Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig & Bruce A. McCarl

Department of Agricultural Economics Texas A&M University

- Overview of CGE
- An Introduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models & Calibration
- Incorporating a trade & a basic CGE application
- Evaluating impacts of policy changes and casting nested functions & a trade in GAMS
- Mixed Complementary Problems (MCP)

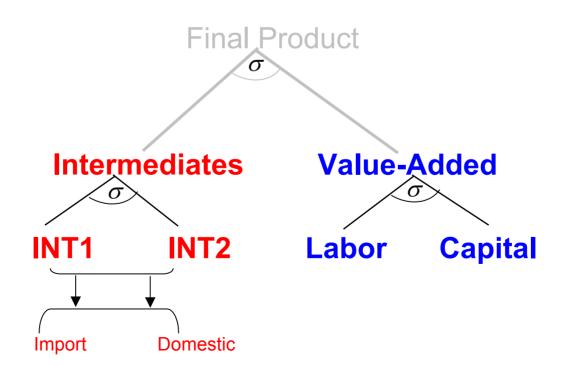
- More than 2 goods or factors --Hierarchical (nested) functions
- Social Accounting Matrices
- Input-output table
- Building benchmark equilibrium data sets
- Parameter calibration

Why use hierarchical (nested) functions?

- : Allows different elasticity of substitution among factors and/or among intermediate inputs in the production
- : Allows different elasticity of substitution among goods in the consumption
- : Expands the number of elasticity parameters used in a calibration

New Functions:

- : Building a system allowing substitution throughout the production structure in the model
 - a. Factors producing a new item called valueadded (VA)
 - b. Intermediate inputs producing a new item of intermediate inputs (INT)


Levels of production possibilities

The bottom level

a. Substitution exists among factors depends on $\boldsymbol{\sigma}$

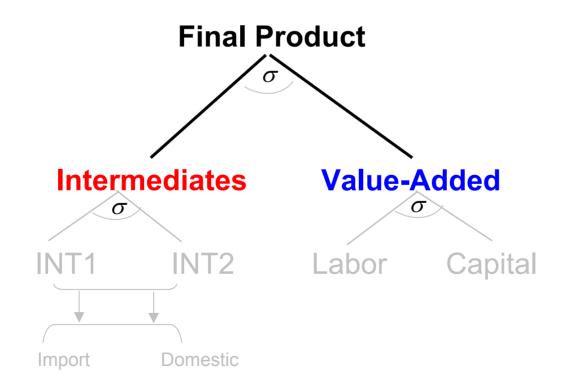
b. Substitution exists among INT depends on $\boldsymbol{\sigma}$

- if $\sigma \Rightarrow 0$ then there is no substitution
- if $0 < \sigma < 1$ then there is some degree of substitution

Value-Added (VA) production function at the bottom level using labor (L) and capital (K) for a CES function is:

 $\mathbf{QVA}_{j} = \mathbf{f}_{j} (\mathbf{L}_{j}, \mathbf{K}_{j}; \alpha_{j}, \delta_{j}, \sigma_{j})$

where α , δ , σ are efficiency, share, and elasticity of substitution between **L** and **K** factors in sector **j** parameters.


Factor demand derived from a CES function:

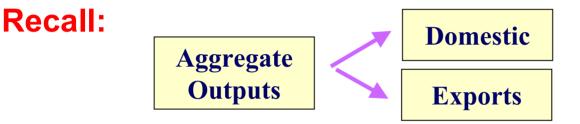
 $L_{j} = g_{j} (QVA_{j}, PVA_{j}, L_{j}, K_{j}, w; \delta_{j}, \sigma_{j})$ $K_{j} = h_{j} (QVA_{j}, PVA_{j}, L_{j}, K_{j}, r; \delta_{j}, \sigma_{j})$

where w and r are a wage rate and a capital rent.

See Appendix - A for details of these functions.

- Levels of production possibilities
- The top level
 - a. Outputs are derived from INT and VA
 - b. Substitution between INT and VA depends on $\boldsymbol{\sigma}$

INT and VA production at the **top** level assuming **CES** technology:


 $\mathbf{Q}_{j} = \mathbf{f}_{j} \left(\mathbf{QINT}_{j}, \mathbf{QVA}_{j}; \alpha'_{j}, \delta'_{j}, \sigma'_{j} \right)$

where α ', δ ', σ ' are efficiency, share, and elasticity of substitution between intermediate inputs and value-added in sector **j** parameters.

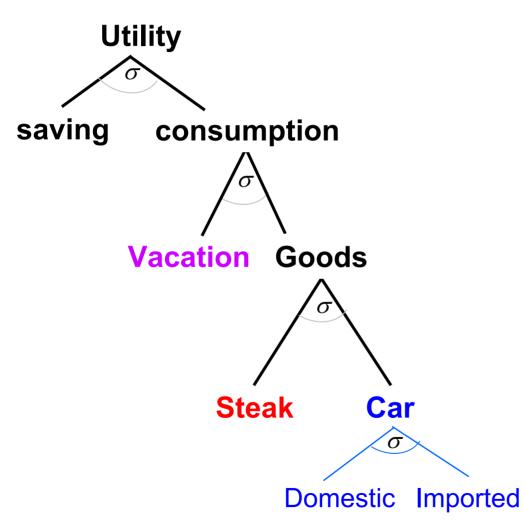
See Appendix - B for details of the functions.

Opened Economy:

The aggregated domestic output is sold domestic or exported based on the imperfect transformability assumption.

Constant Elasticity of Transformation (CET) Function:

 $\mathbf{Q}\mathbf{Q}_{j} = \mathbf{f'}_{j} \left(\mathbf{Q}\mathbf{D}_{j}, \mathbf{Q}\mathbf{X}_{j}; \alpha^{t}_{j}, \delta^{t}_{j}, \sigma^{t}_{j} \right)$


where QQ_j , QD_j , QX_j , are aggregate outputs, domestic outputs, and exports in sector **j**, and α^t_j , δ^t_j , and σ^t_j are efficiency, share, and elasticity of substitution between domestic outputs and exported goods in sector **j** parameters. See Appendix - C for details of these functions.

Characteristics

- Allows factor (capital, labor, land, etc.) substitution in the value-added
- Allows input substitution in the intermediate input
- Allows the value-added and intermediate input substitution

Hierarchical (nested) functions - consumption

Nested utility function

Substitution between saving and consumption goods

Substitution between leisure and goods

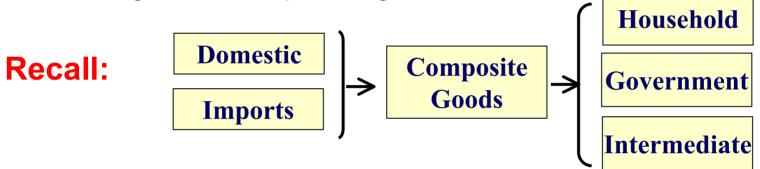
Substitution between steak and car

Substitution between domestic and imported car

Hierarchical (nested) functions - consumption

Household Consumption (X) assuming derived from the CES utility maximization subject to a budget constraint is:

 $\mathbf{X}_{jh} = \mathbf{Y}_{j} (\mathbf{P}_{j}, \mathbf{M}_{h}; \alpha_{jh}, \sigma_{h})$


where P_j is prices of goods **j**, M_h is household h income, and α_{jh} and σ_h are consumption share and elasticity of substitution in household **h** in sector **j** parameters.

See Appendix - D for details of these functions.

Hierarchical (nested) functions - consumption

Open Economy:

The domestic demands are for a composite goods made up of domestic goods or imported goods.

Armington Function (Imperfect substitutability):

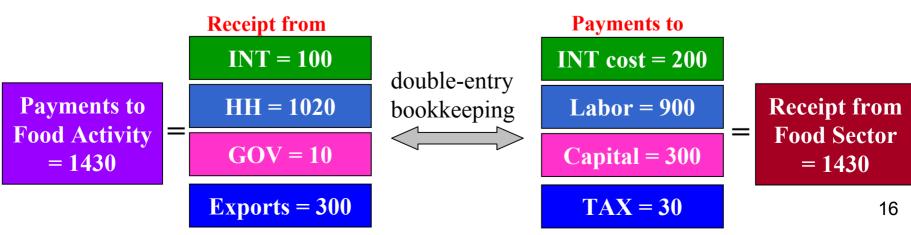
 $\mathbf{QC}_{j} = \mathbf{f}_{j}^{"} (\mathbf{QD}_{j}, \mathbf{QM}_{j}; \alpha_{j}^{c}, \delta_{j}^{c}, \sigma_{j}^{c})$

where QC_j , QD_j , QM_j , are composite, domestic, and imported goods in sector **j**, and α^c_j , δ^c_j , and σ^c_j are efficiency, share, and elasticity of substitution between domestic goods and imported goods in sector **j** parameters. See Appendix - E for details of these functions.

What is a SAM?

A Social Accounting Matrix (SAM) represents

- : an economy wide accounting of expenditures and incomes of agents like an input output table but differs in that households are included and all accounts are fully balanced.
- : a column = payments, a row = receipt and a column sum = a row sum

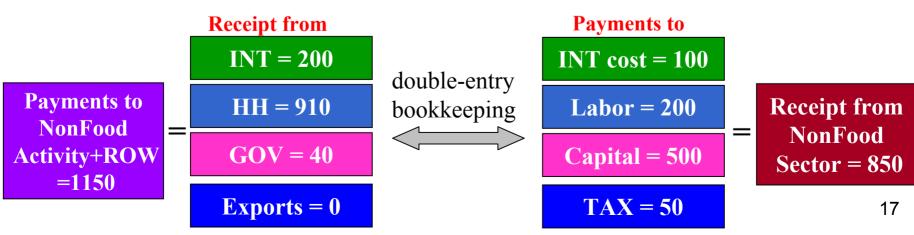

Mil. of \$US	Food Act	NonFood Act	Food	NonFood	Labor	Capital	Household	Government	Tax	ROW	Total
Food Activity	0	0	1430	0				0			1430
NonFood Activity	0	0	0	850				0			850
Food	0	100	0	0			1020	10		300	1430
NonFood	200	0	0	0			910	40		0	1150
Labor	900	200									1100
Capital	300	500									800
Household					1100	800			30		1930
Government			0				0		50		50
Tax	30	50							0		80
ROW			0	300							300
Total	1430	850	1430	1150	1100	800	1930	50	80	300	

SAM - implications

Mil. of \$US	Food Act	NonFood Act	Food	NonFood	Labor	Canital	Household	Government	Tax	ROW	Total
Food Activity	0	0	1430	0	Labor	Cabitat	11003011010	0	IdA	100 ***	1430
NonFood Activity		0	0	850				0			850
Food	0	100	0	0			1020	10		300	1430
NonFood	200	0	0	0			910	40		0	1150
Labor	900	200									1100
Capital	300	500									800
Household					1100	800			30		1930
Government			0				0		50		50
Tax	30	50							0		80
ROW			0	300							300
Total	1430	850	1430	1150	1100	800	1930	50	80	300	

Example: Food Sector

Example: Food Activity



SAM - implications

Mil. of \$US	Food Act	NonFood Act	Food	NonFood	Labor	Canital	Household	Government	Tay	ROW	Total
Food Activity	0	0	1430	0	Labor	Capital	11043011014	0	Tax	100 ***	1430
NonFood Activity	0	0	0	850				0			850
Food	0	100	0	0			1020	10		300	1430
NonFood	200	0	0	0			910	40		0	1150
Labor	900	200									1100
Capital	300	500									800
Household					1100	800			30		1930
Government			0				0		50		50
Tax	30	50							0		80
ROW			0	300							300
Total	1430	850	1430	1150	1100	800	1930	50	80	300	

Example: NonFood Sector

Example: NonFood Activity

Inconsistent Data

Because calibration relies on the benchmark data, what to do if

- **:** Data/Accounting inconsistency
 - \Rightarrow demand \neq supply
 - => expenditures exceed incomes
 - => consumer expenditure classification does not match production classification
 - => lack of data

DATA PROCESSING & ADJUSTMENT! => No uniform adjustment

- => adjustment varies from case to case
- => interpolation and use of other economic data
- => use previous year data with some adjustment
- => RAS (row-and-column-sum) procedure
- => modeler's judgment

Suggested Reading: St-Hilaire, F., and J. Whalley. "A microconsistent equilibrium data set for Canada for use in tax policy analysis." Review of Income and Wealth 29, 175-204.

From SAM to Input-output Table

Mil. \$US	Food Act	NonFood Act	Food	NonFood	Labor	Capital	Household	Government	Tax	ROW	Total
Food Activity	0	0	1430	0				0			1430
NonFood Activity	0	0	0	850				0			850
Food	0	100	0	0			1020	10		300	1430
NonFood	200	0	0	0			910	40		0	1150
Labor	900	200									1100
Capital	300	500									800
Household					1100	800			30		1930
Government			0				0		50		50
Tax	30	50							0		80
ROW			0	300							300
Total	1430	850	1430	1150	1100	800	1930	50	80	300	

	Production Activities	Household, Government, Investment, Exports, Imports
Intermediate inputs	Inter-industry flows	Final Demands
Primary Factors	Value-added	

Input-output Table

	Production Activities	Household, Government Investment, Exports, Imports
Intermediate inputs	Inter-industry flows	Final Demands
Primary Factors	Value-added	

Mil. \$US	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				

	Household	Government
Transfer Payments	30	50

	Household
Labor	1100
Capital	800

Building the Basic Data – things to do

Things to be considered when building the basic data

- 1. Check the classifications among data sets
 - e.g. HH expenditures categories vs. industry product categories
- 2. Decide on units for goods and factors so that prices and quantities are separately obtained
 - e.g. choose units for goods and factors so that they have a price of unity in the benchmark equilibrium
 - Note: in the CGE model only the **<u>relative price</u>** is the focus and the absolute price is not important.

Units are in million \$US

	Food	NonFood	Household	Government	Net Exports	Total Consumption				
Food	0	100	1020	10	300	1430				
NonFood	200	0	910	40	-300	850				
Labor	900	200								
Capital	300	500		e	ts for go					
Tax	30	50				ichmark				
Total Production	1430	850	equil	equilibrium price is one, then						
	-1		we ha	ave						

Units are in million quantities

	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				

22

Building the Basic Data – things to do

- 3. Check if the data is consistent with the equilibrium conditions e.g.
 - a. Demands = Supplies (consumption = production)
 - b. Zero profits (revenues = costs)
 - c. All agents (i.e. HH, Government, ROW) exhaust their budgets
 - d. Resources are used up.

Suggested Reading: St-Hilaire, F., and J. Whalley. "A microconsistent equilibrium data set for Canada for use in tax policy analysis." Review of Income and Wealth 29, 175-204.

Units are in million quantities

	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				

Output markets balance:

	HH	+ INT	+ Exports	s <mark>+ Gov</mark> t	= Productior	+ Imports
Food:	1020	+ 100	+ 300	+ 10	= 1430	+ 0
NonFood:	910	+ 200	+ 0	+ 40	= 850	+ 300

	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				

Units are in million quantities

Factor markets balance:

	Household
Labor	1100
Capital	800

	Food	+	NonFood	=
Labor:	900	+	200	=
Capital:	300	+	500	=

Endowment

1100

800

This also implies resources are used up.

Units are in million quantities

	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				

Zero profits:

Costs	: Factors + INT + Tax	= Revenues (PxQ)
Food:	900+300 + 200 + 30	= 1430
NonFood:	200+500 + 100 + 50	= 850

Checking data consistency – household income balance

Units are in million quantities

	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				

	Household	Government
Transfer Payments	30	50

	Household
Labor	1100
Capital	800

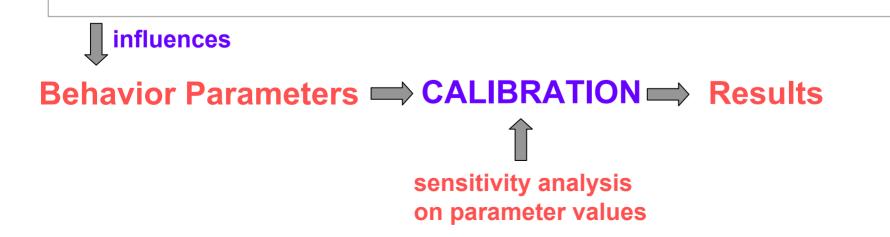
Household income balance:

Labor income + Capital income + Transfer Payments = Expenditures 1100 + 800 + 30 = 1930

Checking data consistency – government income balance

Units are in million quantities

	Food	NonFood	Household	Government	Net Exports	Total Consumption
Food	0	100	1020	10	300	1430
NonFood	200	0	910	40	-300	850
Labor	900	200				
Capital	300	500				
Tax	30	50				
Total Production	1430	850				


	Household	Government
Transfer Payments	30	50

Government income balance:

Capital Tax = Transfer Payments to HH + Government consumption 30 + 50 = 30 + 50 + 50

Building the Basic Data – things to do

- 4. Decide on functional forms e.g. Cobb-Douglas, CES, Leontief, LES, etc.
 - e.g. Cobb-Douglas => the benchmark data is sufficient to determine behavior parameter values
 - e.g. CES or LES => exogenous elasticity values are required

Cobb Douglas vs. CES

Cobb Douglas

<u>Pros</u>

- A special case of CES
- Easy to work with
- Unique calibration

<u>Pros</u>

CES

- Commonly used in the CGE work
- Flexible for nested functions

<u>Cons</u>

- Income and own-price elast. = 1
- Cross-price elast. = 0

<u>Cons</u>

- Not unique calibration
- Same elasticity of substitution between pair of goods or factors
- Messy math

Calibration – numerical example

Calibration of a Cobb Douglas production function w/o nested functions $O_{E} = A_{E} K_{E}^{\alpha} L_{E}^{1-\alpha}$

ΣF ΓF	\mathbf{L}_{F}			
	Food	NonFood	Price	please finish the rest
Labor	900	200	1	as your exercise
Capital	300	500	1	$K = 1 \times 200$
Total Production	1200	700	1	$\alpha_F = \frac{r_F K_F}{P_F Q_F} = \frac{1 \times 300}{1 \times 1200} = 0.25$
				$P_F Q_F = 1 \times 1200$
α	0.25	0.71		O_{F} 1200
1-α	0.75	0.29		$A_F = \frac{Q_F}{K_F^{\alpha} L_F^{1-\alpha}} = \frac{1200}{300^{0.25} 900^{0.75}} = 1.75$
А	1.75	1.82		
				$- \Omega - A K^{\alpha} I^{1-\alpha}$
Replication				$Q_F = A_F K_F^{\alpha} L_F^{1-\alpha}$ = 1.75 × 300 ^{0.25} × 900 ^{0.75} = 1200
Total Production	1200	700		-1.73×300 ×900 -1200
Labor	900	200		$- \qquad O_{-} \left(O_{W} \right)^{1-\alpha}$
Capital	300	500		$K_F = \frac{\mathcal{L}_F}{A} \left[\frac{\alpha n}{(1-\alpha)r} \right]$
I				$1200(0.25 \times 1)^{0.75}$
Note: see McCarl	and Gillig	g for CES	calibration	$K_{F} = \frac{Q_{F}}{A_{F}} \left(\frac{\alpha w}{(1-\alpha)r}\right)^{1-\alpha}$ $= \frac{1200}{1.75} \left(\frac{0.25 \times 1}{0.75 \times 1}\right)^{0.75} = 300$

31

Calibration – numerical example

Calibration of a Cobb Douglas production function w/ nested functions

	Food	NonFood	Price	Replication	Food	NonFood		
Food	0	100	1	Food	0	100		please check
NonFood	200	0	1	NonFood	200	0		replication as your
Value-Added	1200	700	1	Value-Added	1200	700		exercise
Labor	900	200	1	Labor	900	200		CACICISC
Capital	300	500	1	Capital	300	500		
Total Production	1400	800	1	Total Production	1400	800		
				$OINT_{r}$)()	່	
Top Level (Leontief)			$lpha_F$	$_{,NF} = \frac{QINT_{F}}{Q_{NF}}$	$\frac{NF}{R} = \frac{10}{20}$	$\frac{10}{10} = 0.12$	25	
α Food	0	0.125		\mathcal{Q}_{NF}	00)0		
α NonFood	0.143	0		$QINT_N$	F,F 2	00	1 4 2	
α Value-Added	0.857	0.875	$\rightarrow \alpha_N$	$_{F,F} = \frac{QINT_{N}}{Q_{F}}$	$ = \frac{1}{14} $	$\frac{1}{100} = 0.1$	143	nlagge finish the rest
				\sim 1				please finish the rest
Bottom Level (CD)			α_r^{ν}	$a = \frac{QVA_F}{Q_F} = -$	$\frac{1200}{1200} = 0$	0 857		as your exercise
α	0.250	0.714	\mathcal{O}_F	Q_F	1400	0.007		
1-α	0.750	0.286		rK	1.	300		
A	1.755	1.819	$\alpha_{_F}$	$=\frac{rK_F}{PVA_FQVA}$	$\frac{1}{1} = \frac{1}{1}$	$\frac{300}{1200} = ($).25	
				PVA_FQVA	$\mathbf{I}_F \mathbf{I} \times$	1200	J	32

Calibration – numerical example

Calibration of a CES utility function

	Food	NonFood	Labor	Capital	Transfer payments	
Household	1020	910	1100	800	30	
Price	1	1	1	1		
σ	0.7	0.7		1	1	
				$P_F X_F$	1×1020 1 121	
ω	1.121	0.892	$\omega_{F,NF}$ =	$=\frac{1}{P_{NE}X_{NE}}$	$=\frac{1\times1020}{1\times910}=1.121$	
θ	1.00	1.00	-	- NF NF		
α	0.5285	0.4715	-	$P_{\mathcal{W}}X_{\mathcal{W}}$	1×910	P
					$=\frac{1\times910}{1\times1020}=0.892$	$\theta_{F,NF} = \frac{T_F}{P_{NF}} = 1$
$\alpha_{F,NF} = \frac{\alpha}{(\theta_{F,NF})}$	$\frac{\omega_{F,NF}}{1-\sigma} + \omega_{F,NF}$	-=1.121/(1+1.121)	= 0.5285		

$$\alpha_{NF,F} = \frac{\omega_{NF,F}}{(\theta_{NF,F})^{1-\sigma} + \omega_{NF,F}} = 0.892/(1+0.892) = 0.4715$$

$$X_{F} = \frac{(\alpha_{F,NF})(Income)}{P_{F}^{\sigma}(\alpha_{F,NF} \times P_{F}^{1-\sigma} + \alpha_{NF,F} \times P_{NF}^{1-\sigma})}$$
$$= \frac{0.528 \times (1100 + 800 + 30)}{1^{0.7} \times (0.528 \times 1^{1-0.7} + 0.472 \times 1^{1-0.7})} = 1020$$

Replication	Food	NonFood				
Total Consumption	1020	910				
please finish the rest as your exercise						

Wrap Up

- Hierarchical (nested) function & functional forms
- SAM & Input-output data
- Building benchmark equilibrium data sets
- Parameters calibration

Next:

Shoven, J. B. and J. Whalley. "Applied General-Equilibrium Models of Taxation and International Trade: An Introduction and Survey." *J. Economic Literature*, 22:1007-1051, 1984.

NOTE:

Materials presented in Appendices A to E are based on <u>TMD</u> <u>Discussion Paper No. 75</u> by Lofgren et al. (2001). There are several equations or functions that are not presented in the class notes due to the limitations in time and space. However, one who is interested to explore the CGE profoundly can get a copy of this paper at <u>http://www.cgiar.org/ifpri/divs/tmd/dp.htm.</u>

VA Production function:

$$QVA_{j} = \alpha_{j}^{va} \left(\delta_{j}^{va} L_{j}^{(\sigma_{j}^{va}-1)/\sigma_{j}^{va}} + (1-\delta_{j}^{va}) K_{j}^{(\sigma_{j}^{va}-1)/\sigma_{j}^{va}} \right)^{\sigma_{j}^{va}/(\sigma_{j}^{va}-1)}$$

where α_j^{va} , δ_j^{va} , and σ_j^{va} are efficiency, share, and elasticity of substitution between **L** and **K** factors in sector **j** parameters.

Factor demand function:

$$r_{j}\overline{r}_{j} = PVA_{j}(1 - tva_{j}) QVA_{j} \left[\delta_{j}^{va}L_{j}^{(\sigma_{j}^{va} - 1)/\sigma_{j}^{va}} + (1 - \delta_{j}^{va})K_{j}^{(\sigma_{j}^{va} - 1)/\sigma_{j}^{va}} \right]^{-1} \delta_{j}^{va}K_{j}^{-1/\sigma_{j}^{va}}$$
$$w_{j}\overline{w}_{j} = PVA_{j}(1 - tva_{j}) QVA_{j} \left[\delta_{j}^{va}L_{j}^{(\sigma_{j}^{va} - 1)/\sigma_{j}^{va}} + (1 - \delta_{j}^{va})K_{j}^{(\sigma_{j}^{va} - 1)/\sigma_{j}^{va}} \right]^{-1} \delta_{j}^{va}L_{j}^{-1/\sigma_{j}^{va}}$$

where r, w, and PVA_j are capital, labor, and value-added prices, tva_j is value-added tax.

Top level production function:

$$Q_{j} = \alpha_{j} \left(\delta_{j} Q V A_{j}^{(\sigma_{j}-1)/\sigma_{j}} + (1-\delta_{j}) Q I N T_{j}^{(\sigma_{j}-1)/\sigma_{j}} \right)^{\sigma_{j}/(\sigma_{j}-1)}$$

where

- $Q_j = output in sector j$
- $QINT_i = quantity of intermediate inputs in sector$ **j**
- QVA_i = quantity of value-added in sector **j**

and α_j , δ_j , σ_j are efficiency, share, and elasticity of substitution between intermediate inputs and value-added in sector **j** parameters.

Appendix - C

Constant Elasticity of Transformation (CET) function:

$$QQ_{j} = \alpha_{j}^{t} \left(\delta_{j}^{t} QD_{j}^{(\sigma_{j}^{t}-1)/\sigma_{j}^{t}} + (1-\delta_{j}^{t}) QX_{j}^{(\sigma_{j}^{t}-1)/\sigma_{j}^{t}} \right)^{\sigma_{j}^{t}/(\sigma_{j}^{t}-1)}$$

where QQ_j, QD_j, QX_j, are aggregate outputs, domestic outputs, and exports in sector **j**, and α^t_j , δ^t_j , and σ^t_j are efficiency, share, and elasticity of substitution between domestic outputs (QD_j) and exported goods (QX_j) in sector **j** parameters.

Appendix - D

Household consumption function:

Utility maximization

s.t

$$U_{h} = \left[\sum_{j} (\alpha_{jh})^{1/\sigma_{h}} (X_{jh})^{(\sigma_{h}-1)/\sigma_{h}}\right]^{\sigma_{h}/(\sigma_{h}-1)}$$

$$\sum_{j} P_{j}X_{jh} \leq W_{L}\overline{L}_{h} + W_{K}\overline{K}_{h} \equiv Income_{h}$$

yields demand function:

$$X_{jh} = \frac{\alpha_{jh} (Income_{h})}{P_{j}^{\sigma_{h}} \sum_{j} \left(\alpha_{jh} \left(P_{j} \right)^{1-\sigma_{h}} \right)}$$

where \textbf{P}_{i} is prices of goods j, and α_{ih} and σ_{h} are consumption share in household h in sector j parameters and elasticity of substitution in household h parameters.

Armington function:

$$QC_{j} = \alpha_{j}^{c} \left(\delta_{j}^{c} QD_{j}^{(\sigma_{j}^{c}-1)/\sigma_{j}^{c}} + (1-\delta_{j}^{c}) QM_{j}^{(\sigma_{j}^{c}-1)/\sigma_{j}^{c}} \right)^{\sigma_{j}^{c}/(\sigma_{j}^{c}-1)}$$

where QC_j , QD_j , QM_j , are composite, domestic, and imported goods in sector **j**, α_j^c , δ_j^c , and σ_j^c are efficiency, share, and elasticity of substitution between domestic goods (QD_j) and imported goods (QM_i) in sector **j** parameters.

References

Abbink, G. A. M. C. Braber, and S. I. Cohen. "A SAM-CGE demonstration model for Indonesia: Static and dynamic specifications and experiments." *International Economic Journal* 9(1995), 15-33.

Cohen, S. I. <u>Social Accounting and Economic Modelling for Developing</u> <u>Countries</u>. Ashgate, London, 2002.

Lofgren, H., R. L. Harris, S. Robinson, M. Thomas, and M. El-Said. "A standard computable general equilibrium (CGE) model in GAMS." TMD Discussion Paper No. 75, IFPRI, Washington D.C., May 2001.

McCarl, B. A. and D. Gillig. <u>Notes on Formulating and Solving Computable</u> <u>General Equilibrium Models within GAMS</u>.

Miller, R. E. and P. D. Blair. Input-Output Analysis: Foundations and Extensions. Prentice-Hall, 1985.

Shoven, J. B. and J. Whalley. "Applying general equilibrium." *Surveys of Economic Literature*, Chapter 5, 1998.