
This document was generated at 5:28 PM on Monday, March 25, 2024
Copyright 2024 Richard T. Woodward

11 – Numerical Issues #1: The complications of continuity

AGEC 642 - 2024

Introduction and a caveat
This lecture and number 12 are focused on numerical methods to address some of the
challenges of applying numerical dynamic programming. The purpose of these notes is to
give you a flavor of different approaches and give you intuition that hopefully will help
you understand dynamic programming better. The notes do not, therefore, provide you
with a recipe for implementation and make no promise that they capture the best and
latest methods. With the foundation provided by these notes, I think you will be able to
solve simple DP problems or understand how more sophisticated approaches can be used
to solve more complicated DP problems.

Part 1: Continuous State Space

I. The basic problem

The DD problems (discrete state and discrete control) that we have considered up until
now have had an important limitation: the state variable has been assumed to take on only
a finite number of possible values.
• In the simple inventory control problem discussed, the inventory could be only 0,

1,2,….
• In the option pricing model, the price is assumed to go either up or down by a

constant factor, going up by u or down by u.
• In the cow replacement problem, the state variable is simply the age of the cow,

which is counted in discrete units, and a small finite set of production classes.
• In Burt & Allison’s paper, soil moisture is treated as falling in one of five levels.

In reality, of course, most important economic variables are not discrete.
• Inventory of most products is held in such large numbers that it approximates a

continuous number.
• A cow's productivity cannot be described by a small set of discrete levels, but instead

fall along a continuous distribution.
• Prices vary nearly continuously (up to 1¢ intervals)
• Soil moisture content, Burt and Allison’s state variable varies continuously.

Allowing for the continuity of state space in DP problems, however, introduces some
very important problems. Consider a finite horizon problem with a known salvage
function V(x, T) that maps from the continuous domain of x to ℝ . For a finite-horizon
problem, the Bellman's equation for periods T−1 would take the form

1. () () ()
1

1 1 1, 1 max , , 1 ,
T

T T T T
z

V x T E u z x T V x Tβ
−

− − − − = − + .

This equation can be evaluated at any finite grid of points, say X={x1, x2, x3,…, xn},
since we know the functional form for u(⋅), V(xT,T), and the state equation are known.
When we come to the equation for V(xT-2,T-2), however, we have

2. () () ()
2

2 2 2 1, 2 max , , 2 , 1
T

T T T T
z

V x T E u z x T V x Tβ
−

− − − − − = − + − .

11 -

2

This may cause problems because from 1 we only know the values of V(xT-1,T-1) at the
points at which 1 has been evaluated, namely X={x1, x2, x3,…, xn}. Since we need to find
the value of zT−2 that maximizes the RHS of 2, it is likely that some candidate values of z
will lead to values for xT-1 that are not contained in the grid X. Hence, we are faced with a
problem: How do we ensure that we are finding the correct solution to 2 if we only know
the values of V(xT-1, T-1) at a finite set of points?

If the problem is stochastic, then this issue becomes even more relevant. Suppose there is
a continuous probability distribution over xT-1 conditional on xT−2 and zT−2, then for a
given choice, zT−2, the expected future value of next period's stock will be

() () ()
2 2

1 1 2 2 1 1
,

, 1 | , , 1
t T

T T t T T T
x z

E V x T f x x z V x T dx
− −

− − − − − − − = − where f(xT−1| zT−2, xT−2)

is the probability distribution of xT−1 conditional on zT−2 and xT−2.

It might be easier to think of the case of a discrete probability distribution

() () ()
2 2

1 1 2 1
,

1

, 1 ; , 1
t T

m
i i

T T T T
x z

i

E V x T p x z V x T
− −

− − − −
=

 − = − with p x zT

i

T− −1 2;c h being

the probability that xT−1 takes on a particular value xi given a particular choice zT−2

with m large compared to n. A discrete specification would typically be used to approximate
continuous distributions.

However, since we have used numerical methods to solve the first equation at only n

points or nodes, we don't have “observations” of V(xT−1,T−1) at all the possible values of
xT−1.

Suppose, for example, you have evaluated V(xT−1) at the eight points in the figure below
and came up with the values as indicated. To solve for V(xT−2) you need to take an
expectation of the value function including points that fall between points on this grid.
How do we proceed? We now discuss a someays around this problem.

xT-1

V x()T-1

x1 x x x x x x x2 3 4 5 6 7 8

11 -

3

Needless to say, this problem does not occur only at T−2, but in all periods except the
final one. Hence, it critically affects infinite horizon problems in the same way. We focus
in these notes on the infinite-horizon case; extension to a finite-horizon case is
straightforward. We should point out, however, that unlike the successive approximation
algorithm for DD problems, the convergence of the infinite-horizon algorithm for these
problems is not as well-behaved, may not be monotonic, and may not converge
uniformly.

II. Solution #1: Rounding

The easiest way to handle a continuous state space is to turn it into a discrete space. That
is, we treat the value function as if it can only take on n possible values, those values
associated with the points in our set X. If xt+1 should happen to fall outside this set of
points, either between the points or completely outside the range, we simply round up or
down until we get to a value that we have evaluated. Technically, we might write,

ɵ arg minV x V x x x xt t t
x X

t+ + +
∈

+= = −1 1 1 1b g b gc h b gΩ Ω with .

That is, since we don't have an estimate of V(xt+1), we approximate it with the value of the
nearest point for which we know.

xt+1

V x()t+1

x x0 1 x x x x x x2 3 4 5 6 7
Using the same points from the first figure, the implicit value function that follows from
rounding would take a form like that in the figure above.

It is easy to see that rounding may not be the best way to handle the problem of
approximating the value function. For example, if x1=1.0 and x2=2.0, then the estimate of
the value of xt+1=1.49 would be dramatically different from the approximation of the
value of xt+1=1.51.

In most economic problems, however, the value function is not as bumpy as the one in
the figures. If V(⋅) is a monotonic function without huge changes in its slope, then the
magnitude of the error using rounding can be quite small. Nonetheless, if you want to use
rounding, you need to make sure that your grid is tight enough so that the rounding is not
having an overwhelming influence on your results.

11 -

4

A. The rounding algorithm

Implementing rounding numerically is quite simple in principle and could be
implemented by an algorithm like the following. Let V be an array of values from the
previous stage at each of the points in your grid X, let x be your grid, X which will take
on values x1, x2,…, xnx, and let xtrue be the true value of xt+1 for which we want to find an
estimate of V(xt+1), say Vest. The following algorithm would find the nearest estimate
using rounding.

These lines of code would calculate the value of V(xt+1) for some value xt+1∉X.

 diff = ∞

 xTrue = g(xt, zt,εt) ‘Calculates the true value xt+1 as a function of the current
state, ‘ control and random shock. Call this value xtrue

 for all ix

 if abs(xgrid(ix)-xTrue) < diff then ‘ closest to xtrue
 diff = abs(xgrid(ix)-xTrue)

 ixGrid = ix ‘ Use V(x(ix)) as an estimate of V(xtrue),
 endif ‘ The x(ix) that is closest to xtrue will be used
 next ix
 Vest = VRHS(ixGrid)

Matlab can carry all of this out much more concisely:

[~, ixGrid] = min(abs(x - x_grid)); The min function returns both the minimum, which in
this case is ignored and the index that contains the
closest point

Vest = VRHS(ixGrid)

An important modeling decision in virtually every application of numerical DP is how to
treat points that are completely outside the grid. In the figure and algorithms above, I
assumed that the V(xt+1) is the same as V(x0) if xt+1<x0 and is the same as V(xn) if xt+1>xn.
However, this may not be appropriate. For example, this may give the impression that a
decision-maker could drive the state variable to negative infinity without sacrificing any
future value. In some problems, therefore, for any xt+1 that falls completely outside the
grid, it is necessary to set V(xt+1) equal to a very large negative number. It is extremely

important to be careful in how you handle the edges of your grid in applied dynamic

programming; this seemingly small modeling decision can dramatically affect your

results. As a general rule, for problems in which the true state space is unbounded, the
grid you use for your numerical model should be specified such that the edges of the grid
do not influence the solution inside the grid and all optimal paths lead to points in the
interior of your grid.

While rounding is not always the best way to deal with CD problems, it sometimes works
out pretty well. Of course, the more points that you have in your grid, the more accurate
your rounding estimation will be.

11 -

5

B. The “Curse of Dimensionality”

The problem with tightening your grid is that this means that in each stage you have to
solve more state problems. If your state space is multi-dimensional, as you tighten your
grid the number of state problems increases geometrically. This problem is known as the

“THE CURSE OF DIMENSIONALITY."
The curse of dimensionality refers to the computational problem that arises when the size
of the problem grows geometrically with increases in the dimension of the problem,
meaning that small increases in dimensions lead to large increases in the computational
burden. When this happens, it becomes impossible to solve high-dimensional problems.
The term was first used to refer to DP problems. If a DP problem has m state variables,
each of which is allowed to take on n values, then you need to solve the Bellman’s
equation at nm points in each stage. For example, a rather coarse grid would be to
approximate the state space with only 10 points in each dimension. If you have four state
variables then your computer algorithm must solve the 104 or 10,000 points. If each
evaluation takes only 1/10th of a second, then each stage would still take 1,000 seconds or
16.7 minutes. Moving from 4 to 5 state variables under the same assumptions would
increase each stage loop to 2.7 hours; add one more variable and the run time will be over
one day. It would be 317 years before a problem with just 11 state variables completed
just one stage (and of course, the memory of your computer would fill up long before a
single stage was completed). If you contrast this with the relative freedom that one has
when choosing how many variables to put into a linear econometric model, we see that
problems of applied dynamic programming are very different.

As we note in Woodward, Wui, and Griffin (2005), despite the incredible increases in the
speed of computers, the curse remains very real.

Although enormous improvements in computational speed have been achieved in
recent years, this computational burden will continue to limit the size of DP
problems for many years to come. “Moore’s law” is the regular tendency for the
density of computer circuitry (and processor speed) to double every eighteen
months (Schaller). This “law”, which has held up surprisingly well since its
conception in 1965, has startling implications for simulation modelers: a
simulation model could double in size every 1.5 years without slowing down. The
implications for DP, however, are not nearly so promising. For example, in a
model in which each state variable takes on just 8 possible values, it would be 4.5
years before one additional state variable could be added without increasing the run
time of the program. The solution of DP problems with hundreds of state variables
lies only in the far distant future.

In many problems, hundreds of iterations of the stage loop are necessary for convergence.
Hence, there is an obvious premium on keeping your grid as sparse as possible and, more
critically, on keeping the dimension of your state space as small as possible. Since
finding precise answers using rounding usually requires the use of a tight grid, this
approach has its limitations and smoother options such as those considered below are
attractive. Nonetheless, it should be emphasized that the “curse” affects all the
approaches considered below, it is only the extent to which these approaches are affected

11 -

6

that varies. That is, if you can reduce n, the number of grid points, then the impact of
increasing m, the number of dimensions, is not as severe.

There have been some approaches that have attempted to get around the curse. John Rust
(1997) proposed an approach that uses rounding in a randomly chosen grid and can be
used to solve problems involving very large state spaces. The Approximate Dynamic
Programming approach of Powell (2007) represents another approach that also takes
advantage of randomization to solve the problem. These approaches are not covered here.

III. Solution #2: Interpolation

A. Linear interpolation (also known as linear splines)

As we have seen above, rounding leads to a step function for the estimated value
function. This may not be a big problem, but we can usually do better. One simple way to
do better is to use linear interpolation to get estimate the value function at points between
those included in our grid, X.

xt+1

V x()t+1

x x0 1 x x x x x x2 3 4 5 6 7

When using linear interpolation, the estimate of the value function is done using a piece-
wise linear and continuous function. Again, there is no uniform rule on how to
extrapolate beyond the endpoints of the grid. I have indicated this using the multiple
arrows in the figure above.

Programming a linear interpolation algorithm is quite easy. The basic elements are
presented in the figure below. If we know the value of V at xlo and xhi, then the estimated
value at x, which lies between these two points is simply

() () ()ˆ
lo hi

b a
V x V x V x

a b a b
= +

+ +

11 -

7

Here’s pseudo code to implement linear interpolation for a point xTrue that is in the
interior of points in an ordered grid:

Find the index of value, in the grid that is closest to xTrue as in the Rounding
algorithm
If xTrue>xGrid(ixGrid) then
 iLo = ixGrid
else

 iLo = ixGrid−1
end if

a = xTrue−xGrid(iLo)

b = xGrid(iLo+1)−xTrue
Vest = VRHS(iLo)*(b/(a+b)) + VRHS(iLo+1)*(a/(a+b))

As noted above, boundary violations are very important to address, but the approach can
vary greatly from one problem to the next.

Linear interpolation has advantages over rounding, but it still has some limitations. In
particular, although the estimated value function is smoother than the rounding approach,
the derivatives of the estimated value function are discontinuous. As we will see in the
next lecture, this can be problematic if your control variable is also continuous. Also, if
the value function is highly nonlinear, then a tight grid will still be needed to obtain a
good estimate.

Interpolating in 2 or more dimensions is a straightforward analog to the 1-dimensional
case. As seen in the figures below, the 2-dimensional example simply involves
calculating the weights a, b, c, and d, which are normalized to sum to 1. The weight
placed on each corner is proportional to the area diagonally across from the corner, e.g.,
V(XTrue)≅a⋅V(x1(iHi),x2(iLo))+b⋅V(x1(iLo),x2(iLo))+c⋅V(x1(iLo),x2(iHi))+d⋅V(x1(iHi),x2(iHi))

a b

d c

x2(iHi)

x2(iLo)

x1(iLo) x1(iHi)

xTrue

B. Cubic interpolation or cubic splines

An improvement over linear interpolation is to use cubic interpolation. Cubic splines
yield a smooth approximating function something like the one below. In this case, you

11 -

8

are basically interpolating using both the levels and the partial derivatives of the function
at the points on the grid. I will not present the algorithm for cubic interpolation here. A
detailed discussion of the use of cubic splines is available in Numerical Recipes a book
by Press et al. (1989) (available online at http://www.nr.com/) that contains careful
discussion of many numerical techniques and Fortran code for implementing these
techniques that could easily be adapted to other languages. Judd (pp. 225-227) also
discusses the use of cubic splines.

xt+1

V x()t+1

x x0 1 x x x x x x2 3 4 5 6 7

In each of the approaches discussed so far, the estimate of the value function, say
� ()1 ,

t
V x + is obtained using a finite number of “observations” of V at the points in the state

grid, x∈X, which were found in the previous stage loop. If xt+1 is a number that is not

contained in X, then there will be some error, and the expected magnitude of that error
declines as we move from rounding, to linear splines, to cubic splines. Moreover, if xt+1 is

a value contained in the grid X then there will be no estimation error.

Matlab has an intrinsic function, spline, that carries out cubic interpolation. For
example, if you have an array of grid points, xgrid, and a collection of values VRHS,
with values for each point in xgrid, then to estimate the value at a point, xTrue, you can
simply write Vest = spline(xgrid, VRHS, xTrue).

C. Shape-preserving splines

Cai and Judd (2012, 2015) propose an approach that they show is efficient and is likely to
give quite reliable results. Their approach is only currently derived for problems with a
single state variable, so that case is presented here. The authors present an interpolating
algorithm that retains the curvature of the true value function throughout the successive
approximation algorithm. This is done by adding a piece of information to the
interpolation algorithm – the slope of the value function at the point at which it is
evaluated.

I present the case of a one-dimensional state variable here from Cai and Judd (2012). The
approach is generalized to multiple state variables in Cai and Judd (2015). Their approach
starts with solving a modified Bellman’s equation,

11 -

9

() () ()
()

,
max ,

. . , , and =

LHS RHS

i
z y

i

V x u y z EV x

s t x g y z y x

β

ε

+

+

= +

=

for each of the points in the state space, xi, for i =1,…n, wherein the first iteration, VRHS(x)

is set at your best first guess (e.g., 0) for the true value function.

The difference between this problem and the standard Bellman’s equation is that instead
of xi on the RHS of the Bellman’s equation, we have y, which is treated as a choice
variable. But y is constrained to equal xi, so why do we bother? The answer is that by

solving the problem in this way we also can find the Lagrange multiplier, say μi, the

shadow value of the constraint that xi=y. This shadow value tells us the slope of the value

function at xi. Hence, by the end of the stage loop, we have obtained a set of values, say vi

and μi, for i=1,…,n, where ()LHS

i iv V x= . The set of values {(xi, vi, μi): i=1…m } are

called Hermite data, which can then be used to solve the next iteration of the algorithm
as follows:

() () ()()
() () []3 4 1

1 2 1

3 4 1

1
1 2 3 2 4 1 2

1

; for ,

where , , , and .

i i i iRHS

i i i i i

i i i i

i i
i i i i i i i i i

i i

c c x x x x
V x c c c x x x x x

c x x c x x

v v
c v c c c c c

x x
µ µ

+
+

+

+
+

+

− −
= + − + ∈

− + −
−= = = − = −
−

You can see that ci1 is the value of VRHS(·) at xi, ci2 is the slope of VRHS between xi and xi+1,

and ci3 is a measure of the function’s curvature over the range from xi to xi+1.

The algorithm works for all points between the minimum and maximum values, x1 and xn.

They require that the bounds on the state variable are chosen so that points outside of the
grid rarely need to be evaluated. For points that fall outside the grid, an arbitrary rule
must be established or the values could be rounded to the nearest endpoint.

IV. Solution #3: Functional approximation

The next set of solution methods assume that there is an underlying continuous function
that describes the value function. In this case, the analyst assumes the functional form and
the DP algorithm is used to identify its parameters. This differs in an important way from
the methods we have considered so far. Up to now the Bellman’s equation in the kth
iteration (i.e. kth stage) was calculated using the values of V that you found in iteration
k−1. In the functional approximation approach, the value function on the RHS of the
Bellman’s equation is defined not by a set of values at fixed points in the state grid, but
by a set of parameters – the k−1th set of coefficients of the assumed functional form. The
updating step between each stage loop, therefore, involves finding a new set of
coefficients for the value function. The test of convergence in a successive approximation
algorithm might be based on the extent to which the coefficients change from one stage
to the next, though it is important to be aware that the scale of these coefficients might be
very important.

11 -

10

A. Functional approximation using ordinary polynomials

The first functional approximation method that we consider is the use of ordinary
polynomials. For example, you may assume that the value function can be closely
approximated by a second-order Taylor series approximation, i.e.,

() ()22
1 0 1 1 1

ˆ
2

t t t

c
V x c c x x+ + += + + .

In this case, your problem becomes one of choosing the parameters c0, c1, and c2 at each

iteration. Let ck be the vector of coefficients of the value function in the kth iteration of a

successive approximation algorithm. ()1
ˆ ; k

t
V x c+ is then the estimated value function

conditional on the parameters ck. Then the k+1th set of parameters would be found in two

steps. First, solve the problem () () ()1
ˆmax , ; k

t t t t
z

V x E u z x V x cβ + = + at every point in

your grid. Then, use the values ()tV x like data to find the new set of coefficients, ck+1,

that give you the best possible approximating function. How might this be done? Well
OLS is an option. Hence, we can get a new set of parameters, ck+1. Each stage, therefore
represents a mapping from ck to ck+1.

One significant advantage of using this approach is that we then have a closed-form

expression for our estimated value function ()1
ˆ ; k

t
V x c+ . Evaluating a point on this line is

as simple as plugging it into the equation with the most recent set of parameters.

Moreover, it is likely that the first derivative, ()()()1 1 1
ˆ ; k

t t t t
V x c x x z+ + +∂ ∂ ∂ also can be

expressed analytically meaning that it may be possible to find analytical closed-formed
solutions to the Bellman’s equation at each point in the state space, especially if the
choice variable is also continuous (CC). Hence, rather than solving the Bellman’s
equation numerically using a grid-search or hill-climbing algorithm (see below), it would
be possible to simply find the optimal choice, z*(x), as a function of the parameters of the
model (state equation and benefit function) and the parameter vector, c.

Using ordinary polynomials as we have in the case above, however, has significant
limitations and is not recommended. As seen in the figure below, for low-order
polynomials, the assumed functional form places very strong restrictions on the form that

()1
ˆ ; k

t
V x c+ might take. Hence, if the true value function is highly nonlinear, the estimate

using a 2nd-order polynomial would be quite inaccurate. As the order of the polynomial

rises, ()1
ˆ ; k

t
V x c+ will get closer and closer to the points V(xt) on the grid. However, the

errors at points between the values on the grid can actually rise and extrapolation beyond
the grid is extremely dangerous.

11 -

11

xt+1

V x()t+1

x x0 1 x x x x x x2 3 4 5 6 7

a 2 order
polynomial

nd

an 8 order
polynomial .

th

As will be discussed in section C below, there are alternative polynomial forms that are
far superior to the ordinary polynomials used here.

B. Functional approximation using prior knowledge about the functional form of V

If a modeler uses the polynomial approach to approximating the value function, we can
say that he or she has assumed that the value function will be taking a particular
functional form. In this case, however, the functional form is arbitrarily chosen to make

analysis easy and/or the error between V(xt) and ()1
ˆ ; k

t
V x c+ small. In some problems, the

modeler can use prior knowledge regarding the function form of V(xt).

If it is known that V(xt) is of the form
~

;V x ctb g , with parameters c, then the successive

approximation algorithm can be implemented in the same way as was done for ordinary
polynomials, stepping from ck to ck+1.

xt+1

V x()t+1

x1 x x x x x x x2 3 4 5 6 7 8
Judd (p. 437-438) points out that it may be very important to use information about the
value function if you have it. For example, he considers the case of points that are strictly
increasing as in the figure. A cubic spline might lead to an approximating function that is
highly nonlinear like the one indicated by the line in the figure. This can lead to quite
erroneous outcomes since it indicates, for example, that although V(x8)>V(x7), the

11 -

12

estimated value of almost all the points between x6 and x7 exceeds the value of the points
between x7 and x8.

Hence, if you know that the true value function is monotonic or concave, choosing an
approximation method that preserves those characteristics can avoid errors.

C. Functional approximation using Chebyshev polynomials

If the modeler is interested in using a functional approximation method but does not have
prior knowledge of the form of V(⋅), the use of polynomials is still a possibility. While
ordinary polynomials can give very large errors, the Chebyshev polynomial is a
polynomial with an unintuitive functional form but very attractive numerical properties.
As noted by Press et al. (1989),

The Chebyshev approximation is very nearly the same polynomial as the
holy grail of approximating polynomials the minimax polynomial, which
(among all polynomials of the same degree) has the smallest maximum
deviation from the true function f(x). (p. 149)

The computation of Chebyshev polynomials is complicated and unintuitive, but it is
relatively easy to implement. For details, I refer you to Numerical Recipes or many other
sources online.

As noted by Cai and Judd (2013), “methods of fitting a curve to the data, like Chebyshev
polynomial approximation, may produce a non-concave value function approximation,
which in turn may lead to nonconcavity of the objective function in the maximization
step and then instability in [the DP] Algorithm” (p. 409-10). They propose a modification
of the standard Chebyshev polynomial in which curvature restrictions such as
monotonicity and concavity can be imposed.

V. Setting up your grid

An important modeling decision that you must make if you are solving problems with a
continuous state variable using any of the above techniques is how your grid will be
established. Regardless of the method chosen to approximate the value function, a tighter
grid will lead to a more precise estimate of your final solution.

There is no general rule to guide how you should set up your grid and how tight you
should make it. In many problems, a uniform grid (e.g. x1=0.1, x2=0.2, x3=0.3,…) is as
good as any. In other cases, if you know that the probability of hitting a particular range
in the grid is high, then you'll want to have more grid points in that range than in a range
where there is a very low probability of actually ending up. However, if the relative
values of these low probability ranges are very high and, therefore, important to get the
correct answer, then the grid may need to be tight in that area as well. If you use
Chebyshev polynomials, then the grid must be set up in a very precise way.

How tight your grid is, i.e., the value of nx is typically a decision that you make based on
practical concerns. You do not want your results to be sensitive to the size of the grid, so
you should tighten your grid until further tightening does not affect your results anymore,

11 -

13

an obviously subjective decision. However, if your problem is large (i.e. you have lots of
state variables), then tightening your grid may add hours or days to the time it takes your
program to run. Clearly, practical considerations regarding the tradeoff between
computing time and precision also enter into the choice of the grid.

There has also been work that uses non-standard grids. A series of papers by Grune (e.g.,
Grune and Semmler, 2004) use adaptive grid schemes that focus on points where there is
the greatest need for precision. Woodward Wui and Griffin (2005) use a uniform but non-
rectangular grid in their approach, focusing only on the portion of the state space where
the decision process tends to reside.

Part 2: Continuous Choice Variables

VI. The additional difficulties associated with continuous choice variables

As we saw above, some important problems arise when the state space of a dynamic
programming problem is continuous. Additional complications arise when the control
variable(s) that you are trying to model are continuous.

Before we start talking about continuous controls, it's probably worth pointing out that
many control variables that are relevant in economics are not continuous. The cow
replacement problem and the option price problem considered in Lecture 10 are two good
examples. These problems are typically referred to as “optimal stopping problems.” In
those cases, the decision was binary (replace or not, exercise or not). However, many if
not most economic decisions are continuous, not discrete -- how much to consume, how
much to produce, how much of an input should be used, etc. In such problems the
question is not simply whether or not a particular action should be taken, but the level at
which that action should be taken.

Recall the backward-recursion algorithm for solving finite and infinite horizon DP
problems is as follows: For each stage (t=T, T−1, T−2, …,0 for finite horizon problems;
k=1, 2, … for infinite horizon problems) we want to find the value of each point in the
state space. InTodentify the value at each point in the state space, we need to solve a
maximization problem -- identify the choice variable zt that maximizes

3. E u z x V xt t t t, ,ε βb g b g+ +1 , where xt+1=g(zt,xt,εt).

When the choice variable is discrete, this is easy - we just try all the values and see which
one is the best. But when the choice variable is continuous, it is impossible to check
every possible value using a computer. We will now explore how you might address this
difficulty in practice.

VII. Methods for solving CC problems

A. Discretize the control space

When your choice variable is continuous, the simplest approach is to treat it as if it were a
discrete variable. Suppose, for example, that you were interested in a variable z that can
take on any value between zero and one. Instead of using the infinite number of values
between zero and one, perhaps you can get a sufficiently precise answer by only looking

11 -

14

at the n+1 values, say
1 2 1

0, , , ,1
n

Z
n n n

− =

⋯ . By treating your variable as if it were

discrete, you have greatly simplified your problem and you can now solve each state
problem by simply evaluating which of these n+1 options is the best.

How tight should your control grid be? Again, this is a subjective decision that depends
on your needs. If you are interested in the qualitative results of your model, i.e., the
general trends, then you should tighten your grid until any further tightening does not
alter the qualitative features of your results. If you need precise results, then your grid
will probably need to be much tighter.

The tighter your grid, the more precise will be your results. However, a tighter grid
means a slower program. Let's take a simple example. If you have one choice variable,
then doubling the number of points in your control grid will approximately double the
time it takes your program to run. If you have two control variables, then doubling the
number of points in each dimension will quadruple your run time. An n-fold increase in
the grid points of a problem with m choice variables will increase your run time by a
factor of nm. If you have two control variables and your program takes 30 seconds to run
with 10 points in each choice grid, then increasing your grid to 100 in each dimension
would increase your run time to 3000 seconds, 50 minutes!

Tip: If you use the discretization approach, debug your program with a quite
sparse grid (relatively few points) and then increase your precision once your
program is running and you think it is giving you the correct answers.

B. Using a hill-climbing algorithm

Most programming languages in which economists work (e.g., Matlab, C, Gams, Python)
have built-in or downloadable plug-ins that solve optimization problems for continuous
variables. They do this by carrying out an organized search over the continuous range of
your choice variables between user-defined upper and lower bounds. Although modern
algorithms are more sophisticated, Newton’s method is the first such approach and still
works remarkably well. Starting with an initial guess, hill-climbing algorithms make
successively better guesses of the optimum using the function and its derivatives.

A hill-climbing algorithm can be plugged into your solution algorithm at the point where
the control loop normally fits. This approach has some advantages and disadvantages
when compared to a grid-search method. First, good hill-climbing algorithms
approximate a continuous variable, so that it is possible to come very close to the exact
solution to the state problem in every loop. Secondly, particularly given their accuracy,
these algorithms can be quite fast. Having to loop over a very fine grid of control options
would be comparatively quite slow.

Recall that we would use the hill-climbing algorithm to solve the problem,

V x E u z x V xt
z

t t t t
t

b g b g b g= + +max , ,ε β 1

subject to the state equation xt+1=g(zt,xt,εt).

11 -

15

Hill climbing algorithms use information about the slope and curvature of a function to
iteratively find the solution to an optimization problem. In the context of solving
Bellman’s equation, this means that the algorithm needs to know (or calculate)

() () ()
() () ()

() () ()

() () ()

1

1 1

1

2 2
1 1

2 2
1

2 2 2
1

2 2 2
1

ˆ , , , ,

ˆ , , ,
,

ˆ , , ,
,

ˆ , , ,

t t t t t t

t t t t t t t

t t t t

t t t t t t t
t

t tt t

t t t t t t t

t t t

V x z E u z x V x

V x z u z x V x x
E

z z x z

V x z u z x V x x
E z

x zz z

V x z u z x V x x
E

z z x

ε β

ε
β

ε
β

ε
β

+

+ +

+

+ +

+

+

+

= +

∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂= + ∂ ∂ ∂ ∂∂ ∂

∂ ∂ ∂ ∂= +
∂ ∂ ∂

()2
2

11 1
2

1

.t t

t t t

V x x

z x z

++ +

+

 ∂ ∂
 + ∂ ∂ ∂

Some algorithms that you can use will allow you to supply code that calculates ()ˆ ,t tV x z

and then will automatically calculate the first and second derivatives numerically by
using small shocks such as

() () ()ˆ ˆ ˆ, , ,

2
t t t t t t

t

V x z V x z V x z

z

ε ε
ε

∂ + − −
≈

∂
.

If you can provide an analytical expression for
()ˆ ,t t

t

V x z

z

∂
∂

 and
()2

2

ˆ ,t t

t

V x z

z

∂
∂

, the algorithm

will be much faster. This is one advantage of using a functional approximation of the

Bellman’s equation. Hill-climbing algorithms can also run into problems if
()ˆ ,t t

t

V x z

z

∂
∂

 or

()2

2

ˆ ,t t

t

V x z

z

∂
∂

 change discontinuously. Hence, the algorithm will usually behave poorly if

rounding or linear interpolation methods are used.

A disadvantage of a hill-climbing approach lies in the certainty that one can have in your
solution to each state problem. The recursive algorithm for solving finite- or infinite-
horizon problems requires that this problem be solved at each point in the state space; that
is, the correct answer must be obtained. It is well known that for nonlinear problems,
numerical hill-climbing algorithms may not yield the correct solution. If a “black box” is
used, a computer program into which most users cannot look, one does not have complete
confidence that a global maximum has been achieved. Hence, our confidence in our final
results is diminished if this method is applied and you are advised to include in your code
checks to ensure that the algorithm is consistently finding the global optimum.

11 -

16

C. Closed-form solution for particular functional forms1

If it is assumed that the value function takes on a particular functional form, e.g., a
polynomial, then it is sometimes possible to find a closed-form solution to the Bellman's
equation. Let's look at this in more detail.

Suppose, for example, we assume or know based on some prior information that the
value function of a two-dimensional DP problem takes the form

4. V x x a a x a x a x a x a x x1 2 00 10 1 20 1

2

01 2 02 2

2

11 1 2,b g = + + + + +

where the aij are parameters that we need to identify. The k+1th approximation of the
value function is found by solving the problem

5.
()

()
() ()

() () () ()
() ()

21 1 1
1 2 00 10 20

22 2 1 2
01 02 11

1 2
1 1 2 1

, ,

, max

with , , and , , .

t t t

k k k k

z

k k k

t t t t t t t t

u z x

V x x E a a g a g

a g a g a g g

x g z x x g z x

ε

β

ε ε

+

+ +

 +

 = + ⋅ + ⋅ + ⋅
 ⋅ + ⋅ + ⋅ ⋅

= =

where k

ija is the kth approximation of the ijth coefficient of the value function.

What is particularly attractive about this specification is that for relatively simple
probability distributions and state equations, closed-form solutions for the optimal policy

function of the ith choice variable, say z x ai

* ;b g . This policy function indicates the best

choice as a continuous function of all possible values of the state variables, contingent on
a particular set of coefficients of the value function, a={aij}.

If an analytical representation of the policy function, z x ai

* ;b g , can obtained, then two

approaches might be taken. First, a numerical approach could be taken in which a set of
grid points, X, so that the values V(x) can be calculated explicitly for all x∈X by plugging

z x ai

* ;b g into 5. With this set of values, the k+1th set of coefficients could be determined

using, for example, OLS approximation.

Alternatively, an analytical representation of the value function Vk+1(x) can be found.
Since this almost certainly would not take the same form as in 4, Androkovich and
Stollery (1994) suggest taking a second-order Taylor series approximation of the value

function, to obtain a new set of coefficients, 1k

ija
+ . In either case, the solution to the

infinite horizon problem could be found by iterating until 1k k

ij ija a+ − < ∆ for some critical

value ∆.

1 I've only seen this method applied once, in a paper by Androkovich, Robert A. and Kenneth R. Stollery.
1994, “A Stochastic Dynamic Programming Model of Bycatch Control in Fisheries” Marine Resource

Economics 9:19-30. Nonetheless, it’s an interesting approach and helps highlight how we solve DP
problems in practice.

11 -

17

On the other hand, if the true underlying value function cannot accurately be depicted
using a second-order polynomial like 4, then this approach will lead to erroneous results.
Moreover, the approach is intrinsically inconsistent in that they never obtain a value

function V(x) such that V x E u z x V xt
z

t t t t
t

b g b g b g= + +max , ,ε β 1 .

D. Other approaches

Two other approaches are frequently used to solve CC problems, these are what I'll call
Euler equation iteration and linear quadratic approximation methods. Both of these draw
on the fact that CC problems are differentiable. Before introducing these, it will be useful
to go over a little theory.

VIII. A slight detour -- Numerical integration over continuous probability density

functions

We have not yet covered the basic principles of numerically taking expectations with
continuous probability distributions. Hence, I provide here a very quick overview of
some methods. Further development is available in Chapter 7 of Judd (1998), Chapter 5
of Miranda and Fackler's text, and Chapter 4 of Press et al.2

Suppose you want to take an expected value from a continuous distribution using a
computer. That is, you hypothesize that the underlying distribution of your random
variable, e, is continuously distributed, say normally with mean e . The PDF of the
variable, f(e), therefore, would look like the figure below.

e

Figure 1

A. Numerical integration using a uniform grid

The expected value of some function, u(e) with a probability density function f(e) is

simply u e f e deb g b g
−∞

+∞z . The computational problem is that we do not have a closed-form

expression for this integral. Hence, numerical approximation methods must be used. The
most simplistic way to deal with this problem is simply to divide the range of e into a grid
and then calculate the probability of falling into each portion of the grid. This process is
demonstrated in the figure below.

2 Miranda and Fackler's notes are probably the easiest to read option of the three sources noted. Press et al.'s
Numerical Recipes for Fortran 77 are also quite readable and have the advantage of including well
commented Fortran 77 code, which you should be able to translate into VB or any other language. These
can also be accessed through the internet at (http://www.nr.com/).

11 -

18

 e e e e e e e e e e1 2 3 4 5 6 7 8 9 10

Figure 2

In this case, the expected value of u(e) would be approximated using the function

u e w ei i

i

b g b g
=

1

10

, where w(ei) is the probability weight associated with the grid cell centered

at ei. The value of w(ei) is equal to the area under f(e) in the grid box centered at ei with
an adjustment to account for the fact that we have truncated off the ends of the

distribution, i.e., ()
()

()10

1

i

i

e

e

i e

e

f e de

w e
f e de

=

, where ei

 and ei are the upper and lower bounds on

the grid cell centered at ei.

This is a fairly straightforward process and you could even use a spreadsheet to generate
values for w(ei) for any grid size.

B. Numerical integration using non-uniform grids

While the uniform grid approach is quite intuitive, it is not very efficient. For example, it
provides just as much information about the points e1 and e10 as it does about e5 and e6,
but e5 and e6 are in the center of the distribution and thus are more important in our
expectation. An efficient algorithm would spread out the cells to get as precise an
estimate of the true expectation as possible for any fixed number of grid points.

Numerous methods are used to accurately approximate a continuous integral. Gaussian
Quadrature methods are efficient methods for integrating smooth functions. For a detailed
discussion of these methods, I refer to the above-mentioned sources.

The basic idea in Gaussian Quadrature methods is that the points are chosen wisely so
that a more accurate approximation of the expectation can be achieved. The basic
principle is seen in Figure 3. Grid points towards the tails are spaced further apart than
the grid points near the mean, as in the figure below (though the differences are
exaggerated here).

e e e e e e e e e e1 2 3 4 5 6 7 8 9 10

Figure 3

11 -

19

The formulas that are used to calculate the values for ei and w(ei) are quite complicated
and involve some pretty tricky programming but well-tested subroutines are available for
your use.

C. A programming note

Solving a stochastic DP problem involves finding, in each stage and for each state, the
choice z that maximizes E[u(z,x,ε)+βV(xt+1)]. There are two ways you might address this
problem in your program. Suppose ε takes on only two values, say ε1, ε2, with
probabilities p1 and p2. With only a small number of probabilities you might take your
expectation directly using commands such as the following:

 u1 = u(z,x,ε1)
 xnext1 = g(z,x,ε1)
 Vnext1 = V(xnext1)
 u2 = u(z,x,ε2)
 xnext2 = g(z,x,ε2)
 Vnext2 = V(xnext2)
 EV = p1*(u1+βVnext1)+p2*(u2+βVnext2)

You would then compare EV with V(x) and, if it is better, store it; if not, move on to the
next value of z.

When you have a vector of values for your state variable, say xgrid, and you have the
value at each point in that grid, VRHS(xgrid), a corresponding vector of probabilities,
say pgrid, the expected value can be obtained through simple expectation:
VEST = pgrid’VRHS.

IX. A little theory about infinite-horizon problems

A. The Euler Equilibrium conditions

The key theoretical feature that distinguishes CC problems from problems with discrete
choices is the ability to apply the standard principles of differential calculus to the
problem. The Bellman's equation of an infinite horizon problem takes the following form:

V x E u z x V xt
z

t t t t
t

b g b g b g= + +max , ,ε β 1

where z, x, and ε can be scalars or vectors and x g z xt

i i

t t t+ =1 , ,εb g , for each state variable,

i=1,…,m. If the functions u and all the gi are differentiable in z and x, and V(⋅) is
differentiable in x, then we know that, for an unconstrained DP problem, the first-order
conditions would be satisfied at the optimum for each choice variable zj, i.e.,

E
u

z

V

x

g

zj i ji

m∂
∂

+ ∂
∂

∂
∂

L
N
MM

O
Q
PP

=
=
β

1

0 .

Letting
i

i

V

x
λ∂ ≡

∂
 and applying the envelope theorem to the problem,

11 -

20

6.
1 1

j jm m

i j

j ji j i i i

u V g u g
E E

x x x x x
λ β β λ

= =

 ∂ ∂ ∂ ∂ ∂= + = + ∂ ∂ ∂ ∂ ∂
 .

The equations in 6 are typically referred to as the Euler conditions. You should see in
them a close similarity to the maximum conditions of optimal control. In particular, if
you look at Dorfman's derivation, you'll find the deterministic version of the conditions
we have here.

If the problem is subject to intratemporal constraints, the Euler conditions would be
altered to reflect the Kuhn-Tucker conditions, but the intuition is fundamentally the same.

B. The steady state and certainty-equivalent steady state of CC problems

For many deterministic DP problems, the optimal strategy will lead to a steady state. That
is, following the policy rule set out by your policy function, z*(x), will lead to an
evolution in the state space that will lead to a steady state. Consider, for example, a
simple problem in which the optimal policy function takes a linear form, z*(x)=αx and
xt+1=g(xt,zt)=xt+(xt)γ−zt. In this case, following the optimal policy would lead the state
variable to a unique steady state value as in the figure below from any initial starting
value.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

x t

t

An appreciation of the steady state can be quite useful in understanding a problem. This
is particularly true when the steady state is reached quickly so that it can be safely
assumed that the agents you are studying will probably be at the steady state at any time.

The steady state of infinite horizon problems with m state variables and n control
variables can be found by solving three sets of equations,

E
u

z

g

zj

i

ji

m∂
∂

+ ∂
∂

L
N
MM

O
Q
PP

=
=
β λ

1

0 for j=1,…,n

λ β λj

j

i

i

ji

m

E
u

x

g

x
= ∂

∂
+ ∂

∂
L
N
MM

O
Q
PP=

1

 for j=1,…,m, and

x g z xj = ,b g for j=1,…,m.

11 -

21

That is, at the optimum steady state, the FOCs of the problem must be satisfied and the
state variables must not be changing over time. Note that solving for the steady state does
not require knowledge of V, instead, it is based on information about the slope of the
value function at the steady state, λ. While it still may be impossible to analytically solve
this system of equations for closed-form expressions for the variables zi, xj and λj, this

system of equations is well specified and it should be possible to solve the system
numerically (see Judd, 1998 chapter 5).

X. Solution methods for CC problems that utilize the optimality conditions

A. Linear quadratic (LQ) approximation3

Another method that has been used to solve CC DP problems is to assume that the
problem that you're interested in solving falls into a class of problems for which a nice
clean solution exists. If the state equations, gi(⋅), are linear in z and x and the benefit
function, u(⋅), is quadratic, then it is possible to find an analytical solution to stochastic
DP problems. This has led to a great deal of analysis of these types of problems. In many
presentations of the material covered in this class, LQ problems are presented separately
and analyzed in depth. In these notes, such specifications are given substantially less
emphasis as I see it as one more means of finding an approximate solution to a true DP
problem. If the true problem that you want to solve fits the LQ requirements, then it
should obviously be solved using the LQ methods. However, if your problem does not
meet these quite restrictive conditions, then using this approach is just one more way to
find an approximate solution to your true underlying problem. In some instances,
particularly in the neighborhood of the certainty-equivalent steady state, this approach
might be quite useful.

1. In an LQ problem, the benefit function takes the form of a 2nd order polynomial:

() 0 1 2 3 4 5
1 1, ' ' '

2 2
u x z A A x A z x A x x A z z A z= + + + + + ,

where z and x are n×1 and m×1 vectors, A0 is a scalar, A1 and A2 are 1×m and 1×n vectors,
and A3, A4 and A5 are conformable matrices.

2. The state equations in the LQ setup are linear functions in the state variable and control
variable
 xt+1=G0+G1·xt+G2·zt+εt

where G0, G1 and G2 are m×1, 1×m and 1×n vectors and εt is an m×1 vector of random

shocks with zero mean.

What makes these types of problems particularly important is that they can be solved
explicitly. The optimal policy function and shadow price function (λ) are linear functions
of the state variables:

z x Z Z x

x x

x

x

b g
b g

= +

= +
0

0λ Λ Λ .

3 Details of this section are taken from Miranda and Fackler (1999).

11 -

22

in which Z0 is an n×1 vector, Zx is an n×m matrix, Λ0 is an n×1 vector and Λx is an n×m

matrix.

The parameter matrices Λ0 and Λx are characterized by the nonlinear Riccati equations.
Riccati equations are fixed-point equations that define the coefficients of the z(x) and λ(x)
above. The elements of the matrices Λ0 and Λx appear on both the right- and left-hand
sides of the Riccati equations. The solution of these equations is discussed in Judd (1998,
p. 432) and in Miranda and Fackler.

One thing that is particularly interesting about the solution to these problems is that the
solution is independent of the type of stochastic shock. Regardless of the distribution of
the shock, the problem will have the same solution.

B. Using LQ approximation around the certainty-equivalent steady state

One way that the LQ method can be particularly useful is to describe the behavior of a
system around the certainty-equivalent steady state (CESS). In this case, the first step is
to find the variables at the CESS, say x*, λ*, and z*.

The second step is to take first- and second-order Taylor series approximations of the
state equations and benefit function respectively at the CESS.

The third step is to then solve the approximate LQ problem. The resulting solution should
yield quite reasonable estimates of the optimal policies in the neighborhood of the CESS.
This could then be used to analyze the behavior of the system in the long run. For
example, this approach might give a quite accurate approximation of the long-term
reaction to a one-period policy change.

LQ methods have advantages and disadvantages when compared to methods that rely on
approximating the value function. The numerical methods give an approximate solution
to a problem very close to the one you’re interested in. LQ methods give an exact
solution to a problem that is a rough approximation of the one you’re interested in.

You choose your poison.

C. Euler equation iteration

The standard value function iteration approach uses successive approximations of V(x),
using one guess at the value function, say Vk(x), to obtain the next guess, Vk+1(x). This is
repeated until convergence is achieved at a value function V(x) that can then appear on
both the right and left-hand sides of Bellman's equation

V x E u z x V xt
z

t t t t
t

b g b g b g= + +max , ,ε β 1 .

An alternative approach is to use a similar successive approximation algorithm on the
Euler equations. In this case, the unknown that we need to successively approximate is
the co-state variable λ(x).

11 -

23

The algorithm follows a pattern much as we do with the successive approximation of the
value function
1. Initialization step: make an initial guess of the values of λ at each point in your grid,

say λ i x0 b g .

Then, for k=1, 2,…
2. Update the policy function: For each point in your state grid, solve the system of

equations for a set of candidate optimal policies, say ẑ

() () ()1

1

ˆ ˆ, , , ,
0

m
k

j

ji i

u z x g z x
E x

z z

ε ε
λ −

=

 ∂ ∂
+ = ∂ ∂

This system of equations could be solved numerically.

3. Update the costate variables: these candidate policies for each point in your grid are

then plugged into the Euler equations
k

k

i
i

V
x

λ ∂= ∂ to obtain an updated value for λ

at each point in the grid, i.e.,

() () () ()1

1

ˆ ˆ, , , ,m
k k

i j

ji i

u z x g z x
x E x

x x

ε ε
λ λ −

=

 ∂ ∂
= + ∂ ∂

 .

4. Convergence check: Calculate () () ()1k k

j j
x x xλ λ λ −∆ = − for all x. If ∆λ(x) is

“small” for all x, then stop. If not, return to step 2 and continue.

As with value function approximation, a variety of methods can be used to approximate
the function λ(x), including rounding, interpolation, or functional approximation.

XI. References

Androkovich, Robert A. and Kenneth R. Stollery. 1994. A Stochastic Dynamic
Programming Model of Bycatch Control in Fisheries. Marine Resource

Economics 9(1):19-30.
Cai, Yongyang, and Kenneth L. Judd. 2012b. Dynamic programming with shape-

preserving rational spline Hermite interpolation. Economics Letters 117(1):161-
164.

Cai, Yongyang, and Kenneth L. Judd. 2013. Shape-preserving dynamic programming.
Mathematical Methods of Operations Research. 77:407-421.

Cai, Yongyang, and Kenneth L. Judd. 2015. Dynamic programming with Hermite
approximation. Mathematical Methods of Operations Research 81(3):245-267.

Grune, Lars, and Willi Semmler. 2004. Using dynamic programming with adaptive grid
scheme for optimal control problems in economics. Journal of Economic

Dynamics and Control 28(12):2427-2456.
Judd, Kenneth L. 1998. Numerical Methods in Economics. Cambridge, Mass.: The MIT

Press.
Powell, Warren B. 2007. Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Hoboken, New Jersey: John Wiley & Sons, Inc.

11 -

24

Press, William H., Brian P. Flannery, Saul A. Teukolsky and William T. Vetterling.
1989. Numerical Recipes: The Art of Scientific Computing (FORTRAN Version),
Cambridge University Press, Cambridge.

Rust, John. "Using Randomization to Break the Curse of Dimensionality." Econometrica
65(May 1997):487-516.

Woodward, Richard T., Yong-Suhk Wui, and Wade L. Griffin. “Living with the Curse of
Dimensionality: Closed-loop optimization in large-scale fisheries simulation
model.” American Journal of Agricultural Economics 87(Feb. 2005):48-60.

