8

The problem of finding the infinite-horizon value function, therefore, becomes one of
choosing the coefficients, c, to set each of the equations in (4) to zero. In principle, a
nonlinear root-finding algorithm could be used to solve this problem. Newton's method
or function iteration methods (see Judd, 1998 or Miranda and Fackler) could be used to
choose the coefficients c that solve these equations.

Of course, one of the challenges of solving (4) is that there is a maximization problem
embedded in the equation. While in practice this creates substantial difficulties, in
principle you can imagine having a subroutine that solves the Bellman's equation for any
point in x and any set of coefficients, c. In other situations, since V(⋅) is approximated by
an analytical function, if z is continuous, it may be possible to write zt

* as a closed form

expression of xt and the vector of coefficients, c; i.e., the solution to the problem

() () ()
1 1

, 0
m n

i il j j l

l j

u x z q z c x zβ φ
= =

∂ + ∂ =

 .

Collocation methods have been found to be among the most efficient means of solving
continuous DP problems. In a comparison of solution methods conducted by Christiano
and Fisher, it was found that collocation methods were orders of magnitude faster than
some other techniques.

VI. A quick introduction to some simulation-based approaches

Finally, methods that use Monte Carlo sampling as part of the solution method are also an
option. I do not attempt to explore any of these methods in detail here, but instead, point
you in the direction of the next generation of methods for solving dynamic programming
problems and demonstrate that there is still work to be done in this area.

First, Rust (1997) developed an approach that essentially involved using Monte Carlo
sampling to estimate the value function at each iteration. Like the use of simulation
methods in econometrics, Rust’s approach takes advantage of the fact that randomization
can be used to find approximate solutions to intractably large integration problems.

Second, Powell (2007) advocates the use of “Approximate Dynamic Programming”
(ADP). This is a process in which the value function is approximated using forward
simulations of optimal paths and successive updates of the value and policy functions.
While Powell’s approach has the disadvantage of lacking formal proofs of convergence,
it has been applied to very large dynamic programming problems that would be
impossible to solve using more standard methods. (This will be explored later in this
course).

Finally, Judd, Maliar, and Maliar (2009) offer an approach that appears to have much in
common with Powell’s ADP algorithm. A key advantage of their approach is that the
analyst does not have to evaluate substantial portions of the state space that would never
be reached under an optimal policy. They show that this can substantially reduce the
dimensionality of the problem.

12-

9

VII. Final thoughts and recommendations

So, what is the applied economist to do? Various methods can be used to solve infinite-
horizon DP problems. Which should one choose? The answer to this question depends
upon the needs of the analyst. First, if your algorithm takes 10 seconds as opposed to
0.01 seconds, it probably does not matter much what approach you take if you only have
to solve the problem once. Keep it simple. For example, Anderson, Kellogg, and Salant
(2018) use the successive approximation algorithm to solve a simple dynamic
programming problem for their mostly conceptual analysis of the oil market. On the other
hand, in some applications of DP (see econometrics methods discussed in Lecture 13),
the DP problem must be solved many times – so speed is critical. As your state space
grows either in dimension or in the number of points in each dimension, then
computational efficiency becomes more of an issue. Some of the basic methods discussed
here can help greatly and should be applied. Further, as noted above, using the policy
iteration final step to calculate the final value function is a good practice. When the
problem becomes larger and larger and/or precision becomes more and more important,
analysts should look to the cutting edge for the most efficient available approaches.

VIII. References

Anderson, Soren T., Ryan Kellogg, Stephen W. Salant. 2018. “Hotelling Under Pressure”
Journal of Political Economy. DOI: 10.1086/697203

Bertsekas, Dimitri P. 1987. Dynamic Programming: Deterministic and Stochastic

Models. Prentice Hall.

Cai, Yongyang, Kenneth L. Judd, Thomas S. Lontzek, Valentina Michelangeli, and Che-
Lin Su. 2013. Nonlinear Programming Method for Dynamic Programming. NBER

Working Paper 19034.

Christiano, L.J., and J.D.M Fisher. 1997. “Algorithms for solving dynamic models with
occasionally binding constraints.” NBER Working Paper No. t0218. Summary
results from this paper are presented in a pre-publication version of Rust (1996).

Judd, Kenneth L. 1996. Numerical Methods in Economics. Cambridge, Mass.: The MIT
Press.

Judd, Kenneth, Lilia Maliar, and Serguei Maliar. 2009. Numerically Stable Stochastic
Simulation Approaches for Solving Dynamic Economic. NBER Working Papers
15296.

Miranda, Mario J., and Paul L. Fackler. 2002. Applied Computational Economics and

Finance. Cambridge, Mass.: MIT Press.

Mrkaic, Mico. 2002. Policy Iteration Accelerated with Krylov Methods. Journal of

Economic Dynamics and Control 26(4):517-45.

12-

10

Powell, Warren B. 2007. Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Hoboken, New Jersey: John Wiley & Sons, Inc.

Rust, John. 1996. Numerical Dynamic Programming in Economics. In H. Amman, D.
Kendrick and J. Rust (eds.), Handbook of Computational Economics. New York:
North Holland.

Rust, John. 1997. Using Randomization to Break the Curse of Dimensionality.
Econometrica 65(3):487-516.

Trick, M.A., and S.E. Zin (1997). Spline approximations to value functions — linear
programming approach. Macroeconomic Dynamics 1:255–277.

IX. Readings for next class

Kamien and Schwartz, pp. 202-217

