Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig

\&

Bruce A. McCarl
Department of Agricultural Economics Texas A\&M University

Course Outline

■ Overview of CGE

- An Introduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models \& Calibration
- Incorporating a trade \& a basic CGE application
- Evaluating impacts of policy changes and casting nested functions \& a trade in GAMS
- Mixed Complementary Problems (MCP)

This Week's Road Map

- Discussions on technical matters on modeling that have not been discussed in the class.
- Deriving welfare impacts of policy changes
- Building nested functions in GAMS
- Extending a closed economy to a small open economy in GAMS
- CGE application of Manne \& Richels

Evaluating impacts of policy changes

Evaluating impacts of policy changes

There are several approaches to evaluate impacts of policy changes; however, most of the CGE literature on the effects of policy changes focus on welfare

measures:

1. Compensating Variation (CV)
2. Equivalent Variation (EV)

Welfare measures - CV

Compensating Variation:

How much money is necessary to compensate someone for price changes?
$C V=E\left(U^{1}, P^{1}\right)-E\left(U^{0}, P^{1}\right) \quad \Rightarrow \quad C V=\left[\left(U^{1}-U^{0}\right) / U^{1}\right] * Y^{1}$
STEPS to calculate CV:

1. Calculate a new utility level

$$
U=\sum_{j}\left[\left(\alpha_{j}\right)^{1 / \sigma}\left(X_{j}\right)^{(\sigma-1) / \sigma}\right]^{\sigma /(\sigma-1)}
$$

2. Calculate a new income level

$$
Y^{1}=W_{L}^{1} \bar{L}_{h}+W_{K}^{1} \bar{K}_{h}+\text { Transfers }
$$

3. Calculate a utility difference

Welfare measures -EV

Equivalent Variation:

How much money is a particular change equivalent to?
$E V=E\left(U^{1}, P^{0}\right)-E\left(U^{0}, P^{0}\right) \quad \Rightarrow \quad E V=\left[\left(U^{1}-U^{0}\right) / U^{0}\right]^{*} Y^{0}$

STEPS to calculate EV:

1. Calculate a new utility level

$$
U=\sum_{j}\left[\left(\alpha_{j}\right)^{\left.\left.1 / \sigma\left(X_{j}\right)^{(\sigma-1) / \sigma}\right]^{\sigma /(\sigma-1)}\right) .}\right.
$$

2. Calculate a utility difference

Price \& quantity measures

An alternative to evaluating impacts of policy changes is price and quantity measures. These measures involve developing price and quantity indexes which can be used to describe how large adjustments are between a base scenario and an alternative scenario.

The simplest price and quantity measures are:

1. Laspeyres price index
2. Laspeyres quantity index
3. Paasche price index
4. Paasche quantity index

Price \& quantity measures

The Laspeyres price index: $L^{P}=\sum_{j} P_{j}^{1} X_{j}^{0} / \sum_{j} P_{j}^{0} X_{j}^{0}$
shows the ratio between the aggregate value of all commodities at prices in the new equilibrium but quantities in the old equilibrium and the aggregate value of all commodities at the old equilibrium prices and quantities.

The Laspeyres quantity index: $L^{Q}=\sum_{j} P_{j}^{0} X_{j}^{1} / \sum_{j} P_{j}^{0} X_{j}^{0}$
shows the ratio between the aggregate value of all commodities at quantity in the new equilibrium but prices in the old equilibrium and the aggregate value of all commodities at the old equilibrium prices and quantities.

Note that: This price index is similar to EV where we compare the aggregate value of all goods with the old equilibrium value of all goods.
P's are prices and X's are quantity. Subscripts ' 1 ' and ' 0 ' refer to a new and old equilibriums, respectively.

Price \& quantity measures

The Paasche price index: $P^{P}=\sum_{j} P_{j}^{1} X_{j}^{1} / \sum_{j} P_{j}^{0} X_{j}^{1}$
shows the ratio between the aggregate value of all commodities considered at prices and quantities in the new equilibrium and the aggregate value of all commodities at the new equilibrium quantities but prices in the old equilibrium.

The Paasche quantity index: $P^{Q}=\sum_{j} P_{j}^{1} X_{j}^{1} / \sum_{j} P_{j}^{1} X_{j}^{0}$
shows the ratio between the aggregate value of all commodities considered at prices and quantities in the new equilibrium and the aggregate value of all commodities at prices in the new equilibrium but quantities in the old equilibrium.

Note that: This price index is similar to CV where we compare the aggregate value of all goods with the new equilibrium value of all goods.

Building nested functions in GAMS

Suppose we want to put nested functions in GAMS.
Recall: With the use of nested functions, a system allows substitution in the model

Assumptions:

1. Leontief technology using INT and VA at a top level
2. Cobb Douglas technology using L and K at a bottom level
3. Non-nested CES utility function

Building nested functions in GAMS - Modifications on variables

VARIABLE	
TaxRevenue	Total government tax revenues
POSITIVE VARIABLE	
FactorPrice (AllSets)	Factor price
FactorQuan(AllSets, AllSetsi)	Factor use by a producing sector
ComPrice(AllSets)	Commodity price
DemCormodidlsets, AllSetsi)	Commodity demand by households
Production(AllSets)	Production quantity levels
HHIncome (AllSets)	Household income
QLnt ${ }^{\text {(AllSets, AllSetsi) }}$	Intermedite inputs quantity
	Intermedite inputs price
QWalded (AllSets)	Value-added quantity
PWalddd (AllSets)	Value-added price

5

Building nested functions in GAMS - Modifications on equations

EQUATIOHS

FactorMkt (AllSets)	Factor market balances
FactorDem (AllSets, AllSetsi)	Factor demand by a sedtor
CommodMkt (AllSets)	Commodity market balance
	Commodity Demand by Households
Profit (AllSets)	Zero profit eondition
Income (AllSets)	Household budget constraint
GovBal	Government budget constraint
	Intermedite inputs quantity Equation
	Intermedite price equation
CDQUAEG(AllSEts)	Value-added quantity equation
PVAEG(Al1SEts)	Value-added inputs price equation

[^0]
Building nested functions in GAMS - Modifications on VA

Steps:

1. Define quantities of value-added (QVA)
2. Define prices of VA
3. Define factor demands used in producing VA

$$
Q V A_{j}=A_{j} K_{j}^{\alpha} L_{j}^{1-\alpha} \longmapsto Q V A_{j}=A_{j} \prod_{f} F_{f j}^{\alpha}
$$

CDQVAEq(Sector).

QValAdd(Sector)
$=\mathrm{E}=\operatorname{BigA}($ Sector $)$
*(PROD(Factor,FactorQuan(Factor,Sector)**AlphaCD(Factor,Sector))) ;

Building nested functions in GAMS - Modifications on VA

Prices of VA are derived from the relationship between revenues and costs of producing final goods where revenue (PxQ) is exhausted by payments for VA and INT inputs.

```
PVAEq(Sector)..
    ComPrice(Sector)* Production(Sector)
    =G=
    PValAdd(Sector)*QValAdd(Sector)
+ SUM(Activity,PIntA(Activity,Sector) * QIntA(Activity,Sector)
        $YesQIntA(Activity,Sector) ) ;
```

PARAMETER YesQIntA(AllSets,AllSets1) Yes there are intermediate inputs;

YesQIntA(Activity,Sector)	$=$ NO ;
YesQIntA("Food","NonFood")	$=$ YES;
YesQIntA("NonFood","Food")	$=$ YES;

Building nested functions in GAMS - Modifications on VA

Factor demand : $\boldsymbol{F}_{f j}=\frac{\boldsymbol{Q} V \boldsymbol{A}_{j}}{A_{j}}\left(\frac{\alpha_{f j} W_{f^{\prime}}\left(1+t_{f^{\prime}}\right)}{\alpha_{f j} W_{f}\left(\mathbf{1}+\boldsymbol{t}_{f}\right)}\right)^{\alpha_{f^{\prime} j}}$

FactorDem(Factor,Sector)..
FactorQuan(Factor,Sector)
=E=
(QValAdd(Sector) / BigA(Sector))

* SUM(MapFact(Factor,Factor1),
((AlphaCD(Factor,Sector)
(FactorPrice(Factor1)(1 + TaxFactor(Factor1))))
/ (AlphaCD(Factor1,Sector)
* (FactorPrice(Factor)*(1 +TaxFactor(Factor))))
)**(AlphaCD(Factor1,Sector))

Building nested functions in GAMS - Modifications on INT

Steps:

1. Define quantities of intermediate input (QINT)
2. Define prices of INT

QINT $A_{j 1 j}=a_{j 1 j} Q_{j}$ where $\mathrm{a}_{\mathrm{j} 1, \mathrm{j}}$ is I-O coefficients, using j11 to produce j

QIntAEq(Sector,Activity)..
QIntA(Sector,Activity)
=E=
AlphaLeon(Sector,Activity) * Production(Activity) ;

AlphaLeon(Sector,Activity)
= SAM(Sector,Activity) /SAM("Total",Activity) ;

Building nested functions in GAMS - Modifications on INT

Intermediate input prices depend on commodity prices and intermediate input coefficient representing the quantity of input per unit of INT input (not output).

PIntAEq(Activity,Sector)..
PIntA(Activity,Sector)
=E=
AlphaLeonc(Activity,Sector) * ComPrice(Sector) ;

AlphaLeonc(Activity,Sector)
= SAM(Activity,Sector) /SUM(Sector1,SAM(Activity,Sector1)) ;

Building nested functions in GAMS - Complementarity

MODEL CGEModel

/ FactorMkt.FactorPrice
FactorDem.FactorQuan Commoddem.DemCommod CommodMkt.ComPrice Profit.Production
Income.HHincome
Govbal.TaxRevenue

QintAEq.QintA
PIntAEq.PIntA
CDQVAEq.QValAdd
PVAEq. PValAdd

/;

Incorporating a small open economy in GAMS

Now, we are going to see how to incorporate a small open economy in GAMS.

Assumptions:

1. World prices and an exchange rate are exogenous.
2. Elasticity of substitution in household CES utility function $=0.7$
3. Free of taxes at the benchmark equilibrium
4. Let an exchange rate be numeriare.
5. Counterfactual equilibrium

If an export tax is imposed, then 100\% of tax revenues is used to purchase the government goods/services.

Incorporating a small open economy in GAMS - Modifications on variables

VARLABLE

Texpevenue
POSITIUE WARIABLE
Factorfrice (illSets)
Factorquan (AllSets, AllSetsi)
ComPrice (AllSets)
DernCortiod (AllSets, AllSets1)
Production(AllSets)
HHIncome (AllGets)
QIntA'AllSEts, AllSetsil
PIntdidlSEts, dllSetsli
QUalddd(AllSets)
PValddd!dllWEts!

Total government tax revenues ;

Factor price
Factor use by a producing sector
Commodity price
Cormodity dernand by households
Production quantity levels
Household income
Intermedite inputs quantity
Intermedite inputs price
Walue-added quantity
Walue-added pride
US Export price paid by ROW but received
US Import price paid by US consumers but
US Export quantity
US Import quantity
ROW or world export price
ROW or world import price
Exchange rate

Incorporating a small open economy in GAMS－Modifications on equations

EQUATIOHS

FactorMkt（AllSets）
FactorDem（AllSets，AllSets
CormodMkt（AllSets）

Income（AllSets）
GovBal

Qint AEG（AllSEts，AllSEts1）
FInt AEGidlSEts，AllSEtsi）
CDOUAEq（AllSets）
PVAEG（AllSets）

Factor market balances
Factor demand by a sedtor
Commodity market balance
Commodity Demand by Households
Zero profit eondition
Household budget Eonstraint
Government budget constraint

Intermedite inputs quantity equation
Intermedite price equation
Talue－added quantity equation
Talue－added inputs price equation

PExpBel（AllSets）
PImpBal（All⿳E大马）
QExpBal（All马Ets）
QTmpBal（AllSets）
PUSExpFBal（AllSEts
FUSImpFBal（AllS゙もあ）
TradeBal

WG Export price
US Import price
US Export demand equation
UF Import supply equation
US domestic export price relationship
WS domestic import priee relationship
Trade balance

1. The commodity market balance

$$
Q_{j} \geq \sum_{h} X_{h j}+\sum_{j 1} a_{j, j 1} Q \operatorname{Int} A_{\mathrm{j} \mathrm{j} 1}+s_{j} R / P_{j}+\operatorname{QExp}_{j}-\operatorname{QImp}_{j}
$$

CommodMkt(Sector)..
Production(Sector)

$$
=\mathbf{G}=
$$

sum(Households,DemCommod(Households,Sector))

+ sum(OtherSector\$QintA0(Sector,OtherSector), QIntA(Sector,OtherSector))
+ GovTaxShare(Sector)*(TaxRevenue/ComPrice(Sector))
+ QExp(Sector)\$ExTrade(Sector)
- QImp(Sector)\$ImTrade(Sector) ;

2. The government tax revenue balance

$$
\begin{aligned}
\boldsymbol{R} \leq & \sum_{h}\left(t_{h} \sum_{f} \overline{\mathbf{F}}_{f h} W_{f}\right)+\sum_{f j} t_{f j} W_{f} F_{f j} \\
& +\sum_{j \in e x} t \operatorname{Exp}_{j} \operatorname{QExp}_{j} P_{j}+\sum_{j \in i m} t \operatorname{Imp}{ }_{j} Q \operatorname{Imp}{ }_{j} P_{j}
\end{aligned}
$$

GovBal.。

TaxRevenue
$=\mathrm{L}=$
SUM(Households, Incometax(Households)

* SUM(Factor,Endowment(Factor,HouseHolds)* FactorPrice(Factor)))
+ SUM((Factor,Sector),TaxFactor(Factor,Sector)*FactorPrice(Factor)
*FactorQuan(Factor,Sector))
+ SUM(Sector,(TaxExp(Sector)
*QExp(Sector)*ComPrice(Sector))\$ExTrade(Sector))
+ SUM(Sector,(TaxImp(Sector)
*QImp(Sector)*ComPrice(Sector))\$ImTrade(Sector))

Incorporating a small open economy in GAMS - Modifications

3. The domestic trade price equations

$\left(\right.$ PWExp $_{j} \times$ Exchange - TransCost $_{j} \geq$ PExp $_{j} \quad \forall j \in$ ex

PExpBal(sector)\$ExTrade(Sector).。
(PWExp(Sector)*Exchange) -Transcost(Sector)
$=G=P E x p($ Sector $)$
$\left(\right.$ PWImp $_{j} \times$ Exchange ${ }^{\left(T r a n s \operatorname{Cost}_{j}\right.} \geq \operatorname{PImp}_{j} \quad \forall j \in \mathrm{im}$

PImpBal(sector)\$ImTrade(Sector).。
(PWImp(Sector)*Exchange) + Transcost(Sector)
$=\mathrm{G}=\mathrm{PImp}$ (Sector)

Incorporating a small open economy in GAMS - Modifications

4. The domestic trade quantity equations

$$
\operatorname{QExp}_{j}=f\left(\operatorname{PWWExp}_{j}, \varepsilon\right)=a_{j}^{*} \cdot \operatorname{PWExp} \dot{E}_{j}^{\varepsilon_{j}} \forall j \in e x
$$

```
QExpBal(sector)$ExTrade(Sector)..
QExp(Sector) = E=
ExpDem("cons",Sector) *(PWExp(Sector)**ExpDem("slope",Sector)) ;
```

$$
\text { QImp }_{j}=f\left(P^{W} \operatorname{Im} p_{j}, \mu\right)=b_{j}^{*} * P W \operatorname{Im} p_{j} \mu_{j} \quad \forall j \in i m
$$

QImpBal(sector)\$ImTrade(Sector)..
QImp(Sector) $=\mathbb{E}=$
ImpDem("cons",Sector) *(PWImp(Sector)**ImpDem("slope",Sector)) ;

Incorporating a small open economy in GAMS - Modifications

5. The domestic \& trade price relationship

$$
\operatorname{PExp}_{j}=\left(1-\operatorname{Exx}_{j}\right) P_{j} \quad \forall j \in \operatorname{ex}^{x}
$$

```
PUSExpPBal(Sector)$ExTrade(Sector).。
    PExp(Sector) =E=
    (1-TaxExp(Sector)) * ComPrice(Sector) ;
```

$$
\operatorname{PImp}_{j}=\left(1+t \operatorname{Imp} p_{j}\right) P_{j} \quad \forall j \in \operatorname{im}
$$

PUSImpPBal(Sector)\$ImTrade(Sector).。
PImp(Sector) =E=
(1+TaxImp(Sector)) * ComPrice(Sector) ;

6. The zero trade balance

$$
\sum_{j \in i m} P W \operatorname{Im} p_{j} Q \operatorname{Imp}_{j} \leq \sum_{j \in e x} P^{2} \operatorname{Exp}_{j} Q \operatorname{Exp}_{j}
$$

TradeBal.。

SUM(Sector\$ImTrade(Sector),PWImp(Sector)*QImp(Sector))
$=\mathbf{L}=$
SUM(Sector\$ExTrade(Sector),PWExp(Sector)*QExp(sector))

/ FactorMkt.FactorPrice

FactorDem.FactorQuan
Commoddem.DemCommod
CommodMkt.ComPrice
Profit.Production
Income.HHincome
Govbal.TaxRevenue
QintAEq.QintA
PVAEq.PValAdd
PIntAEq.PIntA
CDQVAEq.QValAdd

Qexpbal.Qexp
Qimpbal.Qimp
PUSexpPbal.Pexp
PUSimpPbal.Pimp
Pexpbal.Pwexp
Pimpbal.Pwimp
Tradebal.Exchange

Incorporating a small open economy in GAMS - Results

---- 1112 PARAMETER Compare Comparative analysis
NoTax ExpTax20\%

ExpPrice	. Food
ImPrice	. NonFood
USExPrice	. Food
USIMPrice	. NonFood

distortion in prices

Incorporating a small open economy in GAMS - Results

NoTex ExpTexzDs

HH dermand	. Food	1000.000	6.56 .847	
HH dertand	. Nonfood	900. 000	591.162	
Gov demend	. Food		30.000	
Gov demand	. Nonfood		23.301	j /R j
Int demand	. Food	100.000	57.96 .5	
Int demand	. NonFood	200.000	149.259	
Domestic Demand	. Food	1100.000	744.812	
Domestic Dermand	. NonFond	1100.000	763.722	
Export Demind	. Food	300.000	300. 000	How do you
Dermend	. Total	2500.000	1808. 534	explain these
Domestic Supply	. Food	1400.000	1044.812	
Domestic Supply	. NonFood	800.000	463.722	
Import supply	. NonFood	300.000	300. 000	
Supply	. Total	2500.000	1808. 534	31

Key Elements - MERGE

MERGE:

- Model for Evaluating Regional and Global Effects
- Stanford University \& Electric Power Research Institute
- Multi-sectors CGE model
- 9 regions
- The energy sector
- International trade => carbon emission rights
- Non-energy \& energy inputs
- Changes in the cost of energy => production
- Sinks and non-CO2 gas

More on MERGE see http://www.stanford.edu/group/MERGE/

Wrap Up

- Evaluating results from CGE models
- Incorporating nested functions and a trade relationship in GAMS

Next:

■ MCP
■ MacCracken, C. N., J. A. Edmonds, S. H. Kim, and R. D. Sands. "The Economics of the Kyoto Protocol," in The Costs of the Kyoto Protocol: A Multi-Model Evaluation, John Weyant (ed.), special issue of The Energy Journal, 1999.

- Incorporating environmental aspects (e.g. Ghg emissions) in the CGE model and in GAMS

Reference:

Shoven, J. B. and J. Whalley. "Applying general equilibrium." Surveys of Economic Literature, Chapter 5, 1998.
Manne A. S. and R. G. Richels. "An alternative approach to establishing tradeoffs among greenhouse gases." Nature 410, 675-677 (2001).

[^0]: ,

