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7. Introduction to Numerical Dynamic Programming  

AGEC 642 - Spring 2024 

I. An introduction to Backwards induction 

Shively, Woodward and Stanley (1999) provide some recommendations about how to 
approach the academic job market. Their recommendations are summarized in the table 
below. The thing to note here is that they start with year 5 when you begin your job. 
Starting at the end, they then move backward in time, making suggestions about how a 
student should put all the pieces into place so that when the end comes his or her 
application packet is as strong as possible. The process of looking first to the end is called 
backward induction. It is not only a critical skill for evaluating almost any problem that 
we face; it is the central concept in dynamic programming.  
 

Timetable of Job-Search Activities 

Time Activity 

year 5 • Start new job 

• Obtain job offers and negotiate  

• On-campus interviews 

year 4 • Interview at professional meetings 

• Begin applying for positions 

• Complete outline of dissertation and one chapter 

• Teach a class 

year 3 • Revise and resubmit paper 

• Look for teaching assignment 

• Attend AAEA meetings 

• Write and submit a book review 

• Revise paper and submit to journal & AAEA meetings 

• Obtain first teaching experience 

year 2 • Give an informal seminar based on the revised paper 

• Submit grant proposals 

• Research grant opportunities 

• Revise paper 

• Take qualifying exams 

• Write course paper with an eye toward eventual publication 

year 1 • Choose field, advisor, and dissertation topic 

• Start classes 
* Taken from Shively, G., R.T. Woodward, and D. Stanley. 1999. “Strategies and Tips for Graduate 

Students Entering the Academic Job Market.” Review of Agricultural Economics.21 (2):513-526. 

A. The two-period consumption problem 

Now let’s consider a more standard economic problem, the two-period consumption 
problem that we looked at in Lecture 1. In that problem, we said that the individual had a 
utility function over two goods, za and zb, which she consumes in two periods, 1 and 2:  
 ( ) ( ) ( )baba zzuzzuu 222111 ,, +=z . 

The resource endowment x could be consumed over the two periods, so that 

 1 2' ' .z z x+ ≤p p  

Solving for the second period first, we found that  



7- 2

( ) ( )
2

2 2 2 2 2

2 2 2

max , . .a b
z

a a b b

V x u z z s t

p z p z x

=

+ ≤
 

We could then solve the first-period problem, 
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This is the dynamic programming approach: in each period we solve for the value 
function, which is a function of the state variable(s). Then, working backward, we find 
the optimal choice in the previous period and the corresponding value function in that 
period. This process is repeated until the initial period is reached. In this course, we will 
solve these problems numerically and we start with a very simple example. 

II. Numerical solutions of a simple DDP 

A. Consider the following problem.  

• You have a contract to sell N=300 units of your product at the start of period T=4. If 
you deliver your product, you will be paid p=$10 per 100 units. However, if you are 
unable to fulfill the contract you have to pay a penalty of d=$2 per 100 units you are 
short. Hence, the salvage value equation as a function of the xT units held in period T 
is: 

   ( )
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• Building inventory (using your choice variable, zt) is expensive and gets more 

expensive the more you produce in a single period, i.e., ( )
2

100

t
t

z
c z α  =  

 
, with α=1 

• Holding inventory is also expensive, ( )
100

t
B t

x
c x γ= , with γ=3. 

• Production increases next period's inventory; you cannot increase your inventory and 

sell that increase in the same period.  xt+1=xt+zt. 

• Hence the benefit function for periods 1-3 is  

( )
2

,
100 100

t t
t t

z x
B z x α γ = − − 

 
. 

• A formal statement of the optimization problem is, therefore,  

( )
3

4 1 0

1

max , ( ) . . , 0
t

t t t t t
z

t

B z x S x s t x x z x+
=

+ = + = . 

 



7- 3

B. How do we solve this problem using a DP setup?   

We will fill out the circle & arrow diagram on the last page of these notes to develop the 
intuition. Remember, DP is about working backward, so we start in stage 4 and then work 
backward.  

A video in which this example is worked is available on the class website. I 

encourage you to watch this video while completing your own circle-and-arrow sheet. 

First, we need to move to the final period when the transaction is made. We find the 
value of the ending inventory as a function of the possible terminal values of xT. For 

simplicity, we will assume that inventory is created in 100-unit increments. The value of 
being in period T with a stock of xT can be written VT(xT)=S(xT) for all possible values of 

x=0, 100, 200, 300, 400, …. Since V(xT) does not increase beyond xT=300, so there is no 

point in evaluating values greater than 300. 

The next step is when we start doing DP. We move backward from period t=T=4 to 

period t=T−1=3 and find the best choice from the available options (z3=0,100,200, or 

300) at each value of x3. The value of being at a particular point (say x3=200) is equal to 

the highest value that can be achieved if we happen to end up at that point, i.e.  

 ( ) ( ) ( )( )
3

3 3 3 3 4 4 3, 3
0,1,2,3

max ,
z

V x B z x V x x zβ
=

= +  

where ( )4 3, 3x x z  is the state equation, a mapping from x3 to x4 as a function of z3. In this 

case, the state equation is simple: x4 = x3+z3. This type of equation is called a Bellman’s 

equation, after the applied mathematician, Richard Bellman.1   

Let’s write out the Bellman’s equation in even more detail for two points in the state 
space, where x3=0 and where x3=200. 

If x3=0, then the Bellman’s equation can be written: 
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If x3=200, then the Bellman’s equation can be written: 
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1 An interesting biographical sketch on Richard Bellman is provided in the article, Dreyfus, S. 2002. 
Richard Bellman on the Birth of Dynamic Programming. Operations Research 50(1):48-51. 
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Notice that here we are using the fact that we know that V4(x) reaches a maximum when 

x4=300. While this is not what we usually think of as a function, these two expressions, 

each with four lines on the right, are functions evaluated at a point, mappings from the 

variable x3 to a real number. In this case, the function V(⋅) is only defined at discrete 

values of x3, {0, 100, 200, …}.  

The optimal choice, z3
*(x3), is the one that solves the maximization problem above. Or, 

more technically,  

 ( ) ( ) ( )( ){ }
3

*

3 3 3 3 4 4 3, 3arg max ,
z

z x B z x V x x zβ= + . 

Once the Bellman’s equation is solved for all possible values of x3 in period 3, we can 

move backward to period 2, solving  
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We continue moving backward in this fashion until the V(⋅) and z*(⋅) are identified for all 
points in the grid. This tells us the value function and the optimal path. 
 

Bellman's principle of optimality: If you end up at a particular value of x, then the best 
thing you can do from that point forward is the same thing you would do if you were 
starting at that value of x.  
 

Bellman’s principle of optimality is central to the dynamic programming and is 
embedded in the Bellman’s Equation,  

( ) ( ) ( )1, max , , , 1
t

t t t t
z

V x t u z x t V x tβ += + +  

in which V(⋅) is known as the value function, and β is the discount factor, typically equal 

to 
1

1 r+
 where r is the discount rate. Writing the Bellman’s equation more specifically 

for the inventory control problem, in which we are not discounting, we obtain  

( ) ( )

( )

2

1max , 1 ;   for 
100 100,

;  otherwise.

t

t t
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Note here that the value function is a function of both xt and t; it can take on a very 
different form in each period. 

III. Presentation of your results 

The key outputs of a DP problem are the value function and the optimal choices as a 
function of the state and stage. It is often useful to present these in either graphical or 
tabular form.  

For example, the value function and policy functions are presented below. From the value 
function, we see that stock (xt) is not always valuable; the marginal value of the stock is 
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strictly less than zero in periods 0, 1, and 2, only becoming valuable in period 3. This is 
reflected in the policy function, in which we see that it is optimal to add inventory only in 
period 3 

 

V(xt, t)  

 

 
 

z*(xt,t) 

  

x t= 0 t= 1 t= 2 t= 3 t= 4

0 22 22 22 21 -6

100 14 17 20 23 6

200 5 11 17 23 18

300 -6 3 12 21 30
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Another helpful way to look at your results is by simulating an optimal path. Again, 
graphical or tabular presentation is often useful as in the figure below. 

Simulated optimal path 

 
 
Much of the economic content of your solution might be obtained from comparative 
dynamic analysis, i.e., how do your results change as your parameters change? For 

example, as we vary γ, the cost of holding the inventory changes. In the figure below we 
see how this affects the optimal trajectory of the inventory stock. 

 

IV. Extensions of the simple DDP model 

One of the most attractive features of dynamic programming is that extending the basic 
structures in a variety of ways is relatively straightforward. Here are a couple of obvious 
extensions of the inventory control problem. 

A. Multiple State variables (e.g., 2 different goods) 

Inside your stage loop, nest a loop over each of your state variables.  
Suppose, for example, the firm produces 2 goods, x1  and x2. In this case, the Bellman’s 
equation could be written: 

 ( ) ( ) ( )
1 2

1 2 1 2 1 2 1 2

1 1
,

, , max , , , , , , 1
t t

t t t t t t t t
z z

V x x t u z z x x t V x x tβ + += + + . 
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If costs are interrelated in a nonlinear fashion, then it is important to solve the joint 
optimization problem. The solution algorithm would require looking at the optimal 
choices at each state-stage combination, e.g.,  

t 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4  3 3 …  

x1
t  0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3  0 1 … 

x2
t  0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3  0 0 … 

At each of these stage-state combinations, solving the Bellman’s equation requires 

finding the zt

1, zt

2 choice that maximizes u(⋅) +βV(⋅).  
To reiterate the point made above, notice that the solution algorithm starts with t=4 and 
moves backward.  

B. Risk 

One of the advantages of DP over optimal control is the ease with which risk can be 
incorporated into any problem. For example, we could consider a problem in which 100 
units might be stolen or damaged from one period to the next and the probability that this 

happens is π. In this case, your Bellman's equation would take the form  

Vt(xt)= −(αz2 + γxt) + [π⋅Vt+1(xt−100+zt) + (1-π)⋅Vt+1(xt+zt) ] 
In general, one can always add uncertainty to a DP problem by simply adding the 
expectation operator 

( ) ( ) ( )1max ,
t

t t t t
z

V x E u z x V x += +   . 

If the utility function is deterministic, then this could be written  

( ) ( ) ( )1max ,
t

t t t t
z

V x u z x EV x += +  

or  

( ) ( ) ( )( )1max , , ,
t

t t t j t t t j
z

j

V x u z x V x z xπ ε+= +  

where πj is the probability that εj occurs and ( )1tx + ⋅  is the state equation contingent on the 

random variable ε. Remember that the expectation operator must go outside the value 

function – do not use ( ) ( )1 1 instead of  t tV Ex EV x+ + . 

V. References 

Shively, Gerald,  Richard Woodward, and Denise Stanley. 1999. Strategy and Etiquette 
for Graduate Students Entering the Academic Job Market. Review of Agricultural 

Economics 21(2):513-26. 

VI. Readings for next class 

Judd (1998) pp. 399-413.
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