An Alternative Approach to Establishing Trade-offs among Greenhouse Gases

Alan S. Manne & Richard G. Richels *Nature*, Vol 410, 675-677 (2001)

Presented by Mankeun Kim

Outline

- Global Warming
- Greenhouse gases
- Kyoto Protocol
- Global Warming Potentials
- Shortcomings of GWPs
- An Alternative approach based on CGE

Global Warming

- Earth's climate is determined by complex interactions between the sun, ocean, atmosphere, land and living things.
- The composition of the atmosphere is important because certain gases absorb heat radiated from the Earth's surface (Greenhouse effect).

- Changes in the composition of the atmosphere alter the intensity of the greenhouse effect
- Human activities alter the balance.
- Raising concentrations of greenhouse gases are *intensifying* Earth's natural greenhouse effect.

As a results, the world is becoming warmer.

The global mean surface temperature has increased by over 1 °F (0.6 °C) during the 20th century.

Impacts of Global Warming

- Increased warming
- Drought and flash floods
- Vulnerable ecosystem
- Water supply
- Secure food supply
- Sea-level rise
- And so on...

Greenhouse Gases

- Naturally occurring greenhouse gases include water vapor, carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and ozone (O₃).
- Human activities add additional quantities of these gases, thereby changing their global average atmospheric concentrations.

Causes of Greenhouse Gases

CO₂

Combustion of fossil fuels, solid waste & wood

CH₄

- Production/transportation of coal, natural gas or oil,
- Decomposition of organic waste in landfills,
- Raising of livestock and rice

N₂O

- Fertilization, legume, and manure industry activities
- Combustion of fossil fuels and waste.

Kyoto Protocol

- In 1997, the first international agreement to LIMIT EMISSIONS was established in Kyoto, Japan.
- Solving GHG emission problem implies reducing net emissions of GHG and stabilizing atmospheric concentrations at acceptable level.

Global Warming Potential

- GHG differ in their ability to absorb heat in the atmosphere.
 - CH₄ traps over 21 times more heat than CO₂
 - N₂O absorbs 310 times more heat than CO₂
 - HFCs and PFCs are the most heat absorbent.

- GWP is the physical measure established to compare emission equivalence of other gases to CO₂.
- GWP is a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas through a set of time horizons (see Table 1).

Table 1. GWPs

	Global Warming Potential (years)		
	20	100	500
CO_2	1	1	1
CH ₄	56	21	6.5
N_2O	280	310	170

Shortcomings of GWPs

- The arbitrary choice of time horizon for calculating cumulative radiative forcing.
- The failure to incorporate damages and abatement costs.
- GWPs assume that the trade-off ratios remain constant over time.

- GWPs assume that they are independent of the ultimate goal.
- Clearly, neither of these assumptions makes economic sense.

Ideal Index

- The outcome of an analysis that minimizes the discounted present value of damages and mitigation costs.
- The alternative proposed extends beyond purely physical considerations in calculating trade-offs among gases

MERGE

- The analysis is based on a CGE model called MERGE.
- A Model for Evaluating the Regional and Global Effects of GHG Reduction Policies
- Model structure and specification will be discussed in the class.

- The CGE model calculate the price of the various greenhouse gases.
- These prices express how much one should be willing to pay to emit an additional ton of each gas.
- The trade-offs are then relative prices of each gas.

Scenarios (Shock to CGE)

- The goal of climate policy is to limit the future increase in mean global temperature.
- Using MERGE, they identify an economically efficient strategy for staying within the limit (or ceiling)

- There are two scenarios
 - Temperature ceiling 2 °C and 3 °C in absolute temperature change.
 - Additional restriction Decadal temperature change is limited within 10%

The Prices of CH₄ and N₂O relative to that of CO₂

