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5. The intuition behind optimal control as explained by Dorfman (1969)   

& the current value Hamiltonian 

AGEC 642 - 2024 
 
The purpose of this lecture is to help us understand the intuition behind the optimal 
control framework.  We draw first on Dorfman's seminal article in which he explained 
OC to economists. I strongly encourage you to refer to the original article 
(http://www.jstor.org/stable/1810679) as you go through these notes.    
 
(For this lecture, I will use Dorfman's notation, so k is the state variable and x is the 

choice variable) 

A. The problem 

Dorfman’s problem is to maximize 

(1) ( ) ( ), , ,
T

t
t

W k x u k x dτ τ= 
�

 

where x
�

 is the stream of all choices made between t and T, and u(⋅) is the utility function 
that indicates the rate per period that the planner gains utility from the choices, x, the 

state, k, at time τ. 
 
The state equation is  

( ), ,
k

k f k x t
t

∂= =
∂

ɺ  

B. Step 1.  Divide time into two pieces 

Dorfman’s first step is to divide the time from t to T into two pieces: from t to t+∆ and 

from t+∆ to T. If ∆ is small, then there is little loss of accuracy if we linearize utility over 

the interval from t to t+∆, i.e., assume that k, x, and u(k,x,t) are constant over this interval.  

Technically, all the “=” signs below should be replaced by “≈” signs, but we will assume 
the approximation error is trivial.  Hence, we rewrite 

( ) ( ) ( ), , , , ,
T

t t
t

W k x u k x t u k x dτ τ
+∆

= ∆ + 
�

. 

First, let's look just at this second term.  If we assume that we maximize over the second 

interval from t+∆ to T, then we can eliminate the control variable, x
�

, from the second 
term to obtain 

(2) ( ) ( ) ( )* * *, max , , , ,
T

t t
tx

V k t W k x t u k x dτ τ+∆ +∆ +∆
+ ∆ = + ∆ = �

�
,  

where k* and x* are the optimal paths of the state and control variables, respectively.  
 

Using this value function, ( )* ,tV k t+∆ + ∆  in (2), we can write the value of the stream of 

welfare starting at time t with assets kt and choosing a constant value xt for the period 

from t to t+∆ as follows: 

(3) ( ) ( ) ( )*, , , , ,
t t t t t

V k x t u k x t V k t+∆= ∆ + + ∆ .  

The reason we multiply u(⋅) by ∆ is that we are assuming that u(⋅), the rate per period at 
which utility is being generated, is constant for the period from t to t+∆. Hence, 
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( ), ,t tu k x t∆   is the amount of utility accumulated over this short period. If ∆=1, then 

( )u∆ ⋅  is one period's worth of utility. If ∆=½, then ( )u∆ ⋅  is half a period’s worth of 

utility.  

Similarly, we know that ( ), ,
t

t t t

t

k k f k x t dt

+∆

+∆ = +  , i.e., kt plus the changes in kt that 

occur from t to t+∆. But if  ( ), ,tf k x t  is assumed to be constant from t to t+∆, then 

( ), ,t t t tk k f k x t+∆ = + ∆ .  

 

Note that the V(·) on the LHS of (3) is different from the V*(⋅) on the RHS in (2). V(·) 
does not have a * since it is not necessarily at the optimum; it includes xt as an argument.  

When we write ( )* ,tV k t+∆ + ∆  it means that it is evaluated at the optimum value of x so 

that it is only k and t. In contrast, ( ), ,
t t

V k x t  can be evaluated at all possible values of xt, 

including suboptimal values, allowing us to maximize V(⋅) over xt.  

C. Step 2.  Evaluate the FOC w.r.t. the control variable, xt 

The optimum choice, xt, of (3) can be found using standard tools of calculus.  Dorfman 

takes the FOC, directly with respect to the choice variable xt  

(4) 
( ) ( ) ( )*

, ,
, , , 0t t

t t t

t t t

V k x t
u k x t V k t

x x x
+∆

∂ ∂ ∂= ∆ + + ∆ =
∂ ∂ ∂

. 

We can then rewrite the second term 

(5) 
* *

t

t t t

kV V

x k x

+∆

+∆

∂∂ ∂=
∂ ∂ ∂

. 

Since we assume that the interval ∆ is quite short, we can approximate the state equation 

( )∆+=∆+=∆+ txkfkkkk tttt ,,ɺ   

so that  

(6) 0t

t t

k f

x x

+∆∂ ∂= + ∆
∂ ∂

. 

Dorfman then substitutes (6) into (5), and also writes 
*

t

t

V

k
λ∂ =

∂
, so that (4) can be 

rewritten  

(7) 0t

t t

u f

x x
λ +∆

∂ ∂∆ + ∆ =
∂ ∂

.  

Note that (7) and the relationship between V’ and λ can also be derived if we start 
with a Lagrangian,  

( ) ( ) ( )( )( )*, , , ,t t t t t t tL u k x t V k t k k f k x tλ+∆ +∆ +∆= ∆ + + ∆ − − + ∆ . 

The FOCs would be,  
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0=
∂
∂∆+

∂
∂∆ ∆+

t

t

t
x

f

x

u λ , and 

( )*

t

t

V

k
λ +∆

+∆

∂ ⋅
=

∂
. 

This confirms what we already know: that λ is the value of marginally relaxing 
the constraint, i.e., the change in V*, that would be achieved by a marginal 

increase in kt+∆.  Hence, V' and λ are equivalent! 

 

Cancelling ∆ in  (7) and then taking the limit as ∆→0 so that 
t tλ λ+∆ = , we obtain 

(8) t

t t

u f

x x
λ∂ ∂= −

∂ ∂
. 

This is the first of the optimality conditions of the maximum principle, (i.e., 0H
z

∂ =∂ ). 

Dorfman (822-23) provides a clear and succinct economic interpretation of this term:  

[Equation (8)] says that the choice variable at every instant should be 
selected so that the marginal immediate gains are in balance with the value 
of the marginal contribution to the accumulation of capital. 

Put another way, the choice variable should be increased as long as the marginal 
immediate benefit is greater than the marginal future costs of that increase.1 In problems 
where the choice variable is discrete or constrained, it may not be possible to actually 
achieve the equi-marginal condition, but the intuition remains the same. 
 
So now we've got a nice intuitive explanation for the first of the maximum conditions: 

The central principle of dynamic optimization is that optimal choices are 

made when a balance is struck between the immediate and future 

marginal consequences of our choices.    

D. A simple problem to clarify the meaning of λ and λɺ   
(This section is presented in an online video that can be seen via the AGEC 642 website). 

Before returning to Dorfman’s analysis, let’s consider a simple dynamic optimization 
problem that provides some basic intuition.  

Suppose that our optimization problem is as follows 

2max .
2t

T

t t t t t
sx

b
k ax x dt s t k c k
 − = ⋅ 
 

 ɺ  

where s is an arbitrary starting time less than T. 

 
1 Obviously, in some problems, the intuition might instead be that the choice variable should be increased 
as long as the marginal future benefit is greater than the marginal present costs of that increase. 
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The Hamiltonian and first order conditions would be 

( )

2

nd 2

2

1  FOC:  0 2  FOC: .
2

t t t t t

st

x t t k t t t t

b
H k ax x c k

b
H k a bx H ax x c

λ

λ λ

 = − + ⋅ 
 

 = − = = − = − + 
 

ɺ

  

From the first FOC, we see that *

t

a
x

b
=  and the benefits at every point in time are simply 

2 2

2
t

a a
u k

b b

 
= − 

 
, which we will write as 

tk u .  On the surface, this is not a very 

interesting problem, but it actually serves as a helpful case for understanding some of the 
economic principles in optimal control. 

Consider first the case when c=0. In that case, k is constant, which means that the value 

of the objective function is simply ( )T

s
s

V kudt T s ku= = − , which can be presented 

graphically as a rectangle, the green area in the figure below. 

 

Now let’s use this example to understand the marginal value of a unit of the state 
variable. If we added one more unit of k at the starting time, t=s, then an additional unit 
of u would accrue over the entire time horizon, the red area from s to T. The marginal 

value of k at time s, λs, therefore, captures the value that can be obtained from a marginal 
increment to k across the entire planning horizon. We also can see this by taking the 

derivative of Vs with respect to ks: ( )s

s

s

V
T s u

k
λ ∂

= = −
∂

. 

Now imagine that the marginal unit of k arrived slightly later, at t=s+∆. In this case, the 
benefits would accrue for less time, and the red cross-hatched area in the figure equals 

t
λ +∆ . Clearly in this case 

s sλ λ+∆ <  and the difference between the two is u⋅∆ or  

( )
0

or lims s s s su uλ λ λ λ λ+∆ +∆∆→
− = −∆ − ∆ = = −ɺ . 

Hence, the rate at which λ falls is exactly equal to the rate at which k gives rise to current 

benefits. That is, 
t uλ = −ɺ .  
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Now, assume that c>0, so that the resource grows geometrically over time at the rate c. It 

still holds that *

tx a b=  for all t, but in this case the value of the objective function is an 

area under a curve that is increasing at the rate c, the green area in the figure below.  

 

A one unit increase in k at time s would add the full red area in the graph on the left since 

that additional unit grows at the rate c. Hence, λs captures two separate effects. First, the 
marginal value of an increase in the stock at time s includes the increment to direct 

benefits over the entire time horizon, u⋅(T−s) indicated by the vertically marked section. 
Second, the extra unit at time s  leads to additional growth in k, which creates more value, 
which is indicated by the red section in the figure that is above the vertically marked area.   

As above, in the figure on the right, we see that if the increment to k happens at s+∆ 

instead of at s it is not as valuable. i.e., 
s s

λ λ+∆ <  In this case, there are two reasons that λ 

is declining over time. First, if the increment in k arrives at s+∆ instead of at s, the direct 
addition to the objective function, u at every moment, does not last as long. This is seen 
in the fact that the vertically marked area over the full time horizon from s to T is smaller 
if the increment is obtained in s+∆, equal to the effect when c=0 discussed above. 
Second, as can also be seen in the figure, since k grows over time, if an increment arrives 
later there is less time to benefit from that growth – the area above the vertically marked 
area in the figure, is smaller if started at s+∆ than if that extra unit had arrived at s. It 

turns out that in this case, the two effects reduce to 
tu cλ λ− = +ɺ .  

Hence, the rate at which λ falls is exactly equal to the rate at which k gives rise to current 
benefits plus the rate at which capital itself gives rise to future benefits. 

E. Step 3.  Look at the value of λt by taking ∂V*/∂kt 

Now, we return to the general case and Dorfman’s derivation. Dorfman now assumes that 

the optimal choice of x has been made over our short interval, t to ∆. 

( ) ( ) ( )* * *, , , ,
t t t t

V k t u k x t V k t+∆= ∆ + + ∆  

Differentiating this expression w.r.t. k and substituting λt for ( )* ,
t t

V k t k∂ ∂ , we get  
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( )

( )

*

*

,

,

t t

t t

t t

t

t t t

t
t t

t t

u
V k t

k k

V k t ku

k k k

ku

k k

λ

λ

λ λ

+∆

+∆ +∆

+∆

+∆
+∆

∂ ∂= ∆ + + ∆
∂ ∂

∂ + ∆ ∂∂= ∆ +
∂ ∂ ∂

∂∂= ∆ +
∂ ∂

 

Since this is over a short period, we can approximate 

  and  , so that 1t
t t t t t t

t t

k f
k k k

k k
λ λ λ +∆

+∆ +∆
∂ ∂= + ∆ = + ∆ = + ∆
∂ ∂

ɺɺ  

Hence, 

( ) 1t t

t

u f

k k
λ λ λ

λ

∂ ∂ = ∆ + + ∆ + ∆ ∂ ∂ 
ɺ

t

u

k
λ∂= ∆ +

∂
2

0

t

f f

k k
λ λ λ∂ ∂+ ∆ + ∆ + ∆

∂ ∂

= ∆

ɺ ɺ

u

k
λ∂ + ∆

∂
ɺ

tλ+ ∆ 2f

k
λ∂ + ∆

∂
ɺ f

k

∂
∂

 

or,  

t

u f f

k k k
λ λ λ∂ ∂ ∂− = + + ∆

∂ ∂ ∂
ɺ ɺ . 

Taking the limit at ∆→0, the last term falls out and we're left with  

(9) 
k

f

k

u

∂
∂+

∂
∂=− λλɺ  

which is the second maximum condition, H
k

λ ∂− = ∂
ɺ . 

 
Dorfman (p. 821) offers 3 ways to think about the economic intuition behind this 
equation. 

To an economist, it λ  
ɺ  is the rate at which the capital is appreciating.  

λɺ−  is therefore the rate at which a unit of capital depreciates at time t.  … 

In other words, [1] a unit of capital loses value or depreciates as time 
passes at the rate at which its potential contribution to profits becomes its 
past contribution.  … [or] [2] Each unit of the capital good is gradually 
decreasing in value at precisely the same rate at which it is giving rise to 

valuable outputs. [3] We can also interpret λɺ−  as the loss that would be 

incurred if the acquisition of a unit of capital were postponed for a short 
time [which at the optimum must be equal to the instantaneous marginal 
value of that unit of capital]. 

So, we see that since the value of the capital stock at the beginning of the problem is 
equal to the sum of the contributions of the capital stock across time.  As we move across 
time, therefore, the capital stock’s ability to contribute to V is “used up.”  This is the 
general principle that is shown in the example in the previous section. 
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Better intuition for [2] above can be found by looking at λt and 
tλ +∆ .  We know that  

( ) ( ) ( )*, , , , ,
t t t t t t

t

t t t t

V k x t u k x t V k t k

k k k k
λ +∆ +∆

+∆

∂ ∂ ∂ + ∆ ∂= = ∆ +
∂ ∂ ∂ ∂

 

which, since 1t
k

t

k
f

k

+∆∂ = + ∆
∂

, can be written  

( ) ( ) ( ) ( )
* *, , , ,

1 .t t t t

t k

t t t

V k t u k x t V k t
f

k k k
λ +∆

+∆

∂ ∂ ∂ + ∆
= = ∆ + + ∆

∂ ∂ ∂
 

We can then subtract 

( )* ,
t

t

t

V k t

k
λ +∆

+∆
+∆

∂ + ∆
=

∂
 

To obtain the difference between  
tλ +∆  and 

tλ : 

( ) ( )*, , ,t t t

t t k

t t

u k x t V k t
f

k k
λ λ +∆

+∆
+∆

 ∂ ∂ + ∆
− = − − ∆  ∂ ∂ 

. (10)  

So, we see that the change in λ is composed of two parts, the utility that you get during 
that period from t to t+∆, and the marginal value of marginal contribution of k to 

increasing k itself.  This relationship shows how λ must evolve over time along the 
optimal path.  
 

The key point here is that along its optimal trajectory, λ will take into account all the 
ways that the marginal unit of k leads to value and how that is used up or created over 
time.  
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F. Step 4.  Summing up 

Hence, each of the optimality conditions associated with the Hamiltonian has a clear 
economic interpretation.   

Let ( ) ( )txkftxkuH t ,,,, λ+=  

 

FOC Equation Interpretation 

Choice ( ) ( )

0

0t

H

x

u f

x x
λ

∂ =
∂
∂ ⋅ ∂ ⋅

+ =
∂ ∂

 
Finds the optimal balance between current welfare and 
future consequences. 

State ( ) ( )
t

H

k

u f

k k

λ

λ λ

∂ = −
∂
∂ ⋅ ∂ ⋅

+ = −
∂ ∂

ɺ

ɺ

 

The marginal value of the state variable is decreasing 
at the same rate at which it is generating benefits.  
or 
Along the optimal path, the loss that would be suffered 
if we delayed acquisition of a marginal unit of capital 
for an instant must equal the instantaneous marginal 
value of that unit of capital. 

Co-
state ( )

H
k

f k

λ
∂ =
∂

⋅ =

ɺ

ɺ

 The state equation must hold. 

 

II. A word about discounting 

Discounting: Recall that if r is the annual rate of discount, then ( )1
T

r
−+  is the 

discount factor applied to benefits or costs T years in the future.  If we break 
each year into n periods, then the periodic discount rate becomes r n  so over n 

periods (i.e., a year) the one-year discount factor becomes ( )1
n

r n
−+ .  As 

n→∞, this converges to r
e

− , the continuous-time discount factor. 

 
Consider a modification of Dorfman's problem with the assumption that we will 
maximize the present value of u(k,x,t)=e-rtw(k,x) over the interval 0 to T, i.e.,  

( )
0

,
T

rt
W e w k x dt

−=   

This is a restrictive specification of (1) in which ( ) ( ), , ,r
u k x e w k x

ττ −= , so the 

optimality conditions must still hold.  The Hamiltonian now is  

(11) ( ) ( )txkfxkweH t

rt ,,, λ+= − . 

The interpretation of λt is the same: it is a measure of the contribution to W of a marginal 
increase in k in period t.  However, because of discounting we know that there is 

additional pressure for λt to fall over time.  If Wt is the present value (back to year zero) 
of all the benefits from t to T, then because of discounting Wt will tend to be much 
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smaller far in the future than it is for t close to zero.  Correspondingly, ttt kW λ=∂∂  will 

also tend to fall over time.   
 

Hence, the value of λt is influenced by two effects: the current (in period t) marginal 
value of k, which could either be increasing or decreasing, and the discounting effect, 
which is always pushing λt toward zero.  Hence, even if the marginal value of capital is 

increasing over time (in current dollars), λ might be falling.  Because of these two 

factors, it often happens that the economic meaning of λt is not easily seen – is it falling 
because k is becoming less valuable or simply because of discounting?  
 
Hence, when using a discounted optimization problem, it is almost always preferable to 
use a modified specification, what is called the Current Value Hamiltonian.   

A. The Current Value Hamiltonian 

We begin by defining an alternative shadow price variable, µt, which is equal to the value 
of an additional unit of k to the benefit stream, valued in period t units, i.e.,  

rt

t teµ λ+= .   That is, to get µt we have to inflate λt to convert it from period 0 values to 

period t (current) values.    
 
To help understand what this means, consider an example. Suppose that you have a 
resource in that in year 30 will have a marginal value of $1000 and you discount at the 
rate of 5% per year. What’s the value of an increment to the resource, considered from 
the perspective of year 0, 30 years earlier? Answer: $1000/(1.05)30=$231. In this case, 

2050 $1000µ =  while 2050 $231λ = .  

The current value Hamiltonian is obtained by inflating (11) to obtain 

(12) ( ) ( ) rt

tc eHtxkfxkwH ⋅=+= ,,, µ .  

There are two differences between (12) and the standard Hamiltonian (11).  First, we use 

μt instead of λt.  Second, the discount factor 
rt

e
−

, which appears before w(·) in (11), 

cancels out since we’ve multiplied the entire function by 
rt

e
+

.   

 

It is a simple matter to derive the maximum conditions corresponding to Hc and µ instead 

of H and λ. 
 
The first FOC can be rewritten, 

so, 0 if and only if 0.  

Hence the analogous principle holds w.r.t. the control variable, i.e.,

rt c

c

HH
e

x x

HH

x x

− ∂∂ =
∂ ∂

∂∂ = =
∂ ∂

 

1')  0cH

x

∂ =
∂

 

or, more generally, maximize Hc with respect to x. 
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Now look at the FOC w.r.t. the state variable: 
The standard formulation is  

λɺ−=
∂
∂

k

H
. 

Looking at the LHS of this equation, we see that for the current value Hamiltonian, Hc,  

k

H
e

k

H crt

∂
∂=

∂
∂ −

 

and, on the RHS, since λt=e-rtµt 

( )rt rt rt rt

t t t tre e re eλ µ µ µ µ− − − −− = − − + = −ɺ ɺ ɺ  

Putting the LHS and RHS together, we get 

.

t

rt rt rtc

t t

H

k

H
e re e

k

λ

µ µ− − −

∂ = −
∂
∂ = −
∂

ɺ

ɺ

 

Cancelling e-rt gives us the second optimum condition for the current-value specification: 

2')  c
t t

H
r

k
µ µ∂ = −

∂
ɺ . 

 
There is no change in the third condition: the state equation must hold.   
 
Finally, the transversality condition might change by a discount factor, but in many cases 

analogous conditions hold.  For example, if the TC is λT=0, and λT=µTe-rT then it must 

also hold that µT=0. However, for infinite-horizon problems (T→∞) if the transversality 

condition is lim lim 0rt

t t
t t

eλ µ−

→∞ →∞
= = , then a sufficient (though not necessary) condition for 

the transversality condition to be satisfied is that µt is a constant value as t→∞, since in 

this case the discount factor would push rt

te µ−  to zero. 

 
In conclusion, we can use the current value Hamiltonian in a way very similar to the 
normal Hamiltonian, but it is important to use the modified optimality conditions.   
 
In summary, we seek to maximize  

( )
−=

T
rt

dtxkweW
0

,  subject to the state equation ( )txkfk ,,=ɺ . 

We can do this using the current value Hamiltonian, 

( ) ( )txkfxkwH tc ,,, µ+= . 

where the maximum criteria are: 

1')  0=
∂

∂
x

Hc  

2')  tt

t

c r
k

H µµ ɺ−=
∂
∂

 

3')  k
H c ɺ=
∂

∂
µ

. 
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For reasons that we will discuss below, economists tend to use the current-value 
Hamiltonians for discounted optimization problems, sometimes without even using the 
“current-value” qualifier.  

 

If you have discounted problem, use Hc. 

B. An economic interpretation of the current-value Hamiltonian 

As in the standard case, the condition that Hc be maximized over time requires that we 
strike a balance at every point in time between current and future consequences. The only 
difference is that now we are considering this tradeoff in terms of the values at future 
points in time, rather in present value terms. A good way to think about this is by writing 

it as 
( ) ( ), , ,

0c

t

w k x f k x tH

x x x
µ

∂ ∂∂
= + =

∂ ∂ ∂
 or 

( ) ( ), , ,
t

w k x f k x t

x x
µ

∂ ∂
= −

∂ ∂
.  The LHS of this 

expression is the marginal immediate value of a unit of x. On the RHS, -µt is the marginal 

cost of reducing the capital stock and 
( ), ,f k x t

x

∂
∂

 tells us how big of an effect on k that a 

marginal change in x has.  So, you can think of the RHS as the value marginal future cost 
of an increase in the control variable, x.  At the optimum, these must be in balance, 
otherwise the resource manager would be advised to increase or decrease x. 
 
The second condition is a bit trickier, though still easier here than in the present-value 
specification.2  Recall that 2' requires 

cH w f
r

k k k
µ µ µ∂ ∂ ∂= + = −

∂ ∂ ∂
ɺ  

which we will rewrite 

(13) 
w f

r
k k

µ µ µ∂ ∂+ + =
∂ ∂

ɺ . 

The three terms of the LHS of this equation can be thought of as a decomposition of the 
benefits of holding a marginal unit of the capital stock for an instant longer:   

• 
w

k

∂
∂

 indicates the marginal immediate benefit of the capital stock at time t.   

• 
f

k
µ ∂

∂
 is the capital stock’s marginal value product.  That is, 

f

k

∂
∂

 tells us how the 

marginal unit of k contributes to the creation of more k, and this is multiplied by μ the 
value of that marginal unit of k. 

• Finally, µɺ  indicates how the marginal value of the capital is changing over time.  If 

you hold that marginal unit for an instant longer, its value will have changed by µɺ . 

The RHS of (13), rµ , can be thought of as the opportunity cost of holding capital.  As an 

example, suppose that our capital good can be easily transformed into dollars, and we 

 
2 Manseung Han, who took my class in 2002, helped me develop this presentation.  
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discount at the rate r because it is the market interest rate.  Then rµ is the immediate 
opportunity cost of holding capital, since we could sell it and earn interest at the rate r.  

Hence, along the optimal path we will hold our state variable up to the point where its 
marginal value is equal to the marginal opportunity cost.  That sounds familiar, and very 
economically reasonable. 

Why this makes economic sense is most easily seen when reflecting on the first FOC.  
Recall that in that case we had marginal current benefit equal to marginal future costs, 
which makes perfect sense.  But what are those marginal future costs along the optimal 
path? The second FOC helps answer that question.   

There are a couple of other ways to look at (13). First, we could rewrite it as  

w f

k k

r

µ µ
µ

∂ ∂ + + ∂ ∂  =
ɺ

. 

By dividing the LHS by r, this capitalizes the numerator, indicating how much we could 
obtain if we received that benefit over an infinite horizon. The numerator then 

decomposes the marginal value of the capital stock: 
w

k

∂
∂

, the value of the marginal unit in 

terms of its effect on k itself; 
f

k
µ ∂

∂
 the value of increments to k due to the marginal unit 

of k; and the change in the μ itself, µɺ . 

Alternatively, we can look at it by rewriting it as  

w f
r

k k
µ µ µ∂ ∂= − −

∂ ∂
ɺ . 

This tells us about how μ changes along the optimal path. First, assuming that μ>0, there 
is a tendency for it to grow over time at the rate r because of discounting, but it will 

decline over time if k generates immediate benefits, i.e. if 0
w

k

∂ >
∂

, and it will tend to 

decline over time if it gives rise to value benefits through its effect on k itself, i.e. if 

0
f

k
µ ∂ >

∂
. This presentation is closest to the example in section I.D above.  

All of these three interpretations are correct, and, in the right context, any of them may 
help you unravel the economics of a dynamic optimization problem that you might be 
studying.  

C. Summary of the Current-Value Hamiltonian 

The current value formulation is very attractive for economic analysis because current 
values are usually more interesting than discounted values.  For example, in a simple 
economy, the market price of a capital stock will equal the current-value co-state 
variable.  As economists, we are usually more interested in such actual prices than we are 
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in their present value.  Hence, the current-value Hamiltonian is more helpful than the 
present-value variety.   
 
Also, as a practical matter, for analysis it is often the case that the differential equation 

for µ will be autonomous (independent of t) while that for λ will not be.  Hence, the 

dynamics of a system involving µ can be interpreted using phase-diagram and 

steady-state analysis; this does not hold for λ.  
 
One note of caution: we have stated and derived many of the basic results for the present-
value formulation (e.g., transversality conditions).  When you are using the current-value 
formulation, you need to be careful to ensure that everything is modified consistently. 
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