
This document was generated at 10:03 PM, 02/04/24 

Copyright 2024 Richard T. Woodward 
 

 

4. End points and transversality conditions 

AGEC 642 - 2024 

 

Recall from Lecture 3 that a typical optimal control problem is to maximize ( )
0

, ,
T

F t x z dt  

subject to ( )zxtfx ,,=ɺ , the state equation. In that lecture, we stated that if 

( ) ( ) ( ), , , , , , ,H t x z F t x z f t x zλ λ= + , the conditions that characterize the optimum are 
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In this lecture, we focus primarily on condition 4, the transversality condition. On our way to 

deriving the transversality condition, we also provide a somewhat more formal derivation of 

conditions 1-3.  

 

A transversality condition describes what must be satisfied at the end of the time horizon. i.e., 

as we transverse to the world beyond the planning horizon. The nature of the transversality 

condition depends greatly on the statement of the problem. For example, it might be that the 

state variable, x, must equal zero at the terminal time T, i.e., xT=0, or it might be that it must 

be less than some function of t, ( )Tx Tφ≤ . We also consider problems where the ending time 

is flexible or T→∞.  

 

I. Transversality conditions for a variety of ending points  

(Based on Chiang pp. 181-184) 

A. Vertical or free-endpoint problems 

In a vertical end point problem, T is fixed but xT can take on any value. This would be 

appropriate, for example, if you are managing an asset or set of assets over a fixed horizon 

and if you have no restrictions on the condition of the assets when you reach T. Consider the 

marginal value that xT from the perspective of the beginning of the planning horizon when xT 

is free (unconstrained). At time t=0 we can treat xT as an unconstrained choice variable and we 

want to maximize V w.r.t. xT. Hence, it follows that at the optimum
( )

0
T

V

x

∂ ⋅
=

∂
, the shadow 

price of xT must equal zero, giving us our transversality condition, λT =0.  
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We will now confirm this intuition by deriving the transversality condition for this particular 

problem and at the same time giving a more formal presentation of Pontryagin’s maximum 

principle introduced in Lecture 3. 

 

The objective function is  

( )
0

, ,
T

V F t x z dt≡  . 

Now, setting up an equation as a Lagrangian with the state-equation constraint, we have 

( ) ( )( )
0

, , , ,
T

t tL F t x z f t x z x dtλ = + −  ɺ . 

We put the constraint inside the integral because it must hold at every point in time. Note that 

the shadow price variable, λt, is not constant, but instead can vary over the planning horizon, 

possibly taking on a different value a every point in time in the interval 0 to T. Since the state 

equation must be satisfied at each point in time, at the optimum, it follows that 

( )( ), , 0t tf t x z xλ − =ɺ  at each instant t, so that the value of L must equal the value of V. 

Hence, we might write instead  

( ) ( )( )
0

, , , ,
T

t tV F t x z f t x z x dtλ = + −  ɺ  

or 

( ) ( ){ }

( )

0

0

, , , ,

, , ,

T

t t t

T

t t

V F t x z f t x z x dt

V H t x z x dt

λ λ

λ λ

 = + − 

 = − 





ɺ

ɺ

. 

 

It will be useful to reformulate the last term in the integrand, t txλ ɺ , using integration by parts. 

For me, I have to remember the rule, udv vu vdu= −  . If we let uλ =  and x v=  so that 

dv xdt= ɺ  we know that  

[ ]
00 0

0 0
0

.

T TT

t t t t t t

T

t t T T

x dt x x dt

x dt x x

λ λ λ

λ λ λ

− = − +

= + −
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Hence, we can rewrite V as  
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 ( ) 0 0
0

, , ,
T

t t T T
L V H t x z x dt x xλ λ λ λ = = + + −  ɺ  (1). 

Pay attention to equation 1; we will use it repeatedly in these notes and refer to it often. 

 

Derivation of the maximum conditions (Based on Chiang (1992) chapter 7) 
 

Using 1, we can derive the first three conditions of the maximum principal 

which must hold over the interval t∈(0, T).  

 

Assuming an interior solution and twice-differentiability, a necessary condition 

for an optimum is that the first derivatives of choice variables are equal to zero.  
 

First consider our choice variable, zt. At each point in time, it must be that 

0tV z∂ ∂ = . This reduces to 0H z∂ ∂ = , which is the first of the conditions 

stated without proof in Lecture 3.  
 

Second, for all t∈(0,T), xt is also a choice variable in 1 (though clearly a 

constrained one), so it must also hold that 0tV x∂ ∂ = . This reduces to 

0xH λ+ =ɺ  or xH λ= − ɺ , the second of the conditions stated in Lecture 3.  
 

Third, the FOC with respect to λt is more directly derived from the Lagrangian 

before carrying out integration by parts: ( ), , tt
L f t x z xλ∂ ∂ = − ɺ , so this implies 

that ( )0 , , ,t tL x f t x zλ∂ ∂ =  =ɺ  which simply means that the state equation 

must be satisfied. 

 

In the second condition in the box above, we evaluated the values of xt for t∈(0,T), i.e., 

excluding the end points x0 and xT.
1 The initial value, x0, is fixed, so clearly we cannot 

maximize over that. But xT, the value of x at the terminal time, is flexible when considered at 

t=0. If xT  can take on any value, then it must be that the marginal value of a change in xT  

must be equal to zero, i.e., ∂V/∂ xT = 0. Hence, the first-order condition of 1 with respect to xT 

is  0
T

T

V

x
λ∂ = − =

∂
. 

 

The intuitive interpretation of the minus sign on λT  is that it reflects the marginal cost of 

leaving a marginal unit of the stock at time T. Hence if λT>0, we could increase V by 

increasing xT. Setting this FOC equal to zero, we obtain the transversality condition, λT=0. 

 
1 To see why t∈(0,T), consider a discrete time problem in which each time step is divided into 1/∆ pieces:

( ) ( )
0

max ,

T

i i T

i

F x z S x
∆

∆ ∆ +∆
=

+ . In this case, the salvage value S(⋅) is after the choices in the sum. As we take 

the limit as ∆→0, the salvage value is still outside the planning horizon; even as ∆→0 there’s a difference 

between xT and xT+∆.  
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Alternatively, we know that 
T

λ  is the shadow price of the state variable at T, 
T

V

x

∂
∂

. So, to 

some extent, the equation above requires that 
T T

λ λ= − , which only happens when 0
T

λ = .  

 

This confirms our intuition that since we are attempting to maximize V over our planning 

horizon, from the perspective of the beginning of that horizon xT  is a variable to be chosen, it 

must hold that λT, the marginal value of xT, must equal zero. Note that this is the marginal 

value to V, i.e., to the sum of all benefits over time for 0 to T, not the value to the benefit 

function, F(⋅). Although an additional unit may add value if it arrives at time T, i.e., 

( ) 0TF x∂ ⋅ ∂ > , 0
T

V

x

∂ =
∂

 means that the marginal benefit of xT must be balanced by the costs 

necessary to increase xT.  

B. Horizontal Terminal Line  

 
 

In this case, there is no fixed endpoint as in A; the ending state variables must have a given 

level but there is no specific ending time. For example, for example, consider an asset that 

you can use as long as you wish, but at the end of your use, it must be in a certain state. 

Again, we will use equation 1:  

( )[ ] TT

T

tt xxdtxzxtHV λλλλ −++=  00
0

,,, ɺ . 

 

In this case, however, we are not only choosing the path of zt, but also the terminal time, T. To 

understand how we might optimize over T, consider a problem in which the objective function 

is 

 { }( ) ( )
0,

, max , ,
t

T

t
z T

V z T F t x z dt=   (2) 

and T is a choice variable. Among the FOCs for the problem would be ∂V/∂T=0. If ∂V/∂T>0 

we would want to increase the time horizon, and if ∂V/∂T<0 it should be shortened. (Note that 

this is a necessary but not sufficient condition – we will address the sufficient condition when 

we introduce the infinite horizon framework below). Using  Leibniz’s rule, the FOC of (2) 

with respect to T would be ( ), , 0T TF T x z = . 
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Now, apply this to 1. Using  Leibniz’s rule for the integral and the product rule for the last 

term, we get  

( ) ( ), , , 0T T T T T T T T T

V
H T x z x x x

T
λ λ λ λ∂

 = + − + = ∂
ɺ ɺ ɺ . 

 

The second and third terms in this equation cancel and, since we are restricted to have xT 

equal to a specific value, it follows that 0=Txɺ . Hence, the transversality condition is what 

remains, i.e., the first term: ( ), , , 0T T TH T x z λ = . Expanding this can provide a little more 

intuition: ( ) ( ), , , , 0T T T T TF T x z f T x zλ+ =  -- you keep going until the value of your output, 

taking into account current output, F(⋅), plus the benefit (positive or negative) of changes in 

the state variable, ( ), ,λT T Tf T x z , sum to zero. Note importantly that this holds only at t=T. 

C. Fixed Terminal Point (fixed xT and T) 

 
 

In this case, both xT and T are fixed. Such would be the case if you are managing the asset 

and, at the end of a fixed amount of time you have to have the asset in a specified condition. 

A simple case: you rent a car for 3 days and at the end of that time the gas tank has to have 5 

gallons in it. There is nothing complicated about the transversality condition here; it is 

satisfied by the constraints on T and xT , i.e., x3=5. 

 

When added to the other optimum criteria, this transversality equation gives you enough 

equations to solve the system and identify the optimal path. 

D. Terminal Curve 
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In this case the terminal condition is a function, ( )Tx Tϕ= . Substituting this into 1 we get 

1    ( ) ( )0 0
0

, , ,
T

t t TV H t x z x dt x Tλ λ λ λ ϕ = + + −  ɺ . 

Since there is no fixed end time, we optimize over T by taking the derivative with respect to T 

and setting that equal to zero: 

( ) ( ), , , ' 0T T T T T T T T

V
H T x z x x T

T
λ λ λ λ φ∂ = + − − =

∂
ɺ ɺ , 

which can be simplified to the transversality condition, 

( ) ( ) 0',,, =−=
∂
∂

TzxTH
T

V
TTTT φλλ . 

Hence, the transversality condition becomes ( ) ( ), , , 'T T T TH T x z Tλ λ ϕ=  or 

( ) ( ) ( ), , , , 'T T T T T TF T x z f T x z Tλ λ ϕ+ = .  

E. Truncated Vertical Terminal Line  

 
In this case, the terminal time is fixed, but xT can only take on a set of values, e.g., xT ≥x. This 

would hold, for example, in a situation where you are using a stock of inputs to generate a 

valuable output, but at the end of the period you cannot hold a negative balance, xT ≥0.  

 

For such problems there are two possible transversality conditions. If xT>x, then the 

transversality condition λT=0 applies. On the other hand, if the optimal path is to reach the 

constraint on x, then the terminal condition would be xT=x. In general, the Kuhn-Tucker 

specification is what we want. That is, our maximization objective is the same, but we now 

have an inequality constraint, i.e., we are seeking to maximize  

( )[ ] TT

T

tt xxdtxzxtHV λλλλ −++=  00
0

,,, ɺ   s.t. xT≥x. 

The Kuhn-Tucker conditions for the optimum then are: 

λT≤0, xT≥x, and  (xT−x)λT=0, 

where the last of these is the complementary slackness condition of the Kuhn-Tucker 

conditions.  

 

Note that if the constraint were instead, 
Tx x≤ , i.e., there is an upper bound, then the Kuhn-

Tucker conditions would be λT≥0, 
Tx x≤ , and  (xT−x)λT=0. 
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As a practical matter, rather than burying the problem in calculus and algebra, it usually 

works to take an educated guess. If at the end of your planning horizon you would like to 

diminish x if you could, then the constraint will bind, and you can solve the problem assuming 

that xT=x. You can then test, your intuition by ensuring that λT<0.  

 

If, on the other hand, you believe that xT will optimally be greater than x, then solve, the 

problem first using λT=0. If your solution leads to xT≥x, you are done. This algorithm of 

guessing and trying will usually work.  

F. Truncated Horizontal Terminal Line 

 
In this case, the time is flexible up to a point, e.g., T≤Tmax, but the state is fixed at a given 

level, say xT is fixed. Again, there are two possibilities, T=Tmax or T<Tmax. Using the horizontal 

terminal line results from above, the transversality condition takes on a form similar to the 

Kuhn-Tucker conditions above,  

T≤Tmax, H(T, xT, zT,λT)≥0, and (T−Tmax)HT=0. 

II. A word on salvage value 

The problems above have assumed that all benefits and costs accrue during the planning 

horizon. However, for finite horizon problems or horizontal end-point problems, it is often the 

case that there are benefits or costs that are functions of xT at T. For example, owning and 

operating a car is certainly a dynamic problem and there is typically some value (perhaps 

negative) to your vehicle when you are finally finished with it. Similarly, farm production 

problems might be thought of as a dynamic optimization problem in which there are costs 

during the growing season, followed by a salvage value at harvest time.  

 

Values that accrue to the planner outside of the planning horizon are referred to as salvage 

values. The general optimization problem with salvage value becomes  

 

( ) ( )
( )

0

0

max , , ,    s.t.

, ,

 fixed

T

T
z

t

F t x z dt S x T

x f t x z

x

+

=


ɺ  

 

Rewriting equation 1 with the salvage value, we obtain: 
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1'    ( )[ ] ( )TTT

T

tt xTSxxdtxzxtHV ,,,, 00
0

+−++=  λλλλ ɺ . 

 

For the vertical end-point problem we again want to treat xT as a choice variable and take the 

derivative with respect to that variable, in this case yielding  

( ) ( ), ,
0

T T

T T

T T

S T x S T x

x x
λ λ

∂ ∂
− + =  =

∂ ∂
. 

Intuitively, this makes sense: λT is the marginal value of the stock inside the planning horizon 

and 
( ), T

T

S T x

x

∂
∂

 is the marginal value of the stock outside the planning horizon. When these 

are equal it means that these two values have, on the margin, been balanced.   

 

Note that the addition of the salvage value does not affect the Hamiltonian, nor will it affect 

the first 3 of the criteria that must be satisfied.  

 

What would be the transversality condition for a horizontal end-point problem 

with a salvage value? Include it in Equation 1 and figure it out. 

Thinking about salvage value can also help with the intuition for the vertical end-point 

problems. The objective function of a dynamic optimization problem can be written 

 ( ) ( ) ( ), , ,
T

t t t T
t

V x t u z x t dt S x= +   (3) 

where the first term on the RHS indicates the benefits over the planning horizon from t to T, 

and the second term is the benefits that accrue at the end of the planning horizon. The V(xt,t) 

on the LHS is the value of the state xt at time t and we know that since λt is the shadow price 

of the state variable at time t, ( ),t t tV x t xλ = ∂ ∂ . From (3) it is clear that V(xT, T)=S(xT) so that

( ) ( ),
T T

T T

V x T S x

x x

∂ ∂
=

∂ ∂
. Hence, we see that 

( )T

T

T

S x

x
λ

∂
=

∂
. We can also use this to help understand 

the vertical end-point problems considered above; if S(xT)=0, then 

( ) ( ),
0.T T

T

T T

V x T S x

x x
λ

∂ ∂
= = =

∂ ∂
  

III. An important caveat 

Most of the results above will not hold exactly if there are additional constraints on the 

problem or if there is a salvage value. However, you should be able to derive similar 

transversality conditions equation 1 or 1' and similar logic. We will consider questions with 

intratemporal constraints in Lecture 13. 

IV. Infinite horizon problems 

It is frequently the case (I would argue, usually the case) that the true problem of interest has 

an infinite horizon. The optimality conditions for an infinite horizon problem are identical to 

those of a finite horizon problem except for the transversality condition. Hence, in solving the 

problem the most important change is how we deal with the need for the transversality 
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conditions. [Obviously, in infinite horizon problems the mnemonic of transversing to the other side doesn't 

really work because there is no "other side" to which we might transverse.]   

A. Fixed and finite target value for x 

If we have a value of x to which we must arrive, i.e., lim
t

t
x x k∞ →∞

= = , then the problem is 

identical to the horizontal terminal line case considered above. 

B. Flexible xT  

Recall from above that for the finite horizon problem we used equation 1: 

( ) 0 0
0

, , ,
T

t t T TV H t x z x dt x xλ λ λ λ = + + −  ɺ . 

In the infinite horizon case this equation is rewritten: 

( ) 0 0
0

, , , limt t T T
T

V H t x z x dt x xλ λ λ λ
∞

→∞
 = + + −  ɺ  

and, for the problem in which x∞ is free, the condition analogous to the transversality 

condition in the finite horizon case is lim 0T
T

λ
→∞

= .  

Note that if our objective is to maximize the present value of benefits, this means that the 

present value of the marginal value of an additional unit of x must go to zero as t goes to 

infinity. Hence, the current value (at time t) of an additional unit of x must either be finite or 

grow at a rate slower than r so that the discount factor, e-rt, pushes the present value to zero.  

 

In Lecture 5 we will combine the discount factor and the costate variable into one to obtain 

the “current value” costate variable, 
rt

et tµ λ+= . 

 

One way that we frequently present the results of infinite horizon problems is to evaluate the 

equilibrium where 0== xɺɺλ . Using these equations (and evaluating convergence and 

stability via a phase diagram) we can then solve the problem. See the fishery problem in 

Lecture 3. 

V. Summary 

The central idea behind all transversality conditions is that if there is any flexibility at the end 

of the time horizon, then the marginal benefit from taking advantage of that flexibility must 

be zero at the optimum, and using equation 1 is the key here. You can apply this general 

principle to problems with more than one variable, to problems with constraints, and, as we 

have seen, to problems with a salvage value.  

VI. Reading for next class 

Dorfman, Robert. 1969. An Economic Interpretation of Optimal Control Theory. American 

Economic Review 59(5):817-31.  
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