Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig & Bruce A. McCarl

Department of Agricultural Economics Texas A&M University

- Overview of CGE
- An Introduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models & Calibration
- Incorporating a trade & a basic CGE application
- Evaluating impacts of policy changes and casting nested functions & a trade in GAMS
- Mixed Complementary Problems (MCP)

- Discussions on technical matters on modeling that have not been discussed in the class.
 - Deriving welfare impacts of policy changes
 - Building nested functions in GAMS
 - Extending a closed economy to a small open economy in GAMS
- CGE application of Manne & Richels

Evaluating impacts of policy changes

Evaluating impacts of policy changes

There are several approaches to evaluate impacts of policy changes; however, most of the CGE literature on the effects of policy changes focus on welfare measures:

- 1. Compensating Variation (CV)
- 2. Equivalent Variation (EV)

Compensating Variation:

How much money is necessary to compensate someone for price changes?

 $CV = E(U^{1},P^{1}) - E(U^{0},P^{1}) \implies CV = [(U^{1} - U^{0})/U^{1}] * Y^{1}$

STEPS to calculate CV:

1. Calculate a new utility level

$$U = \sum_{j} \left[\left(\alpha_{j} \right)^{j/\sigma} \left(X_{j} \right)^{(\sigma-1)/\sigma} \right]^{\sigma/(\sigma-1)}$$

2. Calculate a new income level $Y^{1} = W_{L}^{1}\overline{L}_{h} + W_{K}^{1}\overline{K}_{h} + Transfers$

3. Calculate a utility difference

Equivalent Variation:

How much money is a particular change equivalent to?

 $EV = E(U^{1},P^{0}) - E(U^{0},P^{0}) \implies EV = [(U^{1} - U^{0})/U^{0}] * Y^{0}$

STEPS to calculate EV:

1. Calculate a new utility level

$$U = \sum_{j} \left[\left(\alpha_{j} \right)^{j/\sigma} \left(X_{j} \right)^{(\sigma-1)/\sigma} \right]^{\sigma/(\sigma-1)}$$

2. Calculate a utility difference

An alternative to evaluating impacts of policy changes is **price and quantity measures**. These measures involve developing price and quantity indexes which can be used to describe how large adjustments are between a base scenario and an alternative scenario.

The simplest price and quantity measures are:

- 1. Laspeyres price index
- 2. Laspeyres quantity index
- 3. Paasche price index
- 4. Paasche quantity index

Price & quantity measures

The Laspeyres price index:
$$L^P = \sum_j P_j^1 X_j^0 / \sum_j P_j^0 X_j^0$$

shows the ratio between the aggregate value of all commodities at prices in the new equilibrium but quantities in the old equilibrium and the aggregate value of all commodities at the old equilibrium prices and quantities.

The Laspeyres quantity index: $L^{\mathcal{L}}$

$$P^{2} = \sum_{j} P^{0}_{j} X^{1}_{j} / \sum_{j} P^{0}_{j} X^{0}_{j}$$

9

shows the ratio between the aggregate value of all commodities at quantity in the new equilibrium but prices in the old equilibrium and the aggregate value of all commodities at the old equilibrium prices and quantities.

Note that: This price index is similar to EV where we compare the aggregate value of all goods with the old equilibrium value of all goods.

P's are prices and X's are quantity. Subscripts '1' and '0' refer to a new and old equilibriums, respectively.

The Paasche price index:
$$P^P = \sum_j P_j^1 X_j^1 / \sum_j P_j^0 X_j^1$$

shows the ratio between the aggregate value of all commodities considered at prices and quantities in the new equilibrium and the aggregate value of all commodities at the new equilibrium quantities but prices in the old equilibrium.

The Paasche quantity index:
$$P^Q = \sum_j P_j^1 X_j^1 / \sum_j P_j^1 X_j^0$$

shows the ratio between the aggregate value of all commodities considered at prices and quantities in the new equilibrium and the aggregate value of all commodities at prices in the new equilibrium but quantities in the old equilibrium.

Note that: This price index is similar to CV where we compare the aggregate value of all goods with the new equilibrium value of all goods.

Suppose we want to put nested functions in GAMS.

Recall: With the use of nested functions, a system allows substitution in the model

Assumptions:

- 1. Leontief technology using INT and VA at a top level
- Cobb Douglas technology using L and K at a bottom level
- 3. Non-nested CES utility function

VARIABLE

Total government tax revenues ;			
Factor price			
Factor use by a producing sector			
Commodity price			
Commodity demand by households			
Production quantity levels			
Household income			
Intermedite inputs quantity			
Intermedite inputs price			
Value-added quantity			

,

EQUATIONS

FactorMkt(AllSets)	Factor market balances			
FactorDem(AllSets,AllSets1)	Factor demand by a sector			
CommodMkt(AllSets)	Commodity market balance			
CommodDem(AllSets,AllSets1)	Commodity Demand by Households			
Profit(AllSets)	Zero profit condition			
Income (AllSets)	Household budget constraint			
GovBal	Government budget constraint			
GovBal QintAEq(AllSets,AllSets1)	Government budget constraint Intermedite inputs quantity equation			
GovBal QintAEq(AllSets,AllSets1) PIntAEq(AllSets,AllSets1)	Government budget constraint Intermedite inputs quantity equation Intermedite price equation			
GovBal QintAEq(AllSets,AllSets1) PIntAEq(AllSets,AllSets1) CDQVAEq(AllSets)	Government budget constraint Intermedite inputs quantity equation Intermedite price equation Value-added quantity equation			

;

Building nested functions in GAMS – Modifications on VA

Steps:

- 1. Define quantities of value-added (QVA)
- 2. Define prices of VA
- 3. Define factor demands used in producing VA

$$QVA_j = A_j K_j^{\alpha} L_j^{1-\alpha} \longrightarrow QVA_j = A_j \prod_f F_{fj}^{\alpha_{fj}}$$

CDQVAEq(Sector)..

QValAdd(Sector)

=E= BigA(Sector)

*(PROD(Factor,FactorQuan(Factor,Sector)**AlphaCD(Factor,Sector)));

Building nested functions in GAMS – Modifications on VA

Prices of VA are derived from the relationship between revenues and costs of producing final goods where revenue (PxQ) is exhausted by payments for VA and INT inputs.

```
PVAEq(Sector)..
ComPrice(Sector)* Production(Sector)
=G=
PVaIAdd(Sector)*QVaIAdd(Sector)
+ SUM(Activity,PIntA(Activity,Sector) * QIntA(Activity,Sector)
$YesQIntA(Activity,Sector) ) ;
```

PARAMETER YesQIntA(AllSets,AllSets1)

Yes there are intermediate inputs;

YesQIntA(Activity,Sector)	=NO;
YesQIntA("Food","NonFood")	= YES;
YesQIntA("NonFood","Food")	= YES;

Building nested functions in GAMS – Modifications on VA

Factor demand :
$$F_{fj} = \frac{QVA_j}{A_j} \left(\frac{\alpha_{fj} W_{f'}(\mathbf{l} + t_{f'})}{\alpha_{f'_j} W_f(\mathbf{l} + t_f)} \right)^{\alpha_{f'_j}}$$

```
FactorDem(Factor,Sector)..
 FactorQuan(Factor,Sector)
 =F=
 (QValAdd(Sector) / BigA(Sector))
  * SUM(MapFact(Factor,Factor1),
           ( ( AlphaCD(Factor, Sector)
                *(FactorPrice(Factor1)*(1 + TaxFactor(Factor1))))
                   / (AlphaCD(Factor1,Sector))
                      * (FactorPrice(Factor)*(1 +TaxFactor(Factor))) )
           )**(AlphaCD(Factor1,Sector))
```

Building nested functions in GAMS – Modifications on INT

Steps:

- 1. Define quantities of intermediate input (QINT)
- 2. Define prices of INT

 $QINTA_{j1j} = a_{j1j}Q_j$ where $a_{j1,j}$ is I-O coefficients, using j1 to produce j

```
QIntAEq(Sector,Activity)..
```

```
QIntA(Sector,Activity)
```

=E=

AlphaLeon(Sector, Activity) * Production(Activity) ;

AlphaLeon(Sector,Activity)

= SAM(Sector,Activity) /SAM("Total",Activity);

Building nested functions in GAMS – Modifications on INT

Intermediate input prices depend on commodity prices and intermediate input coefficient representing the quantity of input per unit of INT input (not output).

```
PIntAEq(Activity,Sector)..

PIntA(Activity,Sector)

=E=

AlphaLeonc(Activity,Sector) * ComPrice(Sector) ;
```

AlphaLeonc(Activity,Sector)

= SAM(Activity,Sector) /SUM(Sector1,SAM(Activity,Sector1));

MODEL CGEModel

/ FactorMkt.FactorPrice
 FactorDem.FactorQuan
 Commoddem.DemCommod
 CommodMkt.ComPrice
 Profit.Production
 Income.HHincome
 Govbal.TaxRevenue

QintAEq.QintA PIntAEq.PIntA CDQVAEq.QValAdd PVAEq.PValAdd

/;

Incorporating a small open economy in GAMS

Now, we are going to see how to incorporate a small open economy in GAMS.

Assumptions:

- 1. World prices and an exchange rate are exogenous.
- 2. Elasticity of substitution in household CES utility function = 0.7
- 3. Free of taxes at the benchmark equilibrium
- 4. Let an exchange rate be numeriare.
- 5. Counterfactual equilibrium

If an export tax is imposed, then 100% of tax revenues is used to purchase the government goods/services.

Incorporating a small open economy in GAMS – Modifications on variables

VARIABLE

TaxRevenue

POSITIVE VARIABLE

FactorPrice(AllSets) FactorQuan(AllSets,AllSets1) ComPrice(AllSets) DemCommod(AllSets,AllSets1) Production(AllSets) HHIncome (AllSets) QIntA(AllSets,AllSets1) PIntA(AllSets, AllSets1) QValAdd(AllSets) PValAdd(AllSets) PExp(AllSets) PImp(AllSets) QExp(AllSets) QImp(AllSets)

PWExp(AllSets)

PWImp(AllSets)

Exchange

Total government tax revenues ;

Factor price Factor use by a producing sector Commodity price Commodity demand by households Production quantity levels Household income Intermedite inputs quantity Intermedite inputs price Value-added quantity Value-added price

US Export price paid by ROW but received US Import price paid by US consumers but US Export quantity US Import quantity ROW or world export price ROW or world import price Exchange rate

Ż

Incorporating a small open economy in GAMS – Modifications on equations

EQUATIONS

FactorMkt(AllSets) FactorDem(AllSets,AllSets1) CommodMkt(AllSets) CommodDem(AllSets,AllSets1) Profit(AllSets) Income(AllSets) GovBal

QintAEq(AllSets,AllSets1) PIntAEq(AllSets,AllSets1) CDQVAEq(AllSets) PVAEq(AllSets) Factor market balances Factor demand by a sector Commodity market balance Commodity Demand by Households Zero profit condition Household budget constraint Government budget constraint

Intermedite inputs quantity equation Intermedite price equation Value-added quantity equation Value-added inputs price equation

PExpBal(AllSets)	US Export price
PImpBal(AllSets)	US Import price
QExpBal(AllSets)	US Export demand equation
QImpBal(AllSets)	US Import supply equation
PUSExpPBal(AllSets)	US domestic export price relationship
PUSImpPBal(AllSets)	US domestic import price relationship
TradeBal	Trade balance

1. The commodity market balance

$$Q_j \ge \sum_h X_{hj} + \sum_{j1} a_{j,j1} QIntA_{jj1} + s_j R / P_j + QExp_j - QImp_j$$

CommodMkt(Sector)..

Production(Sector)

=G=

sum(Households,DemCommod(Households,Sector))

+ sum(OtherSector\$QintA0(Sector,OtherSector), QIntA(Sector,OtherSector))

+ GovTaxShare(Sector)*(TaxRevenue/ComPrice(Sector))

- + QExp(Sector)\$ExTrade(Sector)
- QImp(Sector)\$ImTrade(Sector) ;

Incorporating a small open economy in GAMS – Modifications on tax revenues

2. The government tax revenue balance

$$R \leq \sum_{h} (t_{h} \sum_{f} \overline{F}_{fh} W_{f}) + \sum_{fj} t_{fj} W_{f} F_{fj} + \sum_{j \in ex} t Exp_{j} Q Exp_{j} P_{j} + \sum_{j \in im} t Imp_{j} Q Imp_{j} P_{j}$$

GovBal..

TaxRevenue

=L=

SUM(Households,

Incometax(Households)

* **SUM**(Factor,Endowment(Factor,HouseHolds)* FactorPrice(Factor)))

+ SUM((Factor,Sector),TaxFactor(Factor,Sector)*FactorPrice(Factor)

*FactorQuan(Factor,Sector))

+ **SUM**(Sector,(TaxExp(Sector)

*QExp(Sector)*ComPrice(Sector))\$ExTrade(Sector))

+ **SUM**(Sector,(TaxImp(Sector)

*QImp(Sector)*ComPrice(Sector))\$ImTrade(Sector))

3. The domestic trade price equations

 $(PWExp_j \times Exchange) - TransCost_j \geq PExp_j \quad \forall j \in ex$

PExpBal(sector)\$ExTrade(Sector).. (PWExp(Sector)*Exchange) -Transcost(Sector) =G= PExp(Sector) ;

 $(PWImp_j \times Exchange) + TransCost_j \ge PImp_j \quad \forall j \in im$

PImpBal(sector)\$ImTrade(Sector).. (PWImp(Sector)*Exchange) +Transcost(Sector) =G= PImp(Sector) ; 25

4. The domestic trade quantity equations

 $QExp_j = f(PWExp_j, \mathcal{E}) = a_j * PWExp_j^{\mathcal{E}_j} \quad \forall j \in ex$

QExpBal(sector)

SExTrade(Sector)..

QExp(Sector) =**E**=

ExpDem("cons",Sector) *(PWExp(Sector)**ExpDem("slope",Sector)) ;

 $QImp_j = f(PWImp_j, \mu) = b_j *PWImp_j \mu_j \quad \forall j \in im$

QImpBal(sector)\$ImTrade(Sector).. QImp(Sector) =E= ImpDem("cons",Sector) *(PWImp(Sector)**ImpDem("slope",Sector));

5. The domestic & trade price relationship

 $PExp_j = (1 - tExp_j)P_j \qquad \forall j \in ex$

PUSExpPBal(Sector)\$ExTrade(Sector)..
PExp(Sector) =E=
(1-TaxExp(Sector)) * ComPrice(Sector) ;

 $PImp_j = (1 + tImp_j)P_j \qquad \forall j \in im$

PUSImpPBal(Sector)\$ImTrade(Sector)..

PImp(Sector) =**E**=

(1+TaxImp(Sector)) * ComPrice(Sector) ;

6. The zero trade balance

$$\sum_{j \in im} PWImp_j QImp_j \leq \sum_{j \in ex} PWExp_j QExp_j$$

TradeBal.. SUM(Sector\$ImTrade(Sector),PWImp(Sector)*QImp(Sector)) =L=

SUM(Sector**\$ExTrade**(Sector), PWExp(Sector)*QExp(sector))

•

Incorporating a small open economy in GAMS – Complementarity

MODEL CGEModel

/ FactorMkt.FactorPrice
 FactorDem.FactorQuan
 Commoddem.DemCommod
 CommodMkt.ComPrice
 Profit.Production
 Income.HHincome
 Govbal.TaxRevenue

QintAEq.QintA PVAEq.PValAdd PIntAEq.PIntA CDQVAEq.QValAdd

Qexpbal.Qexp Qimpbal.Qimp PUSexpPbal.Pexp PUSimpPbal.Pimp Pexpbal.Pwexp Pimpbal.Pwimp Tradebal.Exchange Incorporating a small open economy in GAMS – Results

distortion in prices

Incorporating a small open economy in GAMS – Results

---- 1112 PARAMETER Compare Comparative analysis

NoTax ExpTax20%

HH demand	.Food	1000.000	656.847	
HH demand	.NonFood	900.000	591.162	
Gov demand	.Food		30.000	
Gov demand	.NonFood		23.301	$\rightarrow s_j \mathbf{R} / \mathbf{I}_j$
Int demand	.Food	100.000	57.965	
Int demand	.NonFood	200.000	149.259	
Domestic Demand	.Food	1100.000	744.812	
Domestic Demand	.NonFood	1100.000	763.722	
Export Demand	.Food	300.000	300.000	How do you
Demand	.Total	2500.000	1808.534	explain these results?
Domestic Supply	.Food	1400.000	1044.812	
Domestic Supply	.NonFood	800.000	463.722	
Import Supply	.NonFood	300.000	300.000	
Supply	.Total	2500.000	1808.534	31

Key Elements – MERGE

MERGE:

- Model for Evaluating Regional and Global Effects
- Stanford University & Electric Power Research Institute
- Multi-sectors CGE model
- 9 regions
- The energy sector
- International trade => carbon emission rights
- Non-energy & energy inputs
- Changes in the cost of energy => production
- Sinks and non-CO2 gas

More on MERGE see http://www.stanford.edu/group/MERGE/

Wrap Up

- Evaluating results from CGE models
- Incorporating nested functions and a trade relationship in GAMS

Next:

- MCP
- MacCracken, C. N., J. A. Edmonds, S. H. Kim, and R. D. Sands. "The Economics of the Kyoto Protocol," in *The Costs of the Kyoto Protocol: A Multi-Model Evaluation*, John Weyant (ed.), special issue of *The Energy Journal*, 1999.
- Incorporating environmental aspects (e.g. Ghg emissions) in the CGE model and in GAMS

Reference:

- Shoven, J. B. and J. Whalley. "Applying general equilibrium." *Surveys of Economic Literature*, Chapter 5, 1998.
- Manne A. S. and R. G. Richels. "An alternative approach to establishing tradeoffs among greenhouse gases." *Nature* 410, 675-677 (2001).