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2. The basics of differential equations1 
AGEC 642 – Fall 2024 

I. What is a differential equation? 

A differential equation is an equation that involves a derivative of a function. In our 
applications, typically the equation will define a function that is equal to the derivative 
with respect to time, e.g., 

 

( ) ( ), ,
x t

f x z t
t

∂
=

∂ . 

The LHS of this equation will frequently be written ( ),  or just .
t

x t x xɺ ɺ ɺ    

Note that differential equations are used when time is measured continuously. The term 
difference equation is used for the discrete-time analog. We can see the relationship 

between a difference equation by considering a situation in which ( )1 ,
t t t t

x x f x z+ = + , that 

is, ( ),
t t

f x z  is a function that tells us how much x changes from one period to the next. 

Now consider a time step of ∆<1. We can now write  

 ( ),
t t t t

x x f x z+∆ = + ∆ ⋅ ,  (1) 

i.e., ( ),
t t

f x z  is the rate of change in x per period, but since ∆ is not a full time step, the 

change from t to t+∆ is only ( ),
t t

f x z∆ ⋅ .  Subtracting xt from both sides of and dividing 

by ∆ we obtain  
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Since ∆ is a change in time, we can now take the limit as ∆ approaches zero to obtain the 
partial derivative of x with respect to time: 
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Since discrete-time processes are often more intuitive, it will sometimes be helpful to 
replicate this derivation of the partial derivative. 
 
Part of the difficulty (i.e., hassle) of optimal control is that the first order conditions yield 
differential equations, which we have to integrate to obtain a closed form solution to the 
problem. Hence, to solve optimal control problems we have to understand differential 
equations and be able to solve them.  
 

Notation: We will frequently write x(t), xt or just x, all meaning the same thing. Mostly we 
will use xt for completeness and concision. The correct meaning should be understandable 
in context; if not, ask.  

 

Example 1: Suppose xt is the distance traveled up to time t. The rate of change in distance 
with respect to time is txɺ , and the units of this measurements are distance per unit of time, 

such as miles per hour or centimeters per second. If you can choose your speed at any 

 
1 These notes are based primarily on chapter 2 of Léonard and Van Long. 



  2- 2

instant, then your speed is a choice variable, which we will refer to as zt. Hence, the 
differential equation describing this relationship is t tx z=ɺ  and the distance you’ve traveled 

after k hours is 0

0 0

k k

k t tx x x dt z dt− = = ɺ . If your speed is constant, i.e., zt=z, then we can 

easily solve the differential equation 0 0

0

k

k tx z dt x k z x= + = ⋅ + .  If x0=0, then xk=k⋅z. So, if 

k=0.5 hours and z=50 miles per hour, then xk=25 miles. Another option would be to travel 

50 miles per hour for 15 minutes and 70 miles per hour for 15 minutes, which would give 

us 
0.5 0.25 0.5

0.5

0 0 0.25

50 70 30tx z dt dt dt= = + =   .  

More generally, your speed can fluctuate continuously over the period, in which case zt and 
xt might look something like this. 

 

 
It is important to recognize that when integrating over time, the integrand (i.e., what is 
inside the integral, z in the case above) is always a rate of change per unit of time as 
defined by how we measure t. So, for example, if we changed our units from miles per 
hour to miles per minute, then the value of z would change to zt'=zt/60, and we would 

integrate not from 0 to k but from 0 to 60×k. In our applications, instead of putting speed in 
the integral, we will often put a utility function. Hence, the correct interpretation of the 
utility function is also a rate, the rate at which utility is being created per period.2 
 

Example 2: Suppose an investment of x0 dollars at time t=0 is put in an account so that the 

balance grows continuously at the rate of interest r, i.e., 0
rt

tx x e= .  

 
2 An interesting side note: The psychological literature has found evidence that people do not seek to 
maximize the integral of utility over time. The best-selling book, Thinking Fast and Slow by Daniel 
Kahneman (winner of the Nobel Prize in Economics) talks a lot about how people seem to pay more attention 
the peak and end points in an experience. If this is right, then the discounted utility model of economists may 
be a very poor descriptive model of behavior. Nonetheless, it is what economists normally use and there are 
good economic and theoretical reasons why discounted utility is a “rational” objective. 
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In this case the differential equation is  

0
0

rt
rtt

t t

x x e
x rx e rx

dt dt

∂ ∂= = = =ɺ , which implies that t

t

x
r

x
=

ɺ
.  

 
Often, however, we are given the differential equation itself, in this case  
 x rx=ɺ ,  
and we need to obtain xt, and we do that by integrating.  

An easy way to integrate x rx=ɺ  is to use the fact that we can write this as .
x

r
x

=
ɺ

   

We want to solve for x as a function of other stuff, so we start by integrating both sides,  

 
t t

x
dt rdt

x
= 

ɺ
. (2)  

From the chain rule we know that 
( )ln 1t t
x x x

t x t x

∂ ∂= =
∂ ∂

ɺ
, so the LHS can be easily 

integrated ( )ln t

t

x
dt x

x
=

ɺ
 plus a constant of integration. The integral of r on the RHS is 

just r⋅t. So (2) can be rewritten 

 ( )ln
t

x rt K= + ,  

where K is the constant of integration. Note that since the constant of integration is 
unknown on both the left and the right, they can be combined to obtain a single constant, 
K.  

Taking the exp of both sides, we obtain rt K K rt rt

t
x e e e Ae

+= = = , where K
A e=  has an 

unknown value.  
 
If we know the value of x at some point in time, e.g., if 0x x=  (i.e., we have x  dollars in 

the bank at time t=0) then, substituting for t=0, we can solve for A, 

 
0r

x Ae A
⋅= = . 

Hence, the specific solution is  rt

tx xe= .  

 
This example demonstrates the standard process of solving differential equations: first find 
the general solution, then use prior information about value(s) at point(s) in time to get the 
specific solution. (What would the answer look like if instead of knowing, x0 we knew that 

sx K=  for s>0?) 

II. Normal differential equations  

The equation x rx=ɺ  is a first-order differential equation (FODE), first-order in the sense 

that txɺ  is the first derivative of xt with respect to t. In general, an ordinary mth order 

differential equation is an equation of the form  

( ) ( ) ( ) ( )( )txxxxxgx
t

x mmm

m

m

,,,,...,, 221
ɺ

−−=≡
∂
∂

. 
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For example, a FODE would have txɺ  on the LHS and xt and t on the RHS. A second order 

differential equation would have 2 2
tx x t= ∂ ∂ɺɺ  on the LHS could have and 

t
xɺ , xt and t on 

the RHS. 
If you have the mth order equation, in principle you recover an equation for xt as a function 
of t by integrating m times. Solving the mth order differential equation will lead to an m−1th 

order differential equation, and solving that will lead to an m−2th order differential 
equation, and so on.  
 
Each time you integrate, however, you end up with a new constant of integration like K 
above. Hence, to reach a particular solution to an mth order equations you will need m 
“boundary conditions” (i.e., the exact value of x, ,  x xɺ ɺɺ , or some other derivative up to 

( )1m
x

−
 at some t. Despite the name, these values do not need to be known at any boundary; 

the value at any point in time will do, though usually we have the value at the beginning or 
end of the time horizon. 

III. The units and meaning of a differential equation 

At the risk of being repetitive, let’s look again at the real-world meaning of differential 
equations. If xt is a state variable, then it must have units in which it is measured. For 
example, xt might be tons, gallons, dollars, miles traveled, etc. Similarly, the units for the 
time step, t∂ , must also be clearly defined; it could be seconds, hours, years, etc.    
 
For example, if you measure time in hours, and xt is a distance measured in miles, then the 

units for t tx t x∂ ∂ = ɺ  is a value in miles-per-hour. Note that this is not the number of miles 

that are traveled in one hour, because the vehicle’s speed could change continuously over 
the hour, and you may not drive for a full hour. Rather, it is an instantaneous measure of 
speed, and txɺ  is equal to the distance that the vehicle would travel in one hour if the speed 

were held constant for that hour. The integral 
1

0

tx t∂ ɺ  would be the number of miles actually 

traveled in one hour. There is also intuitive meaning in  the second derivative, 
2 2

t t t
x t x t x∂ ∂ = ∂ ∂ =ɺ ɺɺ ; this is the rate of change in txɺ , i.e., the rate of acceleration. Note 

that if we measured the time step t is seconds or years the value of txɺ  would change 

accordingly, even though the speed of the vehicle has not changed. 
 
It is important to have a clear understanding of what ,  and t t tx x xɺ ɺɺ  mean intuitively. If xt is a 

positive number, the quantity of grain in your inventory for example, and txɺ >0, then your 

inventory is growing and if txɺ <0, then your inventory is falling. If txɺ >0 but 0tx <ɺɺ  , then 

the inventory is still growing, but the speed at which it is growing is slowing down. If 

txɺ <0 but 0tx >ɺɺ  , then the inventory is falling , but the speed at which it is falling is 

slowing down. The figure below should be helpful in thinking through these meanings.  
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IV. Equilibrium 

An equilibrium in a dynamic system is a point at which all the variables do not change 
over time. (Students often confuse equilibrium with optimum; be sure you understand the 
difference.) 
If ( )t tx g x=ɺ  and ( ) 0=xg  then x  is an equilibrium value of x. 

• What's the equilibrium for the FODE baxx +=ɺ ? 

• What's the equilibrium for the FODE rxx =ɺ ?   

• What's the equilibrium for the FODE cbxaxx ++= 2
ɺ ? 

• What's the equilibrium if 1 2 13x x x= −ɺ  and 2 14x x= +ɺ ? 

V. Linear first-order differential equations (FODE) 

Linear first-order differential equations are the simplest form of differential equations, and 
the type we will be using most often. A linear FODE is an equation of the form 

t t
x ax b= +ɺ . 

 
It is instructive to walk through one way to solve such equations. First, we multiply both 
sides by e-at and reorganize: 

at at at

t te x e ax e b
− − −− =ɺ .  

Notice that the LHS of this equation is the time-derivative of e−atxt using the product rule 

( )at at at

t t t
e x t ae x e x− − −∂ ∂ = − + ɺ , so ( ) 1

at at at

t t te x e ax dt e x C
− − −− = + ɺ , where C1 is a constant 

of integration. The RHS can easily be integrated, 2
at at b

e b dt e C
a

− −= +
− .  
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Noting that only one constant of integration, C, can be identified, integrating the LHS and 

the RHS we obtain 
1at at

te x e b C
a

− −= ⋅ +
−

,  or , canceling at
e

− , 

 at
t Ce

a

b
x +−= . (3)  

 
It is always a good idea to check your integration. In this case, taking the derivative of (3) 

with respect to t we obtain att
t

x
x aCe

t

∂ = =
∂

ɺ . But, using (3) we know that at

t

b
Ce x

a
= + , so 

we can write the derivative t t

b
x a x

a

 = +  
ɺ , or t tx ax b= +ɺ .  

Solving another relatively simple FODE: 

• Suppose we have a FODE  that can be written in the form  

( ) ( ).
t t

x h x g t=ɺ   

If we define ( ) ( )1
t t

f x h x= , then our FODE can be rewritten ( ) ( )t t
f x x g t=ɺ . 

Then both sides can be integrated w.r.t. t to obtain  

( )t

x
f x

t

∂
∂

dt ( )

( ) ( ) .
t t

g t dt

f x dx g t dt

=

=

 

 
 

So, the LHS involves integration of xt while the RHS involves integration over t. 

 
If you have to deal with more complicated differential equations, there are a number of 
good computer programs that can help. Given the sophisticated software available today 
(e.g., Matlab, Maple, & Mathematica), solving complicated differential equations entirely 
by hand is almost like doing OLS with a hand calculator. We will go over the use of such 
software in the computer lab (and see the Matlab tutorial that accompanies these notes). 

VI. Autonomous ODEs 

A differential equation is said to be autonomous if it does not depend on t. More formally, 
according to Weisstein’s MathWorld, “For an autonomous ODE, the solution is 
independent of the time at which the initial conditions are applied.” In economics, we 
frequently seek to specify our problems to be autonomous since we typically feel that 
economic changes are a function of the state of the system and the choices made (and 
perhaps random shocks); we usually do not think that the calendar date itself is driving 
economic outcomes. For example, think of climate change. While we may use a time trend 
in the analysis, this is a proxy for the accumulation of greenhouse gases in the atmosphere 
and the greenhouse gases would be a state variable.  
 
As an example of a differential equation that is not autonomous, consider t tx at bx= +ɺ ; the 

rate of change in x depends not only on the value of x but the time, t. On the other hand, 
the function t t tx y bx= +ɺ  is autonomous, as long as yt is not itself  a function of time.  
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VII. Systems of differential equations and phase diagrams 

Frequently in OC we have to deal with more than one differential equation at a time. In the 
simplest OC problems, for example, we have a differential equation for the state variable, 

txɺ , and another for the co-state variable, tλɺ . In other cases, we might have two state 

variables, e.g., two interdependent fish stocks or the market shares of two competing firms. 
 
Without solving explicitly for the entire time path of the two variables, we can learn quite a 
lot about the nature of a two-variable system using what is called a phase diagram. A 
phase diagram presents the equilibria, stability and dynamic evolution of a system. Phase 
diagrams are appropriate only if you have two autonomous differential equations. An 
example of a phase diagram is shown below. We will discuss the steps to develop a phase 
diagram toward the end of these notes. 

 
The type of system portrayed here is known as a saddle point or saddle path and is 
frequently encountered in economic models. The solid lines are called isoclines, indicating 
that along these lines there is no direct pressure on one of the variables to change, 

0i
x

t
∂ =∂ . The equilibrium occurs where the isoclines cross – where both variables do not 

change. The dashed lines heading toward the equilibrium are called separatrices since they 
separate the space in that no trajectory ever crosses these lines; if a path reaches a 
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separatrix it never leaves it. The dotted lines in this figure are representative trajectories 
that are not on the separatrices. Note that when a trajectory crosses an isocline its slope is 
consistent with the isocline. For example, the bottom right trajectory is horizontal at the 

point where it crosses the 2 0x =ɺ  isocline because at that point x2 is neither increasing nor 

decreasing.3 In a saddle point system, only points on the separatrices will lead to the 
equilibrium; if a starting point is not on one of these lines it will permanently diverge from 
the equilibrium. 
 

VIII. Homogeneous and non-homogeneous systems 

Consider first a system of linear differential equations  

 
1 11 1 12 2 1

2 21 1 22 2 2

x a x a x b

x a x a x b

= + −
= + −
ɺ

ɺ
  

which can be written  

 

1 1 111 12

21 222 2 2

x x ba a

a ax x b

      
= −      
      

ɺ

ɺ
 

or, using matrix notation,  

 
⋅ = −x Ax b . (4) 

Using a phase diagram, the equilibrium of this system could easily be identified as the 
point where 0=xɺ  or =Ax b . We can, therefore, find the equilibrium values, x , by 

inversion, 1−=x A b .  
 
It is also frequently interesting to know how variables behave around the equilibrium. For 
example, do x1 and x2 tend toward the equilibrium, or away from it? It turns out that except 

in a special case (see L&VL p. 101), the dynamics of the system in 4 will be identical to 
the dynamics of the related homogeneous system in which the b is dropped: 
 ⋅ =x Ax . (5) 
The only difference between the system defined by 5 and the system defined by 4 is that 
the equilibrium relocated from A-1b to the origin. A system of differential equations in 
which the equilibrium is at the origin is called homogeneous. 

IX. Analysis of the nature of the equilibria in systems of differential equations 

The nature of the equilibrium of a system of differential equation can be determined by 
looking at the Eigen values of the system.  
 
You have probably seen Eigen values before. You’ll recall that the first step in identifying 
the Eigen values is to “guess” the solution to the homogenous differential equation system 

 
3 When talking about a single variable, xt above, I have tried to be careful to retain the t subscript to remind 

us that , , t t tx x xɺ ɺɺ  etc., all change over time. When talking about systems with multiple state variables, the 

time subscript is suppressed, but do not forget that to be complete we would write 1 2 and t tx x  to emphasize 

that these too will also be changing over time. 
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takes a form analogous to the scalar case discussed above.4  That is, we could “guess” that 
the solution will look something like  

 t
e

λ=x a ,   (6) 

where a is a vector of constants, not all zero. Taking the time derivative of this function we 
obtain, 

 t
e

λλ⋅ =x a .  (7) 
Setting the RHSs of 5 and 7 equal, we get 

tt
ee

λλλ AaAxa == .  

Canceling eλt, we get  
λa=Aa or  
[A−λI]a=0.  
or  

111 1 12

21 22 2 2

0
aa a

a a a

λ
λ

−   
=  −   

 

For nontrivial solutions, i.e., a≠0, this requires that [A−λI] be singular, i.e., |A−λI|=0.5 A 
value λ that satisfies this is called an Eigen value or a characteristic root.  
 
For a 2×2 matrix, solving the equation where |A−λI| is equal to 

( )( )11 1 22 2 21 12 0a a a aλ λ− − − = . This is a nonlinear equation, quadratic if λ1=λ2=λ. For any 

real 2×2 matrix A, the Eigen values form part of a matrix B such that there exists a real 
matrix T such that T−1AT=B. B can take one of four forms,  

( ) ( )

( ) ( )

1

2

0 0
,

0 0

0
,

1

a b

c d

λ λ
λ λ

λ α β
λ β α

   
= =   

  

   
= =   −   

B B

B B

 

where λ1 and λ2 are distinct real roots, λ is a double root and α±iβ  are conjugate complex 

roots where 1i = − . Depending on the roots, the stability of the system falls into six 
categories (see Léonard  and van Long p. 98) and these determine whether the system is 
stable (converging towards the equilibrium) or unstable.  
 
Some intuition about stability of the homogenous system can be found by looking at 6. If λ 
is negative, then as t increases x will approach zero, which is the equilibrium of the 
homogeneous system. If λ is positive, then x will grow as t increases, moving away from 
the equilibrium. If λ=[λ1, λ2], and one is greater than zero and the other is less than zero, 

things are likely to be more complicated.  
 

 
4 This section, like almost all of this lecture, is based very closely on chapter 2 of Leonard & Van Long. A 
student in the past has questioned this section. If you too question this, I would welcome a clarification 
and/or correction of the derivation. 
5 The notation |A−λI| refers to the determinant of the matrix A−λI, where I is an identity matrix. 
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You can calculate these Eigen values by hand by solving the equation |A−λI|=0, or you can 
use a software package to solve for the Eigen values. The following sequence of Matlab 
commands will calculate Eigen values of a 2×2 matrix. 
 

EDU>> syms A B a b c d  

EDU>> A=[a,b;c,d]  
a b

A
c d

 
=  
 

 

EDU>> B=eig(A) 
With the result being  

B = 
[ 1/2*a+1/2*d+1/2*(a^2-2*a*d+d^2+4*b*c)^(1/2)] 
[ 1/2*a+1/2*d-1/2*(a^2-2*a*d+d^2+4*b*c)^(1/2)] 

 

Some simple rules that establish stability of a system of differential equations 

Fortunately, there are some simple rules that are very helpful in quickly analyzing the 
dynamics of many systems like 5. As noted by L&VL (p. 100): 

i. Such a system has a stable equilibrium if and only if its characteristic roots have 
negative real parts. 

ii. A saddle point occurs if and only if the determinant of A is negative. 
iii. A sufficient condition for instability is that the trace of A>0. 

 
Note that conditions ii and iii can occur simultaneously. For all but case d above, the 
determinant of A, |A|=λ1⋅λ2 and tr A=λ1+λ2, so conditions ii and iii can be evaluated with 

the roots, or with the original A matrix. 
 

Examples: Consider the following possible A matrices for a 2-variable system. Using 
conditions ii and iii, what do we know about each system? 

 

2 3 3

4 1 2 5 2 1 1 2

0 3 2 1 2 5 5 2

saddle:

stable:

A A A A
−       

= = = =       − −       

 

Nonlinear systems 

Of course, the analysis that we have developed here starting with 4 and 5 is only directly 
relevant to linear systems. However, it can be shown that if a linear approximation of the 
system is stable (unstable), then the true system is also stable (unstable) in the 
neighborhood of the equilibrium. We present a nonlinear example below. 

A step-by-step approach to analyzing systems of differential equations  

Here are steps that I use to analyze the dynamics of a system of two differential equations.  

There are a variety of approaches to drawing phase diagrams. I find these steps to be quite 
intuitive and they help me avoid careless mistakes.  
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1. Find a reduced form for the expressions 1 2 and x xɺ ɺ  in terms of only 1 2,x x  and 

exogenous parameters. All other variables must be eliminated from the equations or 
assumed to be constant. 

2. Solve for the inequalities 0 and 0 21 ≥≥ xx ɺɺ . This should leave you with two 

inequalities in terms of x1 and x2 that, if satisfied, mean that 0 and 0 21 ≥≥ xx ɺɺ . 

3. Find the equilibria: the values of x1 and x2 such that 1 2 0x x= =ɺ ɺ . 

4. Graph the isoclines, i.e., the functions 0 and 0 21 == xx ɺɺ  in the (x1, x2) plane. 

5. Using the inequalities found in 2, determine the trajectories for x1 and x2 on either side 

of the isoclines. That is, on which side of the isoclines is each variable is increasing 

( 1 20 and 0x x> >ɺ ɺ ) and where are they decreasing ( 1 20 and 0x x< <ɺ ɺ ).  

Hint: it is easiest if you carry out steps 4 and 5 separately for each isocline first before 
putting the two together. 

6. Take a linear approximation of the system’s dynamics in the neighborhood of each 
equilibrium and express it as a matrix of the form ⋅ =x Ax . 

7. Check to see if the easy conditions from L&VL (ii & iii above) are satisfied. Then, if 
necessary, find the Eigen values of this linear system of equations and, following 
Léonard and Van Long p. 986, evaluate the system’s stability. 

Example 

Consider the following example from Léonard and Van Long (p. 102): 
x1 is capital stock and x2 is the stock of pollution. Capital growth is assumed to be a 

constant fraction, s, of output, x1
α with α<1, and depreciates at the rate δ, so that the rate of 

change in capital can be written 

1 1 1x sx x
α δ= −ɺ .  

The stock of pollution, x2, grows as a function of capital x1
β (β>1) but decays at the rate 

γ<1,  2 1 2x x x
β γ= −ɺ . 

 

Step 1: 1 1 1x sx x
α δ= −ɺ  and 2 1 2x x x

β γ= −ɺ  

Step 2: Solve for 1 20 and 0x x≥ ≥ɺ ɺ  and identify associated spaces in the phase diagram. 

1 0x ≥ɺ   

( ) ( )

1 1 1

1 1

1
1

1 1

1

0 0 1

2

3

4

x sx x

sx x

x s

x s

α

α

α

α

δ
δ
δ

δ

−

−

≥  − ≥

≥

≥

≤

ɺ

 

2 0x ≥ɺ   

2 1 2

1 2

2 1

0 0x x x

x x

x x

β

β

β

γ
γ

γ

≥  − ≥

≥

≤

ɺ

 

 Note: since x1>0 by assumption, the inequality does not flip when dividing by x1 at 

step 3, while since α−1<0, the inequality flips from 3 to 4.  

 
6 Available in the class Google Drive folder. 



  2- 12

   

Step 3:  Identify the equilibrium, 

1
1

1
1 1 1 1 10 0x sx x x x

s s

α
α α δ δδ

−
−  = ⇔ − =  =  =  

 
ɺ  

 and 

2 2 10 if x x x
β γ= =ɺ . 

Substituting in the value for x1 yields ( ) ( )1

2

1
x s

β αδ
γ

−=  so that the equilibrium lies 

at the point ( ) ( ) ( )
1

1
1

1 2

1
ˆ ˆ, ,x x s

s

α β αδ δ
γ

− −   =     

. 

Step 4:  Graph the isoclines, 1 20 and 0x x= =ɺ ɺ ( ) ( )1 1

1x s
αδ −=  and 2 1x x

β γ= . (See below) 

 
Step 5:  Identify the regions where x1 and x2 are increasing and decreasing using the results 

from the first step: ( ) ( )1 1

1 10x x s
αδ −≥  ≤ɺ   and 2 2 10x x x

β γ≥  ≤ɺ . This means 

that x1 is increasing to the left of its isocline, and x2 is increasing below its isocline.  
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 Putting the two together yields 

 
Step 6:  Find a linear approximation of the dynamics of the system. To find a first-order 

Taylor-series approximation of 1xɺ , recall that if ( )1 1 2,x f x x=ɺ , then in the neighborhood 

of the equilibrium, ( )1 2
ˆ ˆ,x x ,  ( ) ( ) ( ) ( ) ( )1 2 1 2

1 1 2 1 1 2 2

1 2

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ,

f x x f x x
x f x x x x x x

x x

∂ ∂
≈ + − + −

∂ ∂
ɺ . 

Hence, in this case, when 1 1 1x sx x
α δ= −ɺ  and 2 1 2x x x

β γ= −ɺ , 

( ) ( )
( ) ( )

1
1 1 1 1 1 1

1
2 1 2 1 1 1 2 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ .

x sx x sx x x

x x x x x x x x

α α

β β

δ α δ

γ β γ

−

−

≈ − + − −

≈ − + − − −

ɺ

ɺ

 

We know that in most cases in the neighborhood of the equilibrium, the dynamics will be 
the same as that of the homogeneous system of equations 

( )( )
( ) ( )

1

1 1 1 1

1

2 1 1 1 2 2

ˆ ˆ

ˆ ˆ ˆ

x sx x x

x x x x x x

α

β

α δ

β γ

−

−

= − −

= − − −

ɺ

ɺ

   or   
( )1

11 1 1

1
2 2 21

ˆ ˆ0

ˆˆ

sxx x x

x x xx

α

β

α δ

β γ

−

−

 − −   
=     −−     

ɺ

ɺ
. 

 

Step 7:  Solving for the Eigen values of the matrix , yields λ2= −γ, and 

( )1

1 1̂sx
αλ α δ−= − . Plugging in the equilibrium value of ( ) ( )1 1

1̂x s
αδ −= , this simplifies to 

( )1 1λ δ α= − . Since λ1 and λ2 are both negative, this implies that we fall in case b, (with 

opposite arrows) so that the equilibrium is globally stable in the neighborhood. 
 
Thought question: What would happen if production were adversely affected by pollution, 
i.e., if output took the form x1

α/τ x2? 

Separatrices 

As noted above, in some models there exists an important line called a separatrix. These 
are important economically for they can help us understand how state variables will change 
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over time as they approach an equilibrium or otherwise change over time. Karp (lecture 
notes) defines a separatrix as “a line in the phase space that trajectories never cross.”  The 
reason this happens is that the slope of a separatrix is the same as the slope of the 
trajectory. That is, along the separatrix, in the x1, x2 plane the separatrix is the set of points 

along which 
2

1

2

1

x

x

x

x

ɺ

ɺ
=

∂
∂

.  

How do we find the separatrix?  Recalling that the homogeneous system is set so that the 
equilibrium is at the origin, this means that we're looking for a function of the form x2=K x1 

so that ∂x2/∂ x1=K.   We then solve the equation K
x

x =
2

1

ɺ

ɺ
 by simply plugging in the two 

state equations and solving. In linear systems there are two separatrices.  
In nonlinear equations the same basic principle would hold, but the equation would be non-
linear (and no doubt more difficult). 

X. Reading for next lecture: 

Léonard & Van Long pp. 127-151 
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