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9 - Markov processes and Burt & Allison 1963 

AGEC 642 - 2024 

I. What is a Markov Chain?  

A Markov chain is a discrete-time stochastic process in which the probability of moving 

from state xt
i to 1

j

tx +  is written pij with 1ij

j

p = . If the transition probabilities do not 

change over time, then the dynamic system is said to be stationary. A Markov transition 
matrix, P, for a system with 3 states, x1, x2 and x3, therefore, might take the form: 

x
x

t
t\ +1  1 2 3 

1 0.5 0.1 0.4 

2 0.2 0.2 0.6 

3 0.0 0.2 0.8 

In this case, the probability of moving from state x2 to x1 in one period is 0.2, the 
probability of staying in state x2 is 0.2, and the probability of moving from state x2 to x3 is 
0.6. 
 
Note that adding up the elements of any the ith row gives the total probability of going to 
all states given that you have started in the ith state. Since the set of states is 
comprehensive (i.e., it is a list of all the possible states) each row must sum to 1.  
 
Now let’s consider the probability of moving from state 1 to state 2 in two periods. This 
would be equal to  

11 12 12 22 13 32 0.5 0.1 0.1 0.2 0.4 0 0.15.2p p p p p p⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅ = , 

 
 
 
 

i.e., the sum of the probability across all possible paths from 1 to 2 in two steps. Note that 
this equation is the 1st row times the 2nd column. Similarly, the probability of moving 
from state 2 to state 3 in two periods is equal to the 2nd row times the 3rd column. This is 
matrix multiplication. Hence, the complete probability transition matrix of moving from 

state i to state j in two periods can be found in the matrix P2=P⋅P, or  

2\ t
t

x
x +  1 2 3 

1 0.27 0.15 0.58 

2 0.14 0.18 0.68 

3 0.04 0.20 0.76 

In general, Pn is the n-step probability transition matrix with elements n

ijp , each of which 

defines the probability of being in state j after n periods given that you started in state i. 
Pn is found by multiplying P by itself, n times.  
 

probability of 
going from 1 
to 1 and then 

1 to 2 

probability of 
going from 1 
to 2 and then 

2 to 2 

probability of 
going from 1 
to 3 and then 

3 to 2 

(1) 

(2) 
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In many cases, there exist a limiting probability distribution, defined as the Markov 

matrix lim n

n
P P

∞

→∞
= . If this limit exists, then the i,jth element tells us the probability of 

being in state j in the distant future given that the sequence starts in state i. 
 
Using the one-period Markov transition matrix defined above, we see that  

 P4 - After 4 periods   P10 - After 10 periods 

4\ t
t

x
x +  1 2 3 

 
10\ t

t

x
x +  1 2 3 

1 0.117 0.184 0.699  1 0.077 0.192 0.730 

2 0.090 0.189 0.720  2 0.077 0.192 0.731 

3 0.069 0.194 0.737  3 0.077 0.192 0.731 

 
We see that after 4 iterations, P4, the rows are beginning to converge; the chance of being 
in state 2 after 4 periods is between 18.4% and 19.4% depending on the state in which 
you start. After 10 periods, P10, the rows are equal to 3 digits. Beyond 10 periods, the 
probability of being in each of the three states is the essentially same, regardless of the 
state in which we start. Looking out beyond period 10, there is a 19.2% chance that the 
variable will be in state 2, regardless of the state in which it started. Identifying the 
limiting probability distribution can be helpful for presenting the results of stochastic 
systems.  
 

The central characteristic of P∞ is that if you multiply it by P, it does not change, i.e., 

P P P∞ ∞= ⋅ .1  Hence, using matrix algebra we find that ( ) 0P I P
∞ − = . If a limiting 

probability distribution exists, each row of P∞  will be identical. Hence, if p∞  is one row 

of P∞ , then ( ) 0p I P
∞ − =  defines a nonhomogeneous system of linear equations where 

the elements of p∞  are the unknowns. Alternatively, one can approximate P∞  by 

recursively multiplying P by itself many times. That is, starting with n=1, create 

1n n n
P P P+ = ⋅  with P1=P. Repeat this matrix multiplication process until the product does 

not change any more, i.e. 1 0
n n

P P+ − ≈ . 

 
Notice that the probabilities of the three rows in the matrix on the right above are 
essentially the same. When the limiting probability distribution has been found, these 
rows will be identical. Hence, the limiting probability distribution can be expressed as a 
vector, [0.077, 0.0192, 0.731], with each element indicating the probability of being in 
each state in the distant future. 
 
Why might the limiting probability distribution not exist? 

Suppose that the single-stage MTM is  

1\ t
t

x
x +  1 2 3 

1 0 1 0 

2 0 0 1 

3 1 0 0 

 
1 It also follows, of course, that P P P∞ ∞ ∞⋅ = , so P∞

 is an idempotent matrix. 

(3) 
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In this case from state 1 we always move to state 2, from 2 to 3 and from 3 back to 1. If 
you start in state 1, then after 2 periods, you will be in state 3. At any time t, the 
probability is always either zero or one, and if it is one, the next period the probability is 
zero. There is no limiting probability distribution for systems that exhibit such cyclical 
behavior. 
 
Periodicity: The periodicity of a state is the number of periods that one has to wait until 
there is a chance of returning to that state. For example, the periodicity of all states in 
matrix (1) is one, because there’s a chance that all states will be revisited in one period 
while the periodicity of all states in matrix (3) is three because it will always take 3 
periods to return to each state. 
 
Ergodic or irreducible Markov Chains: A Markov chain is irreducible or ergodic if it is 
possible to move from all states to every other state. “A Markov chain is said to be 
ergodic if there exists a positive integer T0 such that for all pairs of states i,j in the 

Markov chain, if it is started at time 0 in state i for all t>T0, the probability of being in 

state j at time t is greater than 0.”2 Here are three matrices that are not irreducible: 
 

 0.2 0.8 0 0       0 0 0.2 0.8 

 0.6 .04 0 0   0.5 0.5   0 0 0.6 .04 

 0 0 0.2 0.8   0 1.0   0.2 0.8 0 0 

 0 0 0.6 .04       0.6 .04 0 0 

In the first case, states 1 & 2 and states 3 & 4 can be reduced into two separate ergodic 
Markov transition matrices. If you start in state 1, you will never reach state 3, so it is not 
ergodic.  
In the second case, state #2 is an absorbing state – once it is reached, it will stay there 

forever, so as t→∞ the probability of being in state 1 is zero. 
In the third case the process is oscillating, if you start in state 1, you will be in states 3 or 
4 in period 2, states 1 or 2 in period 3, 2 or 4 in period 4, and so on. So, it does not hold 
that for all t probability of being in any state is greater than zero. 
 
Higher order Markov processes: In some applications, it is important to take into account 
“memory,” i.e. how you got to a given state. Consider, for example, the question of 
adopting a farm management process -- 0 or 1. The probability of being in state 1 may 
depend not only on the state you were in last period, but on the state in the previous 
period. So, you may have a 2nd order Markov transition process like the following. 

   State in t 

 t−2 t−1 0 1 

S
ta

te
 i

n
  

t−
2

 &
 

t−
1

 

0 0 0.9 0.1 

1 0 0.7 0.3 

0 1 0.3 0.7 

1 1 0.1 0.9 

 
In this case, if you haven’t adopted the practice in the previous two periods, there’s only a 
10% chance that you’ll adopt it in t, while if you’ve adopted the practice in the previous 

 
2 nlp.stanford.edu/IR-book/html/htmledition/definition-1.html 
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two periods, there’s a 90% chance that you’ll stick with it. This is different from the 
situation in which you’ve been switching back and forth between adoption and non-
adoption, in which case there’s a 70% chance that you’ll stick with the practice that you 
used last period.  
 
Markov processes of any order can be established, but in the DP solved in this class we 
will use only first-order processes, in which case the number of rows and number of 
columns are identical. 
 
Although there are other interesting properties of Markov transition matrices, this will be 
sufficient for the analysis required here. 

II. Why look at Burt & Allison 1963? 

It is worth asking why we should even bother to look at a 1963 paper on computational 
methods. Certainly, given the incredible advances that have been made in both hardware 
and software, papers that discuss computational work 50 years old are of questionable 
value. Nonetheless, I can think of three basic reasons why looking at this paper is useful: 

• The paper is a clear and simplistic formulation of a stochastic dynamic programming 
problem, making it ideal for pedagogical purposes; 

• The paper presents a simple agricultural application that can easily be built on for 
more elaborate analysis; 

• It was a watershed paper in Agricultural Economics and much of the dynamic 
programming in the field can be traced back to Oscar Burt and this paper. 

III. Burt and Allison’s farm management problem 

The applied problem that the authors consider is the optimal fallow-planting decision by 
a farmer who faces stochastically changing soil moisture levels. Early in the paper the 
authors mistakenly call the previous period’s decision the state variable, but the correct 
state variable is referred to in Table 1: the soil moisture content. The choice variable is 
whether to fallow the field (zt=F) or to plant it with wheat (zt=W).  

 
Payoffs (i.e. the benefit function, R(xt, zt)) are dependent on the state and the decision,  

State 

Soil moisture 

level (xt) 

Net return  

under Fallow 

π(zt=F) 

Net return  

with planting 

π(zt=W) 

1 0-2 -2.33 4.52 

2 2.1-4 -2.33 32.07 

3 4.1-6 -2.33 36.26 

4 6.1-8 -2.33 36.78 

5 8.1 or more -2.33 47.63 

 
Depending on whether the decision is made to fallow or harvest, two distinct Markov 
transition matrices can be found in Table 1: 
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Choice-contingent Markov Transition Matrices 

 MTM - Fallow P(F) MTM - Wheat P(W) 
 1 2 3 4 5   1 2 3 4 5 

1 0 1/20 5/20 7/20 7/20  1 9/23 7/23 7/23 0 0 

2 0 0 1/20 5/20 14/20  2 9/23 7/23 7/23 0 0 

3 0 0 0 1/20 19/20  3 9/23 7/23 7/23 0 0 

4 0 0 0 0 1  4 9/23 7/23 7/23 0 0 

5 0 0 0 0 1  5 9/23 7/23 7/23 0 0 

Given these values, the authors then solve for the optimal policy of an infinite-horizon 
optimization problem for the farmer seeking to maximize the net present value of his or 

her net returns using a 6% discount rate, β=1/1.06. 

Hence, Burt & Allison’s objective function would be 

{ }
( )

,
0

max ,
t

t

t t
z F W

t

ER x zβ
∞

= =
   

giving rise to the Bellman’s equation 

( )
{ }

( ) ( ) ( )1
,

max , ,
t

t t t t t t
z F W

V x R x z E x z V xβ +=
= +   

where ( ),t tE x z  is the expectation contingent on the current state and choice. Equivalently 

we could write the Bellman’s equation using the MTMs: 

( )
{ }

( ) ( ), 1
,

max ,
t t

t

t t t z x t
z F W

V x R x z p V xβ +=
= + , 

where ,t tz xp  is the row of the choice-contingent MTM associated with current state xt. 

 
Maximum likelihood estimates of transition probabilities 

Where might these MTMs have come from?  They must be estimated. Burt and Allison 
estimate these probabilities using precipitation data, expert judgments, and assumptions. 
More generally, one can think about the problem of estimating each of the choice 

contingent transitions probabilities ( )ijp z  using observations of what has actually 

occurred.  
 
For example, suppose that the true probabilities are 20% chance of going to state 1 and 
80% chance of going to state 2. If one observes 10 independent draws, and 4 of them go 

to state 1 and 6 go to state 2, then the probability of observing these draws is 4 60.2 0.8× . 

Now suppose that we’re trying to find the probabilities that are the best fit, i.e. the 
probabilities that maximize the likelihood of seeing the draws of 4 and 6. That is, we look 

for the probabilities p1 and p2 that maximize 4 6

1 2L p p= × . Intuition suggests that the best 

guess for p1 and p2 would be 
4 6

 and 
10 10

. This is correct, but why? 
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Consider the general problem. Suppose that, starting at point i, a choice z has been 

observed ik  times and the number of times state j=1,…,n was reached is ij
k , so that 

i ij

j

k k= . For a given set of transition probabilities, ij
p , the likelihood of observing this 

data would be  

 ( ) ijk

ij

j

L p= ∏ . 

 
To find the maximum likelihood probabilities, we maximize L (or equivalently here, 

ln(L)) subject to the constraint that ( ) 1
ij

j

p z = . Using the Lagrangian, 

{ }
( )max ln 1

ij

ij ij ij
p

j j

k p pλ
 

= + − 
 

 L , 

yields the FOCs 0
ij

ij ij

k
j

p p
λ∂ = − = ∀

∂
L

, from which we find that  

 ,  or    
ij ijik

ij ik

ij ik ik

k kk
j k p p j

p p k
= ∀ = ∀ . Now, using the constraint, 

1
ij ik

ij ik ij

j j jik ik

k p
p p k

k k
= = =    so ik ik

ik

ij i

j

k k
p k

k k
= = ∀


, i.e., the maximum likelihood 

estimates of the transition probabilities are simply the relative frequencies, just as we 
expected.  
 
Hence, maximizing the likelihood function is intuitive and, in some cases, relatively 
straightforward. 
 
There are a couple of important things to note about this very simplistic example. First, 
for dynamic problems the transition probabilities are state and choice contingent – here 
we assume that we observe ki(z) observations for choice z. If some choices are clearly 
“bad,” it is likely that such choices are not likely to be observed very many times if at all. 
That is, the number of times you observe a state-choice combination is endogenous and 
that should be taken into account if your data are non-experimental. Second, if kij=0 for 

some choice, then the estimated probability pij=0. Hence, analysts strictly applying this 

approach would estimate that the probability of reaching a state is zero because it has 
never been reached in the limited number of observations available. In practice, therefore, 
the analyst will typically impose more structure on the problem, including possible prior 
probabilities leading to Bayesian estimation and taking into account that z is endogenous.  
 
In any case, before advancing to solving the problem, we will assume that the analyst has 
obtained the choice-contingent MTMs needed to solve the problem. 
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IV. The solution algorithm 

Burt and Allison employ a two-step solution algorithm that made sense when computers 
were slow, but I will explain here the policy iteration approach that is at the heart of their 
solution approach.  
 
Step 1: The first step, presented in Table 2 of the paper, is to identify an array of 
candidate optimal choices. They do this by starting out by assuming that the value for 

any soil moisture content in the next period is zero, i.e., ( )0 0V x =  for all x. In this case, 

since the payoffs from wheat are greater than the payoffs from fallowing in all states, it is 

never optimal to fallow, ( )1 [ ]z x W W W W W= . We will call this a candidate 

optimal policy vector. Let R1 be the first candidate optimal vector of the returns at each 

point in the state space, i.e. ( ) [ ]1 4.52 32.07 36.26 36.78 47.63R x = . Finally, we 

also obtain the candidate optimal Markov transition matrix, P1, which is constructed by 
taking the rows of the Markov transition matrix associated with the vector of optimal 

policies. Since z1(x)=W for all x, it is simply equal to MTM associated with planting, 
P(W): 
 

 1 2 3 4 5 

1 9/23 7/23 7/23 0 0 

2 9/23 7/23 7/23 0 0 

3 9/23 7/23 7/23 0 0 

4 9/23 7/23 7/23 0 0 

5 9/23 7/23 7/23 0 0 

 
 
Step 2: The next step is to use the candidate optimal policy identified in step 1 to obtain 
an estimate of the value function. The idea here is to calculate what the value function 
would be if we followed this policy forever. First, imagine that we followed it for just 

two periods. In this case, after obtaining the benefits as defined by ( )1
R x , the transition 

matrix P1 would determine the probability of where we ended up next period. Suppose 

that you start in state 2 at time t=1. Following the policy ( )1
z x  you would earn 32.07 in 

the first period, but you wouldn’t know with certainty where you will end up in period 2. 
That is, there’s a 9/23 chance you’ll be in state 1, a 7/23 chance in state 2, etc. The 

expected value of being in state 2 and following the candidate policy ( )1
z x  for 2 periods 

is 32.07 +  β⋅[(9/23×4.52)+(7/23×32.07)+(7/23×36.26)+(0×36.78)+(0×47.63)]. This is 

shown in the shaded cells below. 
 

V1(x1)  4.52  9/23 7/23 7/23 0 0  4.52 

 V1(x2)  32.07  9/23 7/23 7/23 0 0  32.07 

V1(x3) = 36.26 +β× 9/23 7/23 7/23 0 0 × 36.26 

V1(x4)  36.78  9/23 7/23 7/23 0 0  36.78 

V1(x5)  47.63  9/23 7/23 7/23 0 0  47.63 
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Using matrix notation, we can write the value for the entire vector of states,  

 1 1 1 1V R P Rβ= +  

where V1 is our first estimate of the candidate value function assuming the candidate 
policy vector z1(x).  
 
If we followed this policy for 3 periods, our estimate of the value function would be 
closer to the infinite-horizon outcome:  

 ( )1 1 1 1 1 1 1 1 1 2 1 1 1
V R P R P R R P R P P Rβ β β β= + + = + + . 

Following this process for n+1 periods we would have  

 ( ) ( )2
1 1 1 1 2 1 1 1 1

n
n

V R P R P R P Rβ β β= + + + +… . 

Taking the limit as n→∞, this sum can actually be written quite concisely. You probably 

have learned that 
1

1 1
1 1

t

t
rr

β
β

∞

=

  = = + − 
 .3 This is a very useful formula: the present 

value of a stream of benefits of $Y per year starting next year and discounted at the rate r  
is equal to $Y/r. The analog to this for Markov Transition matrices is  

 ( ) 1

0

ˆ lim lim
n

t t

T n
n n

t

V V P R I P Rβ β −
−→∞ →∞ =

= = = − , 

where I is the identity matrix and V̂  is the vector of values that would result if a 

candidate policy that gives rise to P and R is followed ad infinitum. Hence, given the 
candidate payoff vector R1 and candidate MTM P1, V1 can be found by solving a linear 
system of equations,  

 ( )1 1 1
I P V Rβ− = , or,  (1) 

 ( ) 1
1 1 1

V I P Rβ
−

= − . (2) 

 
This step is typically referred to as the policy iteration step, because it takes a candidate 
policy vector, which indicates a candidate MTM, P and a candidate payoff vector, R1, and 
then finds the present value of the infinite stream of all future benefits assuming that that 
policy is iterated forever.  
 
Solving this equation for the candidate policy presented above yields 

  380.6 
  408.1 

V1 =  412.3 
  412.8 
  423.7 

 
Step 3: Our next step is to use the candidate value function to find a new candidate 

policy. To do this, we put V1  on the right hand side of the Bellman’s equation, and for 

 

3 The result is slightly different if payments start immediately: 
0

1 1

1

t

t

r

r
β

β

∞

=

+= =
− . 
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each state determine whether we are better off with a policy of F or W. For state 1, we 
compare two options:  

( )

( )

if F then

2.33 0  380.6 1 / 20  408.1 5 / 20  412.3 7 / 20  412.8 7 / 20  423.7 413.9

if W then

9 23  380.6 7 23  408.1 7 23  412.3 0  412.8 0  423.7 403.1

ˆ

ˆ 4.52

z

z

V

V

β

β

=

− + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =
=

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

=

=
  
That is, when soil moisture is at its lowest level, higher returns are obtained by fallowing 
than planting; the increase in the future payoff from fallowing more than makes up for 
the short term loss. In the remaining states W yields higher returns than F. Hence, our 
second candidate policy vector, z2, candidate payoff vector, R2and candidate Markov 
transition matrix, P2, are:  

 z2  R2   P2  

1 F  -2.33  0 1/20 5/20 7/20 7/20 

2 W  32.07  9/23 7/23 7/23 0 0 

3 W  36.26  9/23 7/23 7/23 0 0 

4 W  36.78  9/23 7/23 7/23 0 0 

5 W  47.63  9/23 7/23 7/23 0 0 

 

Again using (2), we can solve for a new candidate value function assuming that z2 is 

followed ad infinitum. In this case we get [ ]2 434.4  454.8  459.0  459.5  470.4V ′= .  

 

We repeat the process again, this time with the 2
V  on the RHS of the Bellman’s 

equation. In this case, it turns out that z3 is the same as z2. Hence, if we decided to follow 
the policy rule [ ]F W W W W  from t=2 onward, it would also be optimal to follow that 

same policy rule at t=1. This means that the candidate policy z2(x) is the optimal policy 

for an infinite horizon, z*(x). 
 
As Burt and Allison point out, in fact soil moisture is not a discrete variable. Hence, this 
problem is actually not a true DD problem because although their choice variable is 

discrete − plant or fallow − the true state variable is continuous. Discretizing the state 
space as they did is only one of a number of ways to approximate the solution of a 
continuous state problem. We will discuss other methods to deal with continuous state 
variables in the next lecture.  
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V. What does it mean for the value & policy functions to be constant over time? 

There is frequently some confusion about what is and what is not constant over time in an 
infinite horizon dynamic optimization problem. It is the functions that will be constant 
over time – not the policies themselves. For example, at the optimum of B&A’s problem, 
over the first 4 periods, the value and policy functions would be constant as shown 
below.  

x t=1 t=2 t=3 t=4  t=1 t=2 t=3 t=4 

 V(x) V(x) V(x) V(x)  z*(x) z*(x) z*(x) z*(x) 
1 434.4 434.4 434.4 434.4  F F F F 
2 454.8 454.8 454.8 454.8  W W W W 
3 459.0 459.0 459.0 459.0  W W W W 
4 459.5 459.5 459.5 459.5  W W W W 
5 470.4 470.4 470.4 470.4  W W W W 

 
However, in an actual realization of the problem, the state would change over time 
depending on the policy chosen and the random event distributed according to the 
MTM’s P(F) and P(W). For example, we might see a path like the one presented below. 
Starting in period 1 in state 1 the optimal policy is to fallow. There are then four states in 
which we might end up next period, state 2 with probability 1/20, state 3 with probability 
5/20, state 4 with probability 7/20 and state 5 with probability 7/20, but only one will 
actually occur. In the example below we assume that we have good luck and the soil 
moisture increases to state 5 in period 2. In period 2, since x=5, planting is optimal. In 
this case the soil moisture drops, say to state 2. The optimal policy in this state is W and 
there’s a 9/23 chance that we will end up in state 1 in the following period, which we 
assume is what happens. Hence, in period 4 we are back in state 1 and fallowing would 
once again be optimal. 

 

x t=1 t=2 t=3 t=4  t=1 t=2 t=3 t=4 

 V(x) V(x) V(x) V(x)  z*(x) z*(x) z*(x) z*(x) 
1 434.4 434.4 434.4 434.4  F F F F 
2 454.8 454.8 454.8 454.8  W W W W 
3 459.0 459.0 459.0 459.0  W W W W 
4 459.5 459.5 459.5 459.5  W W W W 
5 470.4 470.4 470.4 470.4  W W W W 
      R=-2.33 R=47.63 R=32.07 R=-2.33 

 
Simulating an optimal policy path 
In presenting your results, it is often necessary to use Monte Carlo simulation of a 
number of paths and present those results either graphically or numerically. To begin 
thinking about how one might actually simulate an optimal policy path, consider first the 
following thought experiment. 
 
Suppose that there are 6 states of the world and, given your optimal choice in each of 
these states, the chance of ending up in each of these states is equal to 1/6. So, you could 
simulate this random path by rolling a die. Suppose you start in state 3. Then you roll 
your die and, if it comes up with a 1, you advance to state 1. If you roll a 5, you end up in 
state 5, and so on. In this way, rolling your die, time after time, you could obtain a 
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random path that coincides with the optimal policy. Further, if you wanted to simulate a 
second random path, you could go back to period 1 and state 3 and start over again. In 
this way you could obtain the following simulated path.  
 

 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 

Simulation #1 xt=3 xt=5 xt=4 xt=2 xt=5 xt=1 xt=3 xt=2 xt=2 xt=4 

Simulation #2 xt=3 xt=3 xt=6 xt=2 xt=1 xt=4 xt=5 xt=2 xt=3 xt=5 

 
Now, how could we do this with a computer instead of dice? We could use a random 
number generator, which would generate a number between 0 and 1. If the value drawn is 
less than 1/6, this is treated as a 1 on the die, between 1/6 and 2/6 is a 2, and so on. In 

other words, we draw a random number, say ε, and then carry out the following logical 
test: 

if 1/6 > ε   then go to state 1,  

 else if 2/6 > ε   then go to state 2, 

  else if 3/6 > ε   then go to state 3, … 
 
In this very simple case, the Markov Transition matrix would look like this. 

 xt+1=1 xt+1=2 xt+1=3 xt+1=4 xt+1=5 xt+1=6 

xt=1 1/6 1/6 1/6 1/6 1/6 1/6 

xt=2 1/6 1/6 1/6 1/6 1/6 1/6 

xt=3 1/6 1/6 1/6 1/6 1/6 1/6 

xt=4 1/6 1/6 1/6 1/6 1/6 1/6 

xt=5 1/6 1/6 1/6 1/6 1/6 1/6 

xt=6 1/6 1/6 1/6 1/6 1/6 1/6 

So, for any xt, the cumulative probabilities would be as follows: 

 xt+1≤1 xt+1≤2 xt+1≤3 xt+1≤4 xt+1≤5 xt+1≤6 

xt 1/6 2/6 3/6 4/6 5/6 6/6 

 
We can now generalize the problem as follows. Suppose that an optimal Markov 
Transition matrix has been identified, say P, in which, P(xt,xt+1) is the probability of going 

from xt to xt+1 given that the optimal choice is being made. In any period, the state 

variable x can take on n values, 1 ,..., nx x . Using P, a randomly chosen policy path for T 

periods can be generated using the following algorithm: 
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Pseudo-code for stochastic policy simulation 

Set xt=x0, a chosen  value  

For every period to be simulated, 
t==1,…T 

 Generate a uniform random 

number, ε∈[0.1] 

 Set the variable CDF = 0 

for every possible value of 
xt+1,xi= x1,x2, …, xn 

 CDF = CDF+P(xt,xi) 

 If CDF≥ε, then 

xt+1=xi 

Exit State Loop 

 End if 

  

 End of  State loop 

 Record xt,  zt

*(xt), and xt+1 

 Set xt=xt+1 

End of Time loop 
 

Matlab code for stochastic  policy simulation 
% Initial value for the index 
ix = 3; 
 
for it = 1:nt 
    % Store values 
    spreadsheet(it, 1) = it; 
    spreadsheet(it, 2) = xgrid(ix); 
     
% Generate a random number between 0 and 1 
    eps = rand;  
     
% Figure out which cell was chosen using the 
%Optimal Markov Transition Matrix, mtmStar. 
% As soon as cdf>eps, we’ve found xt+1 
    cdf = 0; 
    for ix1 = 1:nx 
        cdf = cdf + mtmStar(ix, ix1); 
        if cdf > eps 
            ix = ix1; % We’ll go to ix1 next  
            break;   % stop looping over ix1 
        end 
    end 
end 

 
note that this is intuitive, but not  

computationally efficient code. 

 

In practice (and in your problem set) you would need to run many simulations to evaluate 
the distribution of your optimal paths over time.  
 
It can also be useful to present the limiting probability distribution. In the Burt and 
Allison case, following the optimal policy leads to the following limiting probability 
distribution so that the most common state is state 3. Another way to interpret this is that 
in the long run fallowing will be optimal 28% of the time.  
 

State 1 2 3 4 5 

Limiting 

Probability 
0.281 0.233 0.289 0.098 0.098 

 

VI. References 

Burt, O.R. and J.R. Allison. 1963. "Farm Management Decisions With Dynamic 
Programming." Journal of Farm Economics 45:121-37.  

Rust, John. 1996. Numerical Dynamic Programming in Economics. In H. Amman, D. 
Kendrick and J. Rust (eds.),  Handbook of Computational Economics. New York: 
North Holland.  
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VII. Readings for next class 

Judd (1998) (Available here, must be logged into TAMU account to access). 

• Read the section, “Limits of discretization methods” on p. 430, then look over the 
beginning of the section starting on p. 424.  

• Read pages 434-440. 


