Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig

\&

Bruce A. McCarl
Department of Agricultural Economics Texas A\&M University

Course Outline

- Overview of CGE
- An \|ntroduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models \& Calibration
- Incorporating a trade \& a basic CGE application
- Evaluating impacts of policy changes and casting nested functions \& a trade in GAMS
- Mixed Complementary Problems (MCP)

This Week's Road Map

- Add-on a simple market clearing problem via GAMS
- Casting CGE via GAMS
: Set definitions
: Data entry
: Variable \& Equation specifications
: Identifying complementarity relationship
: Normalizing prices
: Solution reports
: Comparative analysis

Formulation of a Simple Market Clearing

- Demand:
$\mathrm{P} \geq \mathrm{Pd}=6-0.3^{*} \mathrm{Qd}$
- Supply:
$P \leq P s=1+0.2^{*}$ Qs
- Equilibrium: Qs $\geq \mathbf{Q d}$ and $P, Q s, Q d \geq 0$

2 commodities: corn and wheat

Corn Equilibrium: $\quad \mathbf{Q s}_{\mathrm{c}} \geq \quad \mathrm{Qd}_{\mathrm{c}}$
Wheat Equilibrium: $\quad \mathbf{Q s}_{w} \geq \mathbf{Q d}_{w}$
P_{c}, P_{w}, Qd $_{c}, Q d_{w}, Q_{c}$, and $Q s_{w} \geq 0$

Formulation of a Simple Market Clearing

Set Definition \& Data Entry

SEI Comodities commodities used in the model /Comn, Wheat/ ;
SEI Curvetype supply and demand intercept and slope / Supply, Demand/;
TABLE intercepts (Curvetype, Commodities) supply and demand intercept terms

	Corn	Wheat
demand	6	8
supply	1	2 ;

TABLE Slopes (Curvetype, Cominodities, Commodities) supply and demand slope te Corn Wheat
Demand. Corn -. 3 -. 1
Demand. Wheat -. $07-.4$
Supply.Corn . 5 . 1
Supply. Wheat . 1 . 3

Formulation of a Simple Market Clearing

STEPS

1. Set definitions
2. Data entry
3. Variables specification
4. Equations specification
a. declaration
b. algebraic structure specification
5. Model statement
6. Solve statement

Set Definitions

In algebraic modeling, we commonly have subscripts.
In GAMS, the corresponding items are sets. A set definition has several potential parts.

SET ItemName / element1 element2

optional explanatory text for item optional explanatory text for element , optional explanatory text for element / ;

SET or SETS	to start
ItemName	a unique name

optional explanatory text for item
I opening slash

Element names
optional explanatory text for element
, or line feed to separate elements
closing slash
a closing ;

Set Definitions

In our example:

SET Commodities conmodities used in the model
SET Curvetype supply and demand intercept and slope

Define
set names

Text comments, Optional in command
/Supply, Demand/ ;

Assign elements to the sets

Set Definitions

Another example:

SET SECTORS sectors of the economy
/ Steel steel mining sector (in millions of tons sold)
Energy energy sector (in millions of btus sold)
Coal coal sector (in millions of tons sold)
I;

1

Element explanatory text

Note: the explanatory text must not exceed 80 characters and must all be contained on the same line as the identifier it describes.

Set Definitions- Alias

ALIAS is used to give another name to previously defined sets.

Data Entry

Data are entered via three different types of GAMS commands

1) Scalar - for items that are not set dependent
2) Parameters - for items that are vectors (can be multidimensional)
3) Tables - for items with 2 or more dimensions

Data Entry - SCALAR commands

Scalar commands:

Basic format:
SCALAR ItemName optional text / value /;

In the CGE example:
SCALAR Incometax Household tax level / 0.00 /;

Data Entry - PARAMETER commands

Basic format:
PARAMETER ItemName(setdependency) optional text
/ element1 value1, element2 value2 / ;

In the CGE example:
PARAMETER
SigmaC(HouseHolds) Household elas. of substitution
/ NonFarmer 1.5

Farmer
0.75 /

Phi(Sector)
/ Food
NonFood
Production scale parameter 1.5
2.0 / ;

Data Entry - TABLE commands

Basic format:

TABLE ItemName(set1dep,set2dep) optional text
set2elem1 set2elem2

set1element1	value11	value12
set1element2	value12	value22

In our example:
TABLE Intercept(Curvetype,Commodities) intercept term Corn Wheat $\quad \square$ Elements from
Dem
Sup
\square

Elements from Curvetype set (1st set)

Data Entry - TABLE commands

More than two dimensional data entry using TABLE

Define table name

TABLE Slopes (Curvetype, Commodities, Commodities)

		Corn	Wheat
Demand	Com	-0.3	-0.1
Demand	Wheat	-0.07	-0.4
supply	Com	0.5	0.1
Supply	Wheat	. 1	0.3

Elements from Elements from
Curvetype set Commodities set (2nd set) (1st set)

Formulation - Variable Declarations

Basic format:
VARIALBE VarName1(setdependency) optional text
VarName2(setdependency) optional text
to declare variables $<$ or ≥ 0
Or
POSITIVE VARIABLE

> VarName1(setdependency) optional text
> VarName2(setdependency) optional text

To declare ≥ 0 variables

Formulation - Variable Declarations

In our example:

POSITIVE VARIABLES

```
    P(Commodities)
    Qd(Commodities)
    Qs(Commodities)
```

$$
\begin{aligned}
& \text { Equilibrium price } \\
& \text { Quantity demanded } \\
& \text { Quantity supply }
\end{aligned}
$$

Note that this defines a variable for each case in the set commodities and thus encompasses the cases:

$$
P_{c}, P_{w}, Q_{c}, Q d_{w}, Q s_{c}, Q s_{w} \geq 0
$$

Formulation - Equation Declarations

Basic format:
Equation EqName1(setdependency) optional text
EqName2(setdependency) optional text

Formulation - Equation Declarations

In our example:

EQUATIONS

```
FDemand(Commodities)
PSupply(Commodities)
Equilibrium(Commodities)
```

```
Demand equation
```

Demand equation
Supply equation
Supply equation
Equilibrium equation ;

```
Equilibrium equation ;
```

Note that this defines an equation for each case in the set commodities

Formulation - Equation Specifications

General Structure:

DeclaredEquationName(SetDependency).
LHSalgebra EquationRelationType RHSalgebra;
where
DeclaredEquationName was in an equation declaration with this setdependency.

LHSalgelbra and RHSalgebra can contain any mixture of variables, parameters, and data in algebraic relations.

EquationRelationType tells equality or inequality nature
; are mandatory

Formulation - Equation Specifications

Algebraic Structure

■ Demand: $\quad \begin{array}{ll} & P_{c} \geq P d_{c}=6-0.3^{*} Q d_{c}-0.1 * Q d_{w} \\ & P_{w} \geq P d_{w}=8-0.07^{*} Q d_{c}-0.4^{*} Q d_{w}\end{array}$

```
Pdemand(commodities)..
P(commodities)
    =G=
intercepts("demand",commodities)
    + SUM(commodityr
        slopes("demand", commodities,commodity)
```

Quotes " " are used to select a specific set elements. Recall: ALIAS(commodity,commodities);

Summation Digression

SUM(index1, SUM(index2, names(index1,index2)))
SUM($\mathbf{j}, \operatorname{SUM}(\mathbf{i}, \mathrm{X}(\mathrm{j}, \mathrm{i}))$)
or SUM ($\mathrm{j}, \mathrm{i}), \mathrm{X}(\mathrm{j}, \mathrm{i})$)

Formulation - Equation Specifications

Algebraic Structure

- Supply:

$$
\begin{aligned}
& P s_{c}=1+0.5^{*} Q s_{c}+0.1 * Q s_{w} \geq P_{c} \\
& P s_{w}=2+0.1 * Q s_{c}+0.3^{*} Q s_{w} \geq P_{w}
\end{aligned}
$$

```
Psupply(commodities)..
    intercepts("supply",commodities)
        + SUM(commodity,
            slopes("supply", commodities,commodity)
            *Qs(commodity))
    =G=
    P(commodities);
```


Formulation - Equation Specifications

Algebraic Structure

■ Equilibrium: $Q_{s_{c}} \geq$ Qd $_{c}$

$$
\mathbf{Q s}_{w} \geq \mathbf{Q d}_{w}
$$

Equilibrium(commodities)..
Qs (commodities)
= $G=$
Qd(commodities) ;

Formulation - Model and Solve Statement

MODEL PROBLEM

$$
\begin{aligned}
& \text { /Pdemand } 2 \text { ed } \\
& \text { Esupply Qs } \\
& \text { Equilibrium, }
\end{aligned}
$$

SOLVE PROBLEM USING MCE;

Recall: MCP Requirements

- consistent dimension (sets) of complementary variables and equations
- no variable is complementary with more than one equation or vice versa
- every variable and equation has a complementary partner

POSITIVE VARIABLES

```
    P(Commodities)
    Qd(Commodities)
    Qs(Commodities)
```


EQUATIONS

PDemand (Commodities)
PSupply (Commodities)
Equilibrium (Commodities)

Solution

	LOTER	LEVEL	UPEER	MARGINAL
Corn	6.000	6.000	+INF	4.373
wheat	8.000	8.000	+INF	7.510
	PSupply	Supply equation		
	LOTUER	LEVEL	UPEER	MARGINAL
Corn	-1.000	-1.000	+INF	4.373
wheat	-2.000	-2.000	+INF	7.510
	Equilib	um Equilibrium equation		
	LOTIER	LEVEL	UPPER	MARGINAL
Corn	.	-	+INF	3.937
Theat			+INE	4.690

Solution

	LOTUER	LEVEL	UPPER	MARGINAL
Corn Wheat	.	3.937 4.690	$\begin{aligned} & \text { +INE } \\ & +I N F \end{aligned}$.
---- VAR Qd Quantity demanded				
Corn 相heat	LOTEER	LEVEL	UPPER	MARGINAL
	.	4.373	+INF	.
	.	7.510	+INE	.
Quantity supply				
	LOWER	LEVEL	UPPER	MARGINAL
Corn		4.373	+INF	.
相heat		7.510	+INF	

Casting CGE in GAMS

Lets set up a model depicting a $2 \times 2 \times 2$ economy with

Two factors of production (labor and capital)
Two commodities produced (food and nonfood)
Two household classes (farmer and nonfarmer)

STEPS

1. Set definitions
2. Data entry
3. Variables specification
4. Equations specification
a. declaration
b. algebraic structure specification

Set Definitions

Sets definition for a $2 \times 2 \times 2$ CGE model

SET

Factor	Factors of production / Labor, Capital /
Sector	Producing industries $/$ / Food, NonFood /
Households	Household types
/ Farmer,NonFarmer /;	

Data Entry - TABLE commands
TABLE Alpha(Sector,HouseHolds) Consumption share NonFarmer Farmer

Food	0.5	0.3
NonFood	0.5	0.7 ;

TABLE Endowment(Factor,HouseHolds) Factor Endow NonFarmer Farmer

Labor
Capital

0
60
25
0 ;

	Non-Farmer	Farmer
Food	0.5	0.3
Non-Food	0.5	0.7
Labor	0.0	60
Capital	25	0.0

Data Entry - Direct Assignment
Basic format:

PARAMETER ItemName(set1dep,set2dep) optional text ; ItemName(set1dep,set2dep) $=0$;

In our example:
PARAMETER TaxRate(Factor,Sector) Consumption share ;
TaxRate(Factor,Sector) $=0$;

CGE Variable Specification

POSITIVE VARIABLE

FactorPrice(Factor)
FactorQuan(Factor,Sector)
ComPrice(Sector)
DemCommod(Households,Sector) Demand by household

Production(Sector)
HHIncome(Households)
TaxRevenue

Prices for factors
Factors used by a sector
Prices of commodities

Production quantity level
Household income
Government tax revenue

CGE Equation Specification

EQUATION

FactorMkt(Factor)
FactorDem(Factor,Sector)
CommodMkt(Sector)

Factor market balances
Factor demand by a sector
Commodity market balance

CommodDem(Households,Sector) Commodity demand

Profit(Sector)
Income(households)
GovBal

Zero profit condition
Household budget
Government budget

Equation Specification

1. Supply-Demand identities for each factor market

The total demand is less than or equal to the total supply in every factor market.

$$
\left.\begin{array}{c}
\sum_{\boldsymbol{j}} \boldsymbol{L}_{\boldsymbol{j}} \leq \sum_{h} \bar{L}_{h} \\
\sum_{\boldsymbol{j}} \boldsymbol{K}_{\boldsymbol{j}} \leq \sum_{h} \overline{\boldsymbol{K}}_{h}
\end{array}\right\} \Rightarrow \sum_{\boldsymbol{j}} \boldsymbol{F}_{\boldsymbol{f} \boldsymbol{j}} \leq \sum_{h} \bar{F}_{f h}
$$

FactorMkt(Factor)..
SUM(Sector,FactorQuan(Factor,Sector))
=L=
SUM(HouseHolds,Endowment(Factor,HouseHolds))
2. Supply-Demand identities for each output market

CommodMkt(Sector)..
SUM(Households,DemCommod(Households,Sector))

+ SUM(OtherSector, IntermediateUse(Sector,OtherSector)
*Production(OtherSector))
+ GovernmentPurch(Sector)*TaxRevenue/ComPrice(Sector)
=L= Production(Sector) ;

$$
\sum_{h} \boldsymbol{X}_{h j}+\sum_{j 1} \mathrm{a}_{\mathrm{j}, \mathrm{j} 1} Q_{j 1}+s_{j} R / P_{j} \leq \boldsymbol{Q}_{\boldsymbol{j}}
$$

CommodMkt(Sector)..
SUM(Households,DemCommod(Households,Sector))

+ SUM(OtherSector,
IntermediateUse(Sector,OtherSector)
*Production(OtherSector))
+ GovernmentPurch(Sector)*TaxRevenue/ComPrice(Sector)
=L=
Production(Sector)

3. Zero Profit Conditions

$$
\begin{aligned}
& \sum_{j 1} P_{j 1} a_{j 1, j} Q_{j}+\sum_{f}\left(1+t_{f j}\right) W_{f} F_{f j} \\
& \geq P_{j} Q_{j}
\end{aligned}
$$

$$
\sum_{j 1} P_{j 1} a_{j 1, j} Q_{j}+\sum_{f}\left(1+t_{f j}\right) W_{f} F_{f j} \quad \geq P_{j} Q_{j}
$$

Profit(Sector)..

+ SUM(OtherSector,
ComPrice(OtherSector)*IntermediateUse(OtherSector,Sector)
* Production(Sector))
+ SUM(Factor, (1+TaxRate(Factor,Sector))*FactorPrice(Factor)
*FactorQuan(Factor,Sector))
=G=
ComPrice(Sector)* Production(Sector) ;

4. Factor demand by producers

$$
\begin{aligned}
F_{f j}= & Q_{j} \phi_{j}^{\left(\sigma_{j}-1\right)} \\
& \times\left(\delta_{f j}\left(\sum_{f^{\prime}}\left(\delta_{f_{j}^{\prime}}^{\sigma_{j}}\left(W_{f},\left(1+\boldsymbol{t}_{f^{\prime} j}\right)\right)^{\left(1-\sigma_{j}\right)}\right)^{1 /\left(1-\sigma_{j}\right)} / \phi_{j}\right) /\left(W_{f}\left(1+t_{f j}\right)\right)\right)^{\sigma_{j}}
\end{aligned}
$$

FactorDem(Factor,Sector)..
FactorQuan(Factor,Sector)

```
=E=
Production(Sector)*Phi(Sector)**(sigma(Sector)-1)
*( Delta(Factor,Sector)
    *( SUM(Factor1,Delta(Factor1,Sector)**sigma(Sector)
                *(FactorPrice(Factor1)*(1 + taxrate(Factor1,Sector)))
                **(1 - sigma(Sector))
            )**(1/(1-sigma(Sector)))/Phi(Sector)
    ) / (FactorPrice(Factor) * (1+taxrate(Factor,Sector)))
    ) **sigma(Sector) ;
```

5. Product demand by households

$$
X_{h j}=\frac{\alpha_{j h} \text { Income }_{h}}{P_{j}^{\sigma_{h}} \sum_{j^{\prime}}\left(\alpha_{j^{\prime} h}\left(P_{j}\right)^{1-\sigma_{h}}\right)}
$$

CommodDem(Households,Sector)..
DemCommod(Households,Sector)
=E=
(Alpha(Sector,HouseHolds) * HHIncome(HouseHolds))
I (ComPrice(Sector)**sigmaC(HouseHolds)

* SUM(Sector1,

Alpha(Sector1,HouseHolds)

* ComPrice(Sector1)**(1-SigmaC(HouseHolds)))
);

6. Household income constraint

Income(HouseHolds)..
HHIncome(HouseHolds)
=G=
SUM(Factor,Endowment(Factor,HouseHolds)

* FactorPrice(Factor))
- incometax(HouseHolds)*

SUM(Factor,Endowment(Factor,HouseHolds)

* FactorPrice(Factor))
+ TaxShare(HouseHolds) * TaxRevenue

Income $_{h} \geq \sum_{f} \bar{F}_{f j} W_{f}-\boldsymbol{t}_{\boldsymbol{h}} \sum_{f} \bar{F}_{f j} W_{f}+s_{h} R$

Income(HouseHolds)..
HHIncome(HouseHolds)
$=\mathrm{G}=$
SUM(Factor,Endowment(Factor,HouseHolds)

* FactorPrice(Factor))
- incometax(HouseHolds)*

SUM(Factor,Endowment(Factor,HouseHolds)

* FactorPrice(Factor))
+ TaxShare(HouseHolds) * TaxRevenue

7. Government income constraint

GovBal..

TaxRevenue
=L=
SUM(Households, Incometax(Households) *
SUM(Factor,Endowment(Factor,HouseHolds)* FactorPrice(Factor)))

+ SUM((Factor,Sector),TaxRate(Factor,Sector) * FactorPrice(Factor) *FactorQuan(Factor,Sector)) ;

$$
\begin{aligned}
\boldsymbol{R} \leq & \sum_{h}\left(t_{h} \sum_{f} \overline{\mathbf{F}}_{f h} W_{f}\right) \\
+ & \sum_{f j} t_{f j} W_{f} F_{f j}
\end{aligned}
$$

GovBal..

TaxRevenue

=L=
SUM(Households, Incometax(Households) *
SUM(Factor,Endowment(Factor,HouseHolds)* FactorPrice(Factor)))

+ SUM((Factor,Sector), TaxRate(Factor,Sector) * FactorPrice(Factor)
*FactorQuan(Factor,Sector)) ;

Model Complementarity Relationship

MODEL CGEModel

/ FactorMkt.FactorPrice FactorDem. FactorQuan
Commoddem . DemCommod
CommodMkt. ComPrice
Profit. Production
Income. HHincome
Govbal. TaxRevenue
CommodDem. DemCommod I;

Equation Name	Variable Name
Factollkt(Factor)	FactorPrice(Factor)
FactorDem(Factor,Sector)	FactorQuan(Factor,Sector)
CommodMkt(Sector)	ComPrice(Sector)
Profit(Sector)	Production(Sector)
Income(households)	HHIncome(households)
GovBal	TaxRevenue
CommodDem(Households,Sector)	DemCommod(Households,Sector)

Other Features

Normalizing Prices

Recall: a property of our model is that we are homogenous of degree zero in prices, thus an infinite number of prices will solve above equations. To overcome this problem, we need to normalize on something. We can set

- the income for one household equal to one,
- or the price of a commodity to one.

Recall only relative prices affect behavior in CGE, so it does not matter which price is chosen. FactorPrice.FX("Labor")= 1;

In the $2 \times 2 \times 2$ example, labor price is set as numeraire.
Solution example:

	NoTax	Tax
Labor	1.00	1.00
Capital	1.37	1.13
Food	1.40	1.47
NonFood	1.09	1.01

Other Features

Starting points, bounds, and SOLVE statements

To avoid numerical problems with lots of zero variables and to speed up convergence, starting points (*.L) and lower bounds (*.LO) are needed.

FactorPrice.L(Factor) = 1;
FactorPrice.LO(Factor) $=0.0001$;

The CGE model is best solved with the PATH solver.
(http://www.gams.com/solver.htm\#PATH)

OPTION MCP = PATH ; => choose PATH as the solver SOLVE CGEModel USING MCP ;

Solutions

Status Reports

After the solver executes, GAMS prints out a brief "SOLVE SUMMARY" indicating "SOLVER STATUS" and the "MODEL STATUS".

```
SOLVE S UMMA R Y
```

```
MODEL CGEModel
TYPE MCP
SOLVER PATH FROM LINE }30
```

```
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
```

RESOURCE USAGE, LIMIT	0.660	1000.000
ITERATION COUNT, LIMIT	4	10000
EVALUATION ERRORS	0	0

Solutions

Solution Reports

The report summary gives the total number of non-optimal, infeasible, and unbounded.

```
**** REPORT SUMMARY : 0 NONOPT
O INFEASIBLE
O UNBOUNDED
O REDEFINED
O ERRORS
```

Solutions can be presented in several ways:

1. GAMS solution output format as above
2. Addition of DISPLAY commands to write out values associated with identified sets, parameters, variables, and equations
3. Added computed reports using values from solutions

Solutions

1. A standard GAMS solution format

	LOTER	LEVEL	UPPER	MARGINAL
Food			+INF	24.942
NonFood			+INF	54.378
---- VAR	Production	Production quantity levels		
	LOTEER	LEVEL	UPPER	MARGINAL
Food		24.942	+INF	
NonFood		54.378	+INF	

The single dot "." represents zeros; INF = infinity

Solutions

2. A display command

DISPLAY DemCommod.L, Production.L, Profit.M, Sigma;

Solutions

You can also control precision in displays
OPTION DECIMALS = 0 ;
DISPLAY DemCommod .L, Production.L ;

NonFarmer	er 12	17	
Farmer	13	38	
-- 3	309 VARIABLE	Production. L	Production quantity levels
Food 2	25, NonFood	d 54	
OPTION DECIMALS = 2 ;			
309 VARIABLE		DemCommod.L	Commodity demand by households
	Food	NonFood	

NonFarmer	11.51	16.67
Farmer	13.43	37.70

Solutions

You can compute reports involving solution variable values

PARAMETER

ProdRev(Sector) \quad Producer revenues;
$\operatorname{ProdRev(Sector)~}=$ Production.L(Sector) ${ }^{*}$ ComPrice.L(Sector) ;
DISPLAY ProdRev ;

Comparative Analysis

Two ways to conduct comparative analysis

1. Use multiple GAMS submissions or multiple solves generating report writing output and then manually compare the analysis results
2. Use the GAMS LOOP procedure and set up a comparative scenario analysis system that creates cross scenario comparison tables

Comparative Analysis

1. Use multiple GAMS submissions

PARAMETER

TaxRate(Factor,Sector) Tax rates affect factor prices
TaxRate(Factor,Sector) = 0 ;
OPTION MCP = PATH ; SOLVE CGEModel USING MCP ;

TaxRate("Capital","Food") = 0.5 ;
SOLVE CGEModel USING MCP ;

The model is first solved at the original TaxRate 0.
\rightarrow Then the TaxRate is changed to equal 0.5 and model is solved again with the altered TaxRate in effect doing a comparative static analysis of solution sensitivity to TaxRate.

Comparative Analysis

Report writing commands always use values from the most recent
solution, so one must save the data if comparative reports are desired by creating parameter to store the report data.

SOLVE CGEModel USING MCP ;

PARAMETER Compare(Households,Sector,*) ;
Compare(Households,Sector,"NoTax")
= DemCommod.L(Households,Sector);

> TaxRate("Capital","Food") = 0.1 ;
> SOLVE CGEModel USING MCP ;
> Compare(Households,Sector,"Tax10\%")
> = DemCommod.L(Households,Sector) ;

TaxRate("Capital","Food") = 0.5 ;
SOLVE CGEModel USING MCP ;
Compare(Households,Sector,"Tax50\%")
= DemCommod.L(Households,Sector) ;

Comparative Analysis

DISPLAY Compare;

---- 754 PARAMETER Compare consumption

	NoTax	Tax10\%	Tax50\%
NonFarmer.Food	11.51	10.83	8.99
NonFarmer.NonFood	16.67	16.47	15.83
Farmer \quad Food	13.43	13.46	13.40
Farmer \quad.NonFood	37.70	38.72	41.48

Comparative Analysis

2. Use the GAMS LOOP procedure

The code contains a LOOP which causes GAMS to repeat execution of statement enclosed in the parentheses defining the LOOP .

LOOP(Scenario,
TaxRate(Factor,Sector) = sTaxRate(Factor,Sector);
TaxRate(Factor,Sector) = scenTax(Factor,Sector,Scenario) ;

SOLVE CGEModel USING MCP ;

Compare("TaxRate",Factor,Sector,Scenario)
= TaxRate(Factor,Sector) ;
Compare("Consumption",Households,Sector,Scenario)
= DemCommod.L(Households,Sector) ;
OPTION Compare:2:3:1; DISPLAY Compare;);

Comparative Analysis

2. Use the GAMS LOOP procedure (Con't)

SET Scenario	NoTax	NoTax
	Tax10	"10\% Tax on Factor"
	Tax50	"50\% Tax on Factor"

TABLE ScenTax(Factor,Sector,Scenarios)

	NoTax	Tax10	Tax50
Labor.Food	0	0.0	0.0
Labor.NonFood	0	0.0	0.0
Capital. Food	0	0.1	0.5
Capital.NonFood	0	0.0	0.0 ;

PARAMETER

Compare(*,*,*,*) Saving comparative report sTaxRate(Factor,Sector) save tax rate
sTaxRate(Factor,Sector) = TaxRate(Factor,Sector);

Comparative Analysis

DISPLAY Compare;

---- 352 PARAMETER Compare Saving comparative report
NoTax Tax10\% Tax50\%

TaxRate \quad.Capital \quad.Food		0.10	0.50	
Consumption.NonFarmer.Food	11.51	10.83	8.99	
Consumption.NonFarmer.NonFood	16.67	16.47	15.83	
Consumption.Farmer	.Food	13.43	13.46	13.40
Consumption.Farmer	.NonFood	37.70	38.72	41.48

Comparative Analysis

Advantage of using the GAMS LOOP procedure

Comparative Analysis

---- 352 PARAMETER Compare Saving comparative report

	NoTax	Tax10	Tax50	Tax70	Tax80	Tax100
TaxRate.Capital.Food	0	0.10	0.50	0.70	0.80	1.00
Consumption.NonFarmer.Food	11.51	10.83	8.99	8.39	8.13	7.70
Consumption. NonFarmer.NonFood	16.67	16.47	15.83	15.58	15.47	15.27
Consumption. Farmer	.Food	13.43	13.46	13.40	13.32	13.28
Consumption. Farmer	.NonFood	37.70	38.72	41.48	42.37	42.74

- Casting CGE via GAMS

1. Sets definition \& data entry
2. Variables \& equation specifications
3. Model complementarity relationship
4. Solution reports
5. Comparative analysis

Next:

- Hierarchical (nested) function \& functional forms
- Social Accounting Matrices
- Input-output table
- Building benchmark equilibrium data sets
- Parameters calibration

References

Brooke, A., D. Kendrick, and A. Meeraus. "GAMS: A User's Guide".

Ferris, M. C. and J. S. Pang. "Engineering and Economic Applications of Complementarity Problems." SIAM Review, 39:669-713, 1997.

McCarl, B. A. and D. Gillig. "Notes on Formulating and Solving Computable General Equilibrium Models within GAMS."

Shoven, J. B. and J. Whalley. "Applying general equilibrium." Surveys of Economic Literature, Chapters 3 and 4, 1998.

Shoven, J. B. and J. Whalley. "Applied General-Equilibrium Models of Taxation and International Trade: An Introduction and Survey." J. Economic Literature, 22:1007-1051, 1984.

