
This document was generated at 9:06 AM on Monday, March 04, 2024

Copyright 2024 Richard T. Woodward

8. A more formal introduction to Dynamic Programming and Numerical DP

AGEC 642 - 2024

I. Some DP terminology

• The Bellman's equation is an equation like: () () ()1 1max ,
t

t t t t t t
z

V x u x z V xβ + += +

• We assume that the state variable xt∈X⊂ m
ℝ

• Bellman's equation is a functional equation in that it maps from the function to a

function, i.e., from Vt+1:X→ℝ to Vt:X→ℝ.

• Bellman's equation is a recursive expression in that values functions earlier in time

are determined by an operation on the function later in time, i.e. VT→ VT−1→

VT−2→…

• The discount factor, ()1 1 rβ = + where r is the discount rate. (For our initial

discussion we will let β=1, r=0)

A. Important features of the DP framework

1. The Bellman's equation at any point in time is a static optimization problem and

everything that we know about solving such problems applies here.

2. If you look back at Dorfman's framework (Lecture 5), you will find a lot of

similarities between that structure and what we have here.

3. Hence, just as in optimal control, there will be a co-state variable λt which is equal to

the marginal value of an additional unit xt, i.e. λt=∂V/∂x or, if x is discrete as in many

of our examples, i.e., taken from the set { }1 2, , ,
n

x x x… , then λ at a point xi could be

calculated as () () ()1

1

i i

i

i i

V x V x
x

x x
λ −

−

−
=

−
.1

4. The marginal future consequence of choices today is equal to

() ()1 1 1 1
1 1

1

t t t t

t t

t t t

V x x x
x

x z z
λ+ + + +

+ +
+

∂ ∂ ∂=
∂ ∂ ∂

 or the analog for a discrete case.

5. If the problem were stochastic, then the Bellman's equation would look like

() () ()(){ }1max , , , ,
t

t t t t t t t t t t
z

V x E u x z V g x zε β ε+= + where εt is a random variable.

Other than the addition of the expectation, however, we see that the underlying

structure is basically unchanged. The fact that the transition from deterministic to

stochastic problems is so straightforward is a big advantage of dynamic

programming.

6. In AGEC 642 we will typically consider problems with a discrete-time specification.

However, the Bellman's equation can be analyzed in a continuous time framework,

which is common in the macroeconomic literature. Continuous-time dynamic

programming is discussed in detail in Stokey and Lucas (1989).

1 Notice that here I define λ(xi) based on the one-sided difference in the negative direction, i.e. comparing

V(xi) and V(xi-1). We could have used a forward difference, i.e. xi relative to xi+1, or an average of the two

one-sided differences. There is no correct approach; but it is important to tell your reader what you did.

8-

2

II. A general theoretical framework for the consideration of dynamic

programming problems

The general problem that we will seek to solve through the use of dynamic programming

is to maximize the expected benefits over our planning horizon. Benefits in period t will

be written u(zt, xt, εt, t), where zt represents a vector of choices in t, xt is a vector of state

variables, and εt represents a vector of random variables. The value of your terminal

stock, equivalent to the salvage value, will be written S(xT+1).

Hence, the decision maker’s objective is to maximize

() () () () (){ }

() ()

1 1 1 2 2 2 1

1

, , , , , , 1 , , , 2 ... , , ,

, , ,

t t t t t t t t t t T T T T

T

t s s s T

s t

E u z x t u z x t u z x t u z x T S x

E u z x s S x

ε ε ε ε

ε

+ + + + + + +

+
=

+ + + + + + +

 +

where Et is the expectation operator conditional on the information available in t.

The value function V(xt) is defined as

() () ()1, max , , ,
s

T

t t s s s T
z

s t

V x t E u z x s S xε +
=

 ≡ +

 ,

which can be rewritten,

1. () () () ()1 1
,

1

, max , , , , , ,
t s

T

t t t t t t s s s T
z z

s t

V x t E u z x t E u z x s S xε ε+ +
= +

 ≡ + +

 .

If this objective is to be achieved, we must assume that the optimal choices will be made

not only in t but in t+1, t+2, etc. Hence,

() () ()1 11

1

, max , ,1 ,
s

T

s st t

t

s T
z

s

V x E u St z x s xε+ ++
= +

 ≡+ +

 ,

which can then be substituted into 1, to get

2. () () (){ }1, max , , , , 1
t

t t t t t t
z

V x t E u z x t V x tε += + +

with the terminal condition () ()1 1, 1
T T

V X T S X+ ++ = .

Note: As in Judd (1997), technically this should be a sup operator instead of max. We can interpret this as a technical

distinction that doesn't really affect us. For all the problems we'll be considering, sup and max are equivalent since u(⋅)
and the state equation will be defined over X,Z.

While V(xt,t) is the max, we are probably also interested in the choice variables that

actually solve this problem. The policy function, z*(xt,t) maps from state and period to a

set of choices, i.e.,

z x t E u z x t V x tt
z

t t t t t

t

* , arg max , , , ,b g b g b gm r= + ++ε 1 1 .

 Notation: “arg max” means the argument (i.e., the value of zt,) that maximizes the function.

The policy function is a decision rule: if you wake up on the tth morning and discover that

you have an endowment of xt, then you can refer to the rule, z*(xt,t), carry out the action,

and go back to bed.

8-

3

III. The types of DP problems

Numerical DP problems can be broken into four basic types of problems, each requiring

slightly different approaches.

A. Discrete state and discrete control (DD)

Discrete-Discrete problems (DD-DP problems) are problems for which computers are

best suited. In such cases both the state variable and the control options take on a finite

number of values. The inventory control problem presented in Lecture 7 is a DD

problem. There are a finite number of states (i.e., inventory takes on only discrete values)

and the decision-maker's problem is to choose from a discrete set of possible production

choices.

Because both the state space and the control space can be exactly modeled by the

computer, there is no approximation error in the solution and it is possible to obtain an

exact solution.

B. Continuous state and discrete control (CD)

In Continuous-Discrete problems (CD-DP problems) the state space is continuous, but

there are only a finite number of choice possibilities. One example of this would be what

are generally referred to as optimal-stopping problems. For example, the seminal paper

by Rust (1987) considered the problem of the optimal time to replace the engine of a bus.

The main state variable in Rust's model was the age of the current engine, a continuous

variable. The choice was whether to replace the engine or continue to give it

maintenance. Hence, the state variable is continuous, the age of the engine, while the

choice variable is discrete, replace or not.

CD problems are common in economics and are particularly well-suited for dynamic

programming. Unlike in DD problems, in CD problems it is not possible to find the value

of V at every point in the state space because there are an infinite number of such points.

Further, we do not typically have a closed-form expression of V that would allow us to

exactly calculate V at any point. We have to approximate. One way to solve CD problems

is to calculate V(xt) at a finite number of points and then estimate the value elsewhere in

the state space based on the points where the solution has been found. Hence, the best we

can do is to find an approximate solution to the problem. We'll discuss this problem in

much more detail in Lecture 11.

C. Continuous state and continuous control

The third class of problems is where both the control and the state variables are

continuous, CC-DP problems. In these problems both the state and control variables are

continuous. The PV utility maximization problem discussed above is a good example of

such a problem. In this case, there are two sources of error – the approximation error in

finding the correct choice variable from the continuous set of possibilities and the

approximation error because V can only be estimated. Computer programs like GAMS or

Matlab have embedded algorithms that are quite good at finding the solution to static

optimization problems. However, even in the best of worlds the solution will frequently

only be approximate (though the error might be economically insignificant) and, if the

8-

4

problem is not concave, the computer program may find a solution that is entirely

incorrect.

D. Discrete state and continuous control (DC)

The 4th class of problems are discrete state and continuous control (DC). This can arise,

for example when a piece of machinery is either working or not and the question is how

much to spend on maintenance each period. The solution algorithms for such problems

are often an amalgam of DD and CD problems, so we will not spend much time

considering this type of problem independently, though you should be able to solve such

problems. There are problems in which there is a closed-form expression for the optimal

choice in t as a function of the values of Vt+1. In cases like that, the exact solution can be

found without numerical approximation.

IV. A general algorithm for the solution of finite-horizon DD problems using a

grid search method.

In DD problems, the state space is made up of a finite number of points, say X. We will

assume that future benefits are discounted using the factor β. If discounting is not

required, then β=1.

There are three basic steps required

1) Initialization: set t=T+1 and define V(xT+1,T+1) for every state x∈X. If you don't have a

salvage value, set V(xT+1,T+1)=0 for all xT+1.

2) Recursion step: Starting with t=T find the value of z that solves the problem

 V x t E u z x t V x tt
z

t t t t
t

, max , , , ,b g b g b gm r= + ++ε β 1 1 ,

for every value of xt, then store V(xt, t) and

 z x t E u z x t V x tt
z

t t t t

t

* , arg max , , , ,b g b g b gm r= + ++ε β 1 1

3) Termination step: if t=0, stop. Otherwise set t=t−1 and return to step 2.

The pseudocode presented below gives a general representation of the solution algorithm,

which could then be programmed in almost any language that you choose. An

implementation of this using Visual Basic is provided toward the end of these notes.

8-

5

Pseudocode for a finite-horizon DD DP program

() ()0 1

0

max , , , , 1ε +
=

+ +
t

T

t t t T
z

t

E u z x t V X T

.

Calculate V(xT+1,T+1) for every state x∈X based on prior information.

For every period t=T, T−1, T−2, …, 0

for every point in your state space, xt∈X

set V(xt,t) = −∞ (in practice, a big negative number such as -999999)

for each possible decision choice, zt

calculate Etu(⋅)= () (), , ,
t

t t t tp u z x t
ε

ε ε , where p(εt) is the probability

that a particular value of εt will be realized

calculate () () ()()1 1, 1 , , , , 1
t

t t t t t t tE V x t p V x z x t t
ε

ε ε+ ++ = + where

x z x tt t t t+1 , , ,εb g is the value for the state variable in t+1

given zt and a particular realization of εt

calculate V' = Et{u(⋅)+βV(⋅)}(V' is a candidate value)

if V'>V(xt,t) then

V(xt,t)=V'

z*(xt,t) =zt

EndIf

continue {End of Control loop}

continue {End of State loop}

continue {End of Stage loop}

As you write your programs, each of these steps and the three main loops should be

clearly identified. The control loop is where Bellman’s equation is solved at each state-

stage combination.

V. Infinite-horizon dynamic programming problems

The finite-horizon problem that we consider above starts with some salvage value,

()1, 1TV x T+ + , sometimes equal to zero, and then works backwards. Hence, you might

wonder how one might solve an infinite horizon problem, where there is no end point. It

turns out, however, that because of discounting you still use the backward recursion

solution approach. In effect, what we will do is start far out in the future and then work

our way back to the present until, because of discounting, that starting value function far

in the future, has no effect on what is done in the present.

Consider yourself in a situation in which you have a resource that you can use up to

generate immediate utility or, with effort, you can increase the resource stock. If you had

100 units of the resource and only 4 days to use it, then your choices today would be very

S
ta

te
 l

o
o

p

S
ta

g
e

lo
o

p

C
o

n
tr

o
l

lo
o

p

8-

6

much affected by the time horizon. Your actions on day 3 would be very much affected

by the fact that the end of your problem is imminent. And if, on the 3rd day somehow you

were given an extra day to use the resource, your choices would probably change a lot.

Now imagine the same problem but assume that you have 100 years to use the resource.

It is unlikely that your choices today would differ very much if someone told you that

you had 100 years + 1 day. If that’s true, if there is no change in your choices today as the

time horizon changes, you are behaving in the current period, t=0, as if the time horizon

doesn’t matter, i.e., as if you face an infinite time horizon. This intuition is essentially

what we implement in the successive approximation algorithm.

A. Successive approximation of infinite-horizon problems

We now want to consider how we would solve DP problems that don't have a terminal

time, i.e., infinite-horizon problems. As indicated above, the basic intuition behind the

infinite-horizon Bellman's equation is that, because of discounting, if T is much larger

than t, then the function V(x,t) will look very much like V(x,t+1), and likewise for z*(x,t)

and z*(x,t+1). The solution algorithm converges if as T→∞, V(x,t+1)=V(x,t). What this

means is that the value function will not change over time. Hence, we can drop our

reference to t and write Bellman's equation:

3. V x E u z x V xt
z

t t t t t
t

b g b g b gm r= + +max , ,ε β 1 .

Note that in this equation we have also dropped the reference to t in the benefit function

u(⋅). This is a limitation – if you want to consider infinite-horizon DP problems you have

to specify your benefit function and state equation(s) as autonomous.2 Many problems

that might appear to be non-autonomous (e.g., if there is technological change) can be

made autonomous by including additional state variables.

Equation 3 also includes ()1 1 rβ = + in the general specification of the Bellman’s

equation. This is important; β<1 ensures that the objective function is finite, and will play

a central role in the numerical solution of the problem. The proof of convergence of the

successive-approximation algorithm requires that β be less than 1. Some undiscounted

problems converge, but typically they will not.

Solving this problem, however, presents a dilemma. In the finite-horizon case, the

function V(xT+1,T+1), being the salvage value, was known. In the infinite-horizon case,

however, we are trying to solve for an unknown function V(⋅) on the LHS, but it also

appears on the RHS. The starting point is not obvious.

It turns out that there's an easy solution to this problem. We can take any arbitrary guess

at the value function, say V0(x), then using this function, solve for V1(x) as follows

 () () (){ }1 0

1max , ,
t

t t t t t t
z

V x E u z x V xε β += + .

2 (at least for all t greater than some finite number)

8-

7

Then we repeat this process, finding () ()2 3, , t tV x V x …, until we reach a point when

Vk+1(x) is “close” to Vk(x). In each iteration we are only going to be using the kth

approximation of the value function to obtain the k+1th approximation, we do not need to

store all of our approximations of the value functions. Instead, at any time we only need

to retain two value functions, which I will call VRHS (x), which is the previous estimate,

and VLHS(x) which is the new estimate.

Note that the superscript on V refers to the iteration of the approximation algorithm, not

to time. Hence, ()0

tV x is the is the initial guess of the value function, ()1

tV x is estimate

of the value function after the first iteration, and ()k

tV x is the estimate after the kth

iteration.

B. The successive approximation algorithm for the solution of infinite-horizon DD

problems

The successive approximation algorithm used to solve infinite-horizon problems is as

follows:

As in the finite-horizon case, there are three basic steps required.

1) Initialization: For every state x∈X take a first guess at V(x), say ()0
V x . You can use

()0 0V x = for all x or some other value if you have prior information about the solution.

We will put V0(x) into the array VRHS(x).

2) Update step: Given our estimate
RHS

V , obtain a new vector of values for VLHS(x) at

every point x∈X by solving the problems

 () () (){ }1max , ,
t

LHS RHS

t t t t t
z

V x E u z x V xε β += + .

 Store VLHS and the candidate policy function,

 () () (){ }1
ˆ arg max , ,

t

RHS

t t t t t
z

z x E u z x V xε β += + .

3) Convergence check: Check to see if () ()max LHS RHS

x
V x V x τ− < , where τ is a small

number.

⋅ If the convergence criterion is satisfied, then we’re done: set V(x)=V
LHS(x) and

stop.

⋅ Otherwise set () ()RHS LHS
V x V x= , and return to step 2 to find a new function,

VLHS(x).

8-

8

Here is the pseudocode for an infinite-horizon deterministic DD problem using a grid-

search algorithm.

Set VRHS (x)=0 (or some other starting value) for every state x∈X.

For iteration 1,2,…, max iter

for every point in your state space, xt∈X

set VLHS(xt) = −∞ (in practice, a big negative number)

for each possible decision choice, zt

(),
t t

u u z x=ɶ

()()1 ,RHS

t t tV V x z x+=ɶ

 [We now have “candidate” values u(⋅) and V(x
t+1

) for a given choice]

if ()LHS

t
u V V xβ+ >ɶɶ then [The current “candidate” zt is the best so far]

()LHS

t
V x u Vβ= + ɶɶ

z*(xt) =zt

endif

continue [end of control loop]

continue [end of state loop]

set () ()max LHS RHS

x
diff V x V x= −

set () ()RHS LHS
V x V x=

if diff<convergence criterion, then

exit stage loop

endif

continue [end of stage loop, start next iteration with a new VRHS]

set () ()LHS
V x V x= for all x.

S
ta

g
e

L
o

o
p

S
ta

te
 L

o
o

p

C
o

n
tr

o
l

L
o

o
p

8-

9

And here is the pseudocode for an infinite-horizon stochastic DD problem.

Set VRHS (x)=0 (or some other starting value) for every state x∈X.

For iteration 1,2,…, max iter

for every point in your state space, xt∈X

set VLHS(xt) = −∞ (in practice, a big negative number)

for each possible decision choice, zt

set Etu(⋅) = EtV(⋅) = 0

for each state of nature, εt with probability p(εt)

evaluate (), ,t t tu z x ε

evaluate ()()1 , ,t t t tV x z x ε+ where x z xt t t t+1 , , εb g is the state

value that occurs in t+1 given a particular action zt and a

particular realization of εt

Add () (), ,t t t tp u z xε ε to Etu(⋅)

Add () ()()1 , ,t t t t tp V x z xε ε+ to EtV(⋅)

continue [end of uncertainty loop]

[We now have “candidate” values Etu(⋅) and EtV(⋅) and

() ()t tV E u EVβ= ⋅ + ⋅ɶ for a given choice]

if Etu(⋅)+βEtV(⋅)}>VLHS(xt) then

VLHS(xt)=E{u(⋅)+βVRHS(⋅)}

z*(xt) =zt

endif

continue [end of control loop]

continue [end of state loop]

set () ()max LHS RHS

x
diff V x V x= −

set () ()RHS LHS
V x V x=

if diff<convergence criterion, then exit loop and set () ()LHS
V x V x= ,

else

continue [end of stage loop]

The reason that this algorithm converges to the correct V(x) is because the Bellman’s

equation is a contraction mapping. What this means is that the distance between
LHS

V

and
RHS

V decreases monotonically over iterations. Hence, if you have a maximum

difference between the two value functions of 0.01 after 20 iterations, then even if you

iterate 1000 more times, you will never see a maximum difference of more than 0.01.

S
ta

g
e

L
o

o
p

S
ta

te
 L

o
o

p

C
o

n
tr

o
l

L
o

o
p

U
n

ce
rt

ai
n

ty

L
o
o

p

8-

10

Technical details and a proof of that this algorithm is a contraction mapping can be

obtained from a variety of sources including the books by Bertsekas, Judd, and Miranda

and Fackler.

The proof of the contraction mapping property gives rise to an interesting result. If k
V

and 1k
V

− are two successive iterations of the value function, then we can place bounds on

the true infinite-horizon value function using these two functions as follows. Define

1
min

1

k k

kb V V
β

β
− = − −

 and 1
max

1

k k

kb V V
β

β
− = − −

. Then if V is the true infinite-

horizon value function, then
k k

k kV b V V b+ ≤ ≤ + (Rust, 1996 p. 653).3

That is, there are bounds between which we know the true value function will actually

lie. Furthermore, these bounds will get tighter as the number of iterations increases.

Because that can be shown, if follows that the successive approximation algorithm will

converge to the true value function.4

Here are a couple of things worth highlighting about the infinite-horizon problem:

• The Bellman's equation of the infinite-horizon problem is what is known as a

functional fixed point. In the case of DD problems the function V(⋅) is simply a set of

values for each value xt∈X. At the fixed point, when we evaluate the Bellman’s

equation to find ()LHS

tV x , we will find the same vector of values as those in

3 I have found instances when this formula seems to break down, but I have not explored it in detail and I

cannot rule out programming errors on my end. Regardless, as k→∞, the formula certainly holds.
4 As will be discussed in Lecture 12, these bounds can be used to accelerate the solution algorithm.

xt

8-

11

()RHS

tV x . Note that this does not mean that () ()()1 ,
LHS RHS

t t t tV x V x x z+= because

unless xt is an equilibrium value, ()()*

1 ,t t t tx x x z x+≠ .

• The successive approximation algorithm is monotonic in the sense that if

Vk+1(x)>Vk(x) for all x∈X, then in every subsequent iteration for n≥k+1, Vn+1(x)>Vn(xt).

This property is critical to the convergence of the algorithm. As a practical manner,

you can sometimes use this property in your programming – if it is violated you have

an error in your program. (Note that this inequality holds point by point!)

• In the successive approximation algorithm there is no need to store the value function

at each stage since in the end all you are looking for is the true value function V(x).

For debugging purposes, however, it is sometimes helpful to save them.

8 - 12

VI. DP with VB

On the next several pages we present two Visual Basic programs that solve the inventory control problem

presented in the previous lecture. In the first case, note the close correlation between the pseudocode and the

actual program. The second program is more sophisticated and general. Either program can be modified to

solve virtually any finite-horizon DD-DP problem. Spreadsheets with these programs are available on the

programs page of the class web site.

BASIC VB Code for solving the Inventory control problem

Option Explicit
Option Base 1

Sub VerySimpleDP()
' Dimension the minimal set of variables needed
Dim it As Integer, ix As Integer, ixnext As Integer, iz As Integer
Dim xt As Double, xnext As Double, zt As Double
' Dimension V(ix, it) and zStar(ix,it)
Dim V(0 To 3, 1 To 4), zStar(0 To 3, 1 To 4)
Dim u, VLHS, VRHS

' Parameters of the model
Dim p, d, alpha, gamma, N
N = 3
p = 10
d = 2
alpha = 1
gamma = 3
' ---

' Terminal Values. Sell product and pay fine if required
 it = 4
 For ix = 0 To 3
 xt = ix*1.0
 V(ix, it) = (p * xt - d * (N – xt))
 Next ix

' ---
' Recursion step starting in T-1
' Stage Loop, stepping backward
 For it = 3 To 1 Step -1
' ---
' Start State Loop
 For ix = 0 To 3
 xt = ix*1.0 ' Inventory, a real number
' ---
' Start by setting V(ix,it) = -99999
 V(ix, it) = -99999
' ---
' Start Control Loop
 For iz = 0 To 3
 zt = iz*1
' ---
' Evaluate the candidate policy. VLHS = u + VRHS
' ---
 u = -(alpha * zt ^ 2 + gamma * xt)
 xnext = xt + zt ‘ State Equation
 If xnext > N Then xnext = N ‘ boundary issues
 ixnext = xnext ' Get index for xnext
 VRHS = V(ixnext, it + 1)
 VLHS = u + VRHS

' Check to see if this z is an improvement.
' If so, save it and save zstar
 If VLHS > V(ix, it) Then
 V(ix, it) = VLHS
 zStar(ix, it) = zt
 End If
' ---
' End of control loop
 Next iz
' ---
' End of state loop
 Next ix
' ---
' End of stage loop
 Next it
' ---
' Store output in Sheet 1.
' use 5 - ix & 15-ix so that results are from highest x to lowest as in
notes
 Sheets("Sheet1").Select
 For ix = 0 To 3
 For it = 1 To 4
 Cells(5 - ix, it) = V(ix, it)
 Cells(15 - ix, it) = zStar(ix, it)
 Next it
 Next ix
End Sub

S
ta

te
 l

o
o

p

S
ta

g
e

lo
o

p

C
o

n
tr

o
l

lo
o

p

8- 13

' --
' This program solves the inventory control problem that is solved
' By hand in AGEC 637
' Author: Rich Woodward
‘ http://agecon2.tamu.edu/people/faculty/woodward-richard/642/Programs/
' --
' When basing problem-set programs on this code, you need to rewrite
' and add comments to convince me that you fully understand
' the program.
'###

' VARIABLE DECLARATIONS & Global options
' ---
 Option Explicit ' All variables used must be explicitly dimensioned
'--
 Option Base 1 ' Unless specified otherwise, arrays will be indexed
 ' starting at 1. You override this by writing,
 ' for example, " Dim V(0 To nx) "
'---
' Notice that all variables are dimensioned outside the subs so that their
' values are accessible from all the subs.
'---
' Arrays are dimensioned with the () after them so that they can
' be redimensioned later after dimension parameters have been read in
'---
 Dim ValFn() As Double ' Final Value Function
 Dim VLHS() As Double ' Value Function on LHS of Bellman's eq
 Dim VRHS() As Double ' Value Function on RHS of Bellman's eq

 Dim zStar() As Integer ' Optimal policy function of xt and it
'---
' Parameters of the program
'---
 Dim nT As Integer, nx As Integer, nz As Integer
'---
' Parameters of the model
'---
 Dim Beta As Double, p As Double, d As Double, n As Double
 Dim alpha As Double, gamma As Double
'---
' Intermediate variables
'---
 Dim utility As Double, V As Double, Vnext As Double
'---
' Counters. Some variables require both a real # and integer representation.
'---
 Dim it As Integer, iz As Integer, ix As Integer, ixnext As Integer
'---
' x and z are potentially real numbers that will be taken from the
' grids xGrid and zGrid
'---
 Dim zt, xt, xnext
 Dim zMin, zMax, xMin, xMax
 Dim xGrid, zGrid

'##
Sub Main()

 Call initializeValues

'---
' CreateGrids of for x and z
' The CreateGrid Function is available in the MatrixSubs that
' can be downloaded from the web site
'---
 xGrid = CreateGrid(0, nx, xMin, xMax)
 zGrid = CreateGrid(0, nz, zMin, zMax)

'---
' Set Terminal Value [or the initial estimate of V() in infinite-horizon problems]
 Call TerminalValue
' Store terminal values in ValFn and on the spreadsheet
 For ix = 0 To nx
 ValFn(ix, nT) = VRHS(ix, 1)
 Range("ValueFunction").Offset(ix + 1, nT).Value = ValFn(ix, nT)
 Next ix

'---
' stage loop (note we start at it=nT and move backwards until it=1
 For it = (nT - 1) To 1 Step -1
 ' ---
 ' state loop
 For ix = 0 To nx
 xt = xGrid(ix)
 VLHS(ix, 1) = -99999#
 ' -----------------------------------
 ' Solve the maximization problem at current state & stage
 ' In DD problems we use a grid search
 ' control loop
 ' -----------------------------------
 For iz = 0 To nz
 zt = zGrid(iz)
 Call UtilityFunction
 Call StateEquation
 Call VnextCalc
 ' -----------------------------------
 ' Bellman's equation
 V = utility + Beta * Vnext

' -----------------------------------
 ' Compare stored V with V at current z and update if necessary
 ' In infinite-horizon problems you would use VLHS(ix)
 If V > VLHS(ix, 1) Then
 VLHS(ix, 1) = V
 zStar(ix, it) = zt
 End If
 ' -----------------------------------
 ' End of control loop
 Next iz

8-

14

 ' -----------------------------------
 ' Store optimal value in the full array of the value function
 ValFn(ix, it) = VLHS(ix, 1)
 ' -----------------------------------
 ' store optimal values in spreadsheet
 Range("ValueFunction").Offset(ix + 1, it).Value = ValFn(ix, it)
 Range("Zstar").Offset(ix + 1, it).Value = zStar(ix, it)
' --
 Next ix

' --
' Move VLHS over to the RHS
' In infinite-horizon problems at this point
' check convergence, and carry out the policy-iteration or
' modified-policy-iteration step
 For ix = 0 To nx
 VRHS(ix, 1) = VLHS(ix, 1)
 Next ix

' --
' End of Stage loop
 Next it

' --
' The optimization problem is solved!
' --
' --
' Now simulate the optimal policy path
 Call Simulation

' --
' End of main program
End Sub
'##
Sub UtilityFunction()
' ---
' The benefit function subroutine as a function of z and x

 utility = -alpha * (zt / 100) ^ 2 - gamma * (xt / 100)
End Sub
'##
Sub StateEquation()
' ---
' The state equation subroutine
' ---
 xnext = xt + zt

' ---
' You must decide what happens if you go outside your state grid.
' This can often be a critical modelling decision

 If xnext > xGrid(nx) Then xnext = xGrid(nx)
' ---
' The potentially real number xnext, must be converted to an

' integer in DD problems
 ixnext = InvertGrid(xnext, xGrid)

End Sub

'##
Sub TerminalValue()

 For ix = 0 To nx
 xt = xGrid(ix)
 VRHS(ix, 1) = p * xt / 100 - d * (n - xt) / 100
 If xt > n Then VRHS(ix, 1) = p * n / 100
 Next ix

End Sub
'##
Sub VnextCalc()
' ---
' Subroutine to calculate V(xt+1, t+1)
' ---
 Vnext = VRHS(ixnext, 1)
End Sub
'##
Sub initializeValues()
' --
' This subroutine sets up the space for writing output
' and reads in the data

' --
' Clean up the area for writing output
 Call ClearAreas

' --
' Read in data from spreadsheet
 nT = Range("nT")
 nx = Range("nX")
 nz = Range("nz")
 p = Range("p")
 d = Range("d")
 n = Range("N")
 alpha = Range("alpha")
 gamma = Range("gamma")
 Beta = Range("beta")

' --
' Set up maxes & mins for the state and control variables
' --
 zMin = 0
 zMax = nz * 100
 xMin = 0
 xMax = nx * 100

8-

15

' --
' Redimension arrays based on read in data
' When you redimension an array you
' set its value to zero. Be careful!
' Note that in the inventory problem we want the arrays to start at zero
 ReDim ValFn(0 To nx, nT)
 ReDim VLHS(0 To nx, 1)
 ReDim VRHS(0 To nx, 1)

 ReDim zStar(0 To nx, nT)

' --
' Set up areas for writing output
 Range("output").Offset(2, 0).Name = "ValueFunction"
 Range("ValueFunction").Offset(nx + 4, 0).Name = "Zstar"
 Range("Zstar").Offset(nx + 4, 0).Name = "Simt"
 Range("Simt").Offset(1, 0).Name = "SimXt"
 Range("SimXt").Offset(1, 0).Name = "SimZt"
 Range("SimZt").Offset(1, 0).Name = "SimXtPlus1"
 Range("SimXtPlus1").Offset(1, 0).Name = "SimUtility"

' --
' Add titles to the output arrays
 Range("ValueFunction").Value = "V"
 Range("Zstar").Value = "Zstar"
 For it = 1 To nT
 Range("ValueFunction").Offset(0, it).Value = "t = " & it
 Range("Zstar").Offset(0, it).Value = "t = " & it
 Next it

 For ix = 0 To nx
 Range("ValueFunction").Offset(ix + 1, 0).Value = "x = " & ix
 Range("Zstar").Offset(ix + 1, 0).Value = "x = " & ix
 Next ix

 Range("Simt").Offset(-1, 0).Value = "Simulation"
 Range("Simt").Value = "t"
 Range("SimXt").Value = "x"
 Range("SimZt").Value = "z"
 Range("SimXtPlus1").Value = "xt+1"
 Range("SimUtility").Value = "Utility"

End Sub

'##
Sub Simulation()
 ' Now simulate the path over nT periods
 xt = 0
 For it = 1 To nT
'--
' Find the index associated with the real # xt
' The InvertGrid Function is available in the MatrixSubs
' that can be downloaded from the web site
'--
 ix = InvertGrid(xt, xGrid)
'--
' Choose the optimal choice z* from the zstar array
'--
 zt = zStar(ix, it)

'--
' figure out what x(t+1) will be given z*
'--
 Call StateEquation ' finds xnext as fn of xt zt
 Call UtilityFunction

'--
' write the output to the spreadsheet
'--
 Range("Simt").Offset(0, it).Value = it
 Range("SimXt").Offset(0, it).Value = xt
 Range("SimZt").Offset(0, it).Value = zt
 Range("SimXtPlus1").Offset(0, it).Value = xnext
 Range("SimUtility").Offset(0, it).Value = utility
'--
' Update to the next period
'--
 xt = xnext
'--
' end of simulation loop
'--
 Next it

End Sub
'##

Sub ClearAreas()
'--
' This program may be used directly without personalized comments
'--
' Clear space for printing value function
 With Range("OUTPUT")
 Range(.Offset(1, 0), .Offset(100, 50)).ClearContents
 End With

End Sub
'###

