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10 – DP Examples and Option Value 

AGEC 642 - 2024 

I. An infinite-horizon stochastic DD problem:  

The cow replacement problem (Taken from Miranda and Fackler) 

Consider a stochastic infinite-horizon dynamic optimization problem that is near to the 
hearts of any agricultural economist: when to replace your dairy cow. Here’s how dairy 
cows work. They get pregnant; they give birth; and then they produce milk for a while. 
That sequence of events is one lactation cycle. Eventually, the cow will be replaced1 and 
the cycle starts all over again. In the Miranda and Fackler framework, they assume that a 
dairy cow can be used up to n1 lactation cycles and its productivity can be one of n2 
classes. Each cow belongs to a productivity class x yields qxy(s) tons of milk during the 
sth lactation cycle so that all cows follow the same pattern for their yields, but the level of 
their yields varies depending on the cows. The farmer does not know the productivity 
class of a cow until after its first lactation.  
 
There are two state variables in this case,  

-  the lactation cycle of the cow: s=lactation number of cow∈S1={1,2,…,n1} 

-  the quality of the cow:  x=cow quality∈X={1,2,…,n2} 
 
The choice variable is:   z=0 (keep cow), or z=1 (replace) 
 
The state equation for the lactation number is simple, 
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The stochastic state equation for the quality variable is 
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where wi is the probability of getting a cow of class i.  
 
The benefit function is 
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where c is the cost of replacing a cow. Note that you pay the cost of replacing the cow 
after milking.  

 
 

 
1 The replacement process does not usually end well for the cow.  

The sequence of activities, e.g., you pay after milking, is important and substantive 
in discrete-time problems. In continuous-time specifications such sequence issues 
tend to go away because everything can indeed be simultaneous and/or 
instantaneous. The order of events is, therefore, an important modelling choice. 
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A formal statement of the cow replacement problem, therefore, is:  
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The Bellman's equation for this problem becomes 
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In this case, the state space will be a two dimensional array of n1×n2 points. This can be 
solved using two loops in the state space, a loop over x inside a loop over s.  
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Again, we can look at this process using pseudocode. 

Set VRHS(x,s)=0 for every state x∈X, s∈S. 

For iteration 1,2,…, max iter 

for every quality state xt∈X 

for every lactation age st∈S 

 for zt=0 

 ( ) ( )0 1,RHS

x t t
V pq y s V s xβ= + +  

for zt=1 

 EV 
t+1 = 0 

 for i=1,…, n2 , EV 
t+1 = EV 

t+1 +wi V
RHS(1,xi) 

 ( )1 1t

x t
V pq y s c EVβ += − +  

 If V1>V0 then  

  zt

*=1 

  VLHS(x,s)=V1  

 If V0> V1 then  

  zt

*=0 

  VLHS(x,s)=V0  

[end of control loop. Bellman’s eqn is solved] 

next lactation age 

next quality state 

[end of state loops] 

Check for convergence 

Find ( ) ( )
,

max , ,LHS RHS

x s
diff V s x V s x= −  

if diff<convergence criterion,  

exit loop, 

else 

VRHS= VLHS 

continue [end of stage loop] 

 

II. Optimal decisions in a dynamic context 

Once you have solved a dynamic programming problem, you obtain an optimal policy 
function and a value function. The policy function, z*(x,t) in a finite horizon model and 
z*(x) in an infinite horizon model, tells you the decisions, contingent on any particular 
state variable that you might face. In principle this could be quite useful in giving advice 
or analyzing optimal choices.  
 

Convergence and 
update section 

control loop can 
be achieved 
without a loop 
statement 
because there are 
only two options. 
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Consider the cow replacement problem. After you have solved the problem, you have a 
clear rule for replacing cows. Conventional wisdom may be that you should replace a 
cow after a certain number of lactation cycles, but if the cow is particularly productive, 
should you wait a little longer? Should you retire the cow earlier if it is at the low end of 
the productivity distribution?  Assuming your problem specification is correct, your 
solution to the problem above can serve as the basis for strong advice or better 
management of your heard. 
 
Second, your solution can be used to predict the outcomes in the market. For example, if 
the price of replacing a cow goes up, what can we expect will happen to the supply of 
milk in the short run and, over the longer term, what will happen to the supply of milk 
and the market-clearing price?  These questions can only be answered by understanding 
how the underlying dynamic optimization problem that farmers are either implicitly or 
explicitly solving.  
 
Third, if you are interested in studying how economic decisions play out in the future, the 
use of a simulation model might be useful. Simulation models often use an open-loop 
decision process – i.e., they assume that decisions are set in stone prior to the start of the 
problem. In reality of course, optimal decisions are closed-loop, meaning that decision 
makers respond to new information about the states in which they find themselves. Using 
a DP solution in your simulation work (i.e., incorporating z*(xt) into your model) will 
realistically incorporate the fact that decision makers react to changing conditions before 
making decisions.  
 
For example, suppose that you are studying a policy to promote the use of biofuels. This 
will change the dynamic incentives of individuals throughout the economy – from 
producers of corn to producers of oil and coal. One cannot simply assume that they will 
react to new policies in the same way that they have reacted to price changes in the past – 
the structure of the dynamic choice problem has been changed.2 Due to rising 
computational power, we are increasingly able to add dynamic realism to policy analysis 
that these economists have promoted.  
 
There are limits however. Many simulation models provide a benefit function and 
determine how the state variables change over time – the fundamental ingredients 
necessary for DP model. Hence, while it might appear that one could simply use the 
simulation model for dynamic optimization, it is common for such models to be much too 
large for direct use in dynamic programming. If a simulation models contains dozens and 
even hundreds of state variables, it is computationally impossible to directly solve the 
associated DP problem. The Approximate Dynamic Programming approach of Powell 
(2007)  is probably the most promising way to approach such large-dimension dynamic 
programming problems though other approaches have been proposed.3   

 
2 This idea is at the heart of Kydland and Prescott’s “Rules Rather than Discretion” paper (1977) and 
addresses the Lucas Critique (Lucas 1976). Kydland and Prescott received the Nobel prize in 2004 and 
Lucas received his Nobel Prize in 1995.  
3 Woodward, Wui and Griffin (2005) suggest a work-around in which a smaller DP problem is used to 
approximate the large set of state variables implicit in the simulation model. Approximate dynamic 
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III. DP in options 

A. A DD-DP Example - A stochastic finite-horizon problem: option pricing (Taken 

from Miranda and Fackler) 

An American put option is a right to sell a specified quantity of a commodity at a 
particular “strike” price on or before a particular date. For example, suppose you buy the 
right to sell a bushel of wheat for $2.75 on or before June 30. If on June 1 the price drops 
to $2.50 you could sell your option for the difference, 25¢. But is selling on June 1 the 
best strategy? Would it make more sense to hold onto the option, hoping that it falls even 
more before June 30? Certainly the option is worth at least 25¢ when the price is at $2.50, 
but is it worth even more than that? The answers to these questions can be found by 
realizing that the management of such an asset is a dynamic optimization problem.  
 

The Cox-Ross-Rubenstein binomial option pricing model, assumes that the price, pt, will 

go up with probability q and down with probability 1-q. If it goes up, then 1t t
p p φ+ = ⋅  

with φ>1. If it goes down, 1t t
p p φ+ = . Note that the price after n periods can only take on 

a finite number of values from  a maximum of p0φn to a minimum of p0(1/φ)n. 
 

A period can be of any length, ∆t in years (e.g., 1/365th of a year) so that if r is the 

annualized discount rate, the discount factor β=exp(−r∆t). 
 

While we won’t use this here, the parameters φ and q are sometimes 
assumed to take the forms: 

( )
2

exp 1  and 1 2
2 2
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t q r

σφ σ
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 ∆= ∆ > = + − 
 

 

where σ is the annualized volatility of the commodity price.  
 

We can use dynamic programming to identify the value of an option that expires at time 
T with a strike price of p'. In this case the state variable is the price at time t, pt. The 
control variable, zt, indicates whether the right is exercised, zt = 1, or held, zt  = 0. So the 
benefit function is  
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The stochastic state equation for the price is  
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Finally, there is an implicit state variable indicating whether the option is still held, which 
goes from 1 to 0 as soon as you exercise your option. 
 
The Bellman’s equation, therefore, which is an expression of the value of the option at 
any time t and price pt is written:  

 
programming will be discussed toward the end of AGEC 642; a clear application and extension of this 
approach is provided in Springborn and Faig (2019). 
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with V(pT+1,T+1)=0. Notice that if z=1, V(⋅,t+1) = 0. 

 

We know that the Bellman’s equation always can be written, V(⋅)=E{u(⋅)+βV(⋅)}. So what 

u(⋅) in the equation above? 

 

What would the grid space for the state variable p need to look like in order to solve this 
problem numerically?  It would need to incorporate all possible prices that might be 

reached in T/∆T periods between 0 and T. Suppose that there are 10 periods, p0 = 3.0, and 

φ=1.1. We would need to evaluate the full range of price increases at 3.0⋅1.1, 3.0⋅(1.1)2, 

3.0⋅(1.1)3, …, 3.0⋅(1.1)10, and the full range of price decreases, 3.0/(1.1), 
3.0/(1.1)2,…,3.0/(1.1)10. Given the assumed multiplicative structure, these 21 points span 
the complete space of possible prices that can be observed in 10 periods.  

B. Using dynamic programming to value an asset, the case of the American put option 

As we know, one of the two main outputs every time the Bellman’s equation is solved is 
the value function itself. This has economic meaning – it tells us the value of the state 
variable, assuming that from that point on the asset(s) are used optimally. Let’s consider 
how this might be useful. 
 
In the option pricing model above, the value function tells us the value of an option at 
time t, given a strike price, p', and the current price, pt. Suppose that you look at the 
market and see that the actual price of such an option is less than this price. If you trust 

your model, then you should buy the option. That is, if your estimates of q and φ are 
better than the values that others have, you can make money on that informational 
advatage. In effect, this is an argument that the market is not completely rational or you 
have better information. You would want to also consider the possibility that your 
estimates of the probability distributions are wrong. In any case, estimating the true value 
of the option based on your assessment of prices in the future could be very useful and 
requires dynamic optimization.  
 
Let’s look at another example: the case of an investor considering whether to purchase a 
plot of land that is valuable entirely for the timber that can be harvested from the land. 
The timber could be harvested today, but given future growth and variability in prices 
over time, you believe that it would be better to put off harvesting until some future date. 
Using a dynamic programming problem with two state variables, the harvestable stock of 
timber and the price, you could evaluate the value of the land with its standing timber for 
either a single or infinite stream of timber harvests. Once this DP problem is solved, you 
know the value of the stand that is available today, V(xt). If the asking price is less than 
the V(xt), then it looks like a good investment. 
 
In addition to the level of the value function, the slope of the value function can also be a 

useful result of a DP model. Remember this is equivalent to the co-state variable, µt, in an 
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optimal control framework; it is the shadow price of the resource. So if you can vary your 
state variable holdings marginally, e.g., by purchasing or selling at a market price, then μ 
is maximum price you would be willing to pay increase your holdings and the minimum 
amount you would be willing to accept to sell a portion of your holdings. This might be 
useful in benefit-cost analysis or simple decision-making by a business.  

C. Real options and quasi-option value (a slight detour)4 

(A link to a video walking through this example is provided in the supplementary material for this 

lecture.) 

Two ideas that are closely related to dynamic programming are “real options” of Dixit 
and Pindyck (1994) and quasi-option value of Arrow and Fisher (1974) and Henry 
(1974), which was elaborated by Fisher and Hanemann (1987). The problem that these 
authors consider is particularly important for the consideration of an irreversible 
investment, which to some degree defines just about any investment opportunity. The 
short paper by Mensink and Requate (2005) does an excellent job of clarifying these two 
concepts and I will build on their analysis here.5  

Mensink and Requate (MR) consider the problem of making a binary choice, (e.g. to 

build something) d∈{0,1}, in period 1 or 2 with d1+d2≤1. The benefits that accrue in 

period 1, B1(d1), are only a function of that period’s choice. The benefits in period 2, 

( )2 1 2, ,B d d θ , are a function of whatever choice was made in 1, the choice in period 2, d2, 

and θ, a random variable. The decision in period 1 can be thought of as a state variable at 
the start of period 2.  
 
We will present the framework both generally in the context of a simple example, the 
decision to build a hydroelectric dam. There are 2 periods, 1 and 2, representing the 
present and the future. The cost to build the dam is $18 million. The benefit in period 1 is 

$2. The benefit in period 2 is either $10θ =   or $20θ = . The net benefit of doing 

nothing is always zero. We will assume that the probability of θ is 0.5. The periodic 
values are shown in the table below. 

Cost B1(0) B1(1) ( )2 not builtB  ( )2 built,B θ  ( )2 built,B θ  

18 0 2 0 20 10 

The ex ante value at the start of period 2 is  

 ( ) ( )
2

2 1 2 1 2max , ,O

d
V d E B d dθ θ=    . 

 
4 Aram Avanesyan, who took my class in 2012, provided comments contributed to this section. 

5 Mensink and Requate (2005) is actually a comment on Fisher (2000), who mistakenly argued that the real 
option and quasi-option value were equivalent. Arguments similar to Fisher’s had also been made in 
previous versions of these lecture notes. I thank Gabriel Power for bringing this paper to my attention. I 
have changed notation substantially from MR’s presentation to be more consistent with other notation used 
in these notes. 
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This means that the decision maker will make an optimal choice, 
2

max
d

, but that choice is 

made before she knows the value of θ. MR call this the open-loop second period expected 

value. 
 
In our example, the open-loop second period expected value is 

 
( ) ( ) ( )

2
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2 1

2

0.5 10 18 0.5 20 18 3 if 1
0 max

0 if 0

0

O

d

d
V d

d

 ⋅ − + ⋅ − = − == = 
=

=

  

and  

 ( )2 1 1 0.5 10 0.5 20 15OV d = = ⋅ + ⋅ = . 

MR distinguish V2
O from the closed-loop second period expected value, V2

C, 

 ( ) ( )
2

2 1 2 1 2max , ,C

d
V d E B d dθ θ=    . 

In the closed-loop case, the decision maker observes θ before making the second period 

decision (
2

max
d

Eθ ). The expectation is taken to find the average payoff across all possible 

values of θ, even though the decision, d2, is made without uncertainty.  

 
In our example, no decisions are made once the dam is already built in period 1, so 

( ) ( )2 1 2 11 1 $15C OV d V d= = = = . If d1=0, however, we know that the best option is to build 

if θ θ=  yielding net benefits of +2 and not build if θ θ=  because net benefits would be 

−8. Hence,  

 ( )
{ } � { } �

2 2
2 22 2

2 1
0,1 0,1

0 01 1

0.5 max 0 ,10 18 0.5 max 0 , 20 18 1C

d d
d dd d

V d
∈ ∈= == =

   
= ⋅ − + ⋅ − = +      

   
��� ���  

 
Note that it always the case that a decision maker is better off observing the state before 

making a decision; i.e., ( ) ( )2 1 2 1

C O
V d V d≥ . 

Now consider the decision maker’s problem in period 1. If it is not possible to observe θ 
before making the decision in period 2, then the problem in period 1 is  

 
{ }

( ) ( )
{ }

( )
1 1

1 1 1 2 1 1 1
0,1 0,1

max maxO O O

d d
V B d V d V d

∈ ∈
= + = ɶ , 

where ( )1 1

O
V dɶ  is the net present value in the open loop problem if d1 is chosen.  

In our example, this means   

 
{ } � { }

( )
�

( )
�

1 1
1 1 11

1
0,1 0,1

0 1 10

max 0 , 16 15 max 0 , 1 0
OO

O

d d
d d VV

V
∈ ∈= =

  
 = − + = − = 

   
   ɶɶ

����� , (1) 

 
On the other hand, if information is observed before making the period 2 decision, then 
the problem becomes  

 
{ }

( ) ( )
{ }

( )
1 1

1 1 1 2 1 1 1
0,1 0,1

max maxC C C

d d
V B d V d V d

∈ ∈
= + = ɶ . 
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{ } � { } � �

1 1
1 11 1

1
0,1 0,1

0 10 1

max 0 1, 16 15 max 1 , 1 1C

d d
d dd d

V
∈ ∈ = == =

   
= + − + = + − = +    

  
����� . 

 
Finally, MR define the open-loop value that would result if one made the decision in 
period 1 and locked in this decision in period 2: 

 ( ) ( ) ( )1 20 0 0,0,B B E Bθ θ= +  and ( ) ( ) ( )1 21 1 1,0,B B E Bθ θ= + , 

though, as above, ( ) ( ) ( )1 11 1 1C O
B V V= =ɶ ɶ .  

In our numerical example, ( )0 0B =  and ( )1 1B = − . 

 
If we carried out simple benefit-cost comparison, the decision rule would amount to 

simply comparing ( ) ( )1  and 0B B . So they define ( ) ( ){ }max 1 , 0NPV B B= , which 

equals 0 in our numerical example. However, using the NPV rule would be a mistake 
since it does not take into account two factors. First, that you can make a decision in 

period 2; the ability to delay is captured in both 1

C
V  and 1

O
V . Second, NPV does not take 

into account you might get more information in period 2; that is captured only in 1

C
V . 

MR state that Dixit and Pindyck (1994) defines the option value (OVDP) as 

 ( ) ( ){ } ( ) ( ){ }1 1 1max 0 , 1 max 0 , 1DP C C C
OV V NPV V V B B= − = −ɶ ɶ , 

which equals +1 in our numerical example. That is, OVDP is the difference between the 
optimal closed-loop rule and the expected present value following the NPV rule. This is 
the basic idea behind the real option literature – that there is value to having the ability to 
wait and take into account future information.  
 
Twenty years before Dixit and Pindyck, Arrow and Fisher (1974) and Henry (1974) 
introduced what came to be known as quasi-option value, which focuses only on the 
benefit of taking into account additional information. That is, the benefit that is created 
by taking account of new information in period 2, i.e.  

 ( ) ( )1 10 0AFH C O
OV V V= −ɶ ɶ , 

which equals +1 in our numerical example. 
  

We can now decompose the difference between  and DP AFH
OV OV . MR define the pure 

postponement value as  

 ( ) ( )1 10 1O O
PPV V V= −ɶ ɶ  

i.e. the additional value created by waiting until period 2 to make a decision about 
whether to make a decision to build.6  Note that the PPV can be negative if there are 
benefits foregone by delaying action. In our numerical example, PPV=+1 (see equation 
(1)). 
 

 
6 Note that when there is no discounting, this would be zero. However, with discounting there might be 
benefits to waiting to make a decision. 



10 - 
 

10

Note that if the optimal closed loop choice in period 1 is d1=1, then 
1 1= =C O

V V NPV . On 

the other hand, when the optimal closed loop choice in period 1 is d1=0, and the optimal 

open loop choice is d1=1, then 
1 1

C O
V V≠ , instead ( )1 1 0C C

V V= ɶ  and 

( ) ( )1 11 1O O
NPV B V V= = =ɶ . This does not hold in our numerical example, but is the more 

interesting case.  
 

When 
1 1

C O
V V≠ , OVDP can be written 

 ( ) ( )1 0 1DP C
OV V B= −ɶ  

which can then be decomposed as follows 

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1 1 1

1 1 1 1

0 1

0 1 0 0

0 0 0 1

AFH

DP C O

C O O O

C O O O

PPVOV

OV V V

V V V V

V V V V

= −

 = − + − 

= − + −

ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
������� �������

 

Hence, we see that the option value concept of Dixit and Pindyck can be decomposed 
into two parts: 

 DP AFH
OV OV PPV= + . 

Why do we care? 

To get a sense of the importance of considering OV, consider a stylized version of the 
problem considered by Arrow and Fisher (1974): that of  a government planner 
considering whether to construct a hydroelectric dam. This project will yield a stream of 
future benefits in the form of recreational opportunities on the reservoir and hydroelectric 
power (for simplicity we’re ignoring any long-term environmental or social costs). The 
magnitude of these future benefits will be largely determined by future population growth 
in the region. The project is expensive, however, involving large financial resources for 
construction.  

If we simply build if the PV of the benefits exceeds the costs, then we use the mistaken 
NPV rule. We should take into account that the decision can be made in the future and 
there will be better information when we make that decision – we will have a better 
estimate of the population in the future. The option value, tells us the additional value 
from simply leaving our options open.   
 
This final equation above is interesting mostly for historical reasons. We see that in 1974 
AFH identified that optimal choices should take into account new information. Nearly 20 
years later this general idea was picked up in the real options literature and applied to the 
many irreversible decisions that occur in business and individual choices. Obviously the 
concept was not completely ignored in the intervening 20 years, but it did not come to the 
forefront until Dixit and Pindyck developed it in detail.  
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Some authors interpret OV as a value that should be added to benefit-cost studies, leading 
to the correct decision.7  An alternative perspective is that if you’re able to calculate OV, 
then you must have considered the correct DP problem, so it is probably better to just 
model your decision in this correct manner (Bishop).  
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