Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig & Bruce A. McCarl

Department of Agricultural Economics Texas A&M University

- Overview of CGE
- An Introduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models & Calibration
- Incorporating a trade & a basic CGE application
- Evaluating impacts of policy changes and casting nested functions & a trade in GAMS
- Mixed Complementary Problems (MCP)

- Add-on a simple market clearing problem via GAMS
- Casting CGE via GAMS
 - : Set definitions
 - : Data entry
 - : Variable & Equation specifications
 - : Identifying complementarity relationship
 - : Normalizing prices
 - : Solution reports
 - : Comparative analysis

Formulation of a Simple Market Clearing

Demand:Supply:	P ≥ Pd = 6 - 0.3*Qd P ≤ Ps = 1 + 0.2*Qs
Equilibrium:	$\mathbf{Qs} \geq \mathbf{Qd}$ and $\mathbf{P}, \mathbf{Qs}, \mathbf{Qd} \geq 0$
2 comm	odities: corn and wheat
Corn Demand:	$P_{c} \geq Pd_{c} = 6 - 0.3*Qd_{c} - 0.1*Qd_{w}$
Wheat Demand:	$P_{w} \ge Pd_{w} = 8 - 0.07*Qd_{c} - 0.4*Qd_{w}$
Corn Supply:	$P_{c} \leq Ps_{c} = 1 + 0.5*Qs_{c} + 0.1*Qs_{w}$
Wheat Supply:	$P_{w} \leq Ps_{w} = 2 + 0.1*Qs_{c} + 0.3*Qs_{w}$
Corn Equilibrium:	Qs _c ≥ Qd _c
Wheat Equilibrium:	$Qs_w \ge Qd_w$
P _c , P _w , Qd _c , Qd _w , Qs _c	, and <mark>Qs_w ≥ 0</mark>

Formulation of a Simple Market Clearing

Set Definition & Data Entry

SET Commodities commodities used in the model /Corn,Wheat/ ;
SET Curvetype supply and demand intercept and slope /Supply,Demand/;

 TABLE intercepts (Curvetype, Commodities)
 supply and demand intercept terms

 Corn
 Wheat

 demand
 6

 supply
 1
 2;

TABLE Slopes(Curvetype, Commodities, Commodities) supply and demand slope teCorn WheatDemand.Corn -.3 -.1Demand.Wheat -.07 -.4Supply.Corn .5 .1Supply.Wheat .1 .3 ;

Formulation of a Simple Market Clearing

STEPS

1. Set definitions

2. Data entry

- 3. Variables specification
- 4. Equations specification
 - a. declaration
 - b. algebraic structure specification
- 5. Model statement
- 6. Solve statement

Set Definitions

In algebraic modeling, we commonly have subscripts.

In GAMS, the corresponding items are sets. A set definition has several potential parts.

SET ItemName	optional explanatory text for item
/ element1	optional explanatory text for element,
element2	optional explanatory text for element / ;
SET or SETS	to start
ItemName optional explanatory	a unique name text for item

opening slash

Element names optional explanatory text for element

, or line feed	to separate elements
1	closing slash
,	a closing ;

In our example:

Another example:

/;

SET SECTORS sectors of the economy

- **/ Steel steel mining sector (in millions of tons sold)**
- **Energy** energy sector (in millions of btus sold)
- **Coal** coal sector (in millions of tons sold)

Element explanatory text

Note: the explanatory text must not exceed 80 characters and must all be contained on the same line as the identifier it describes.

ALIAS is used to give another name to previously defined sets.

ALIAS (Commodity, Commodities); "Commodities" is like a j and j' in mathematical notation. Data are entered via three different types of GAMS commands

- 1) Scalar for items that are not set dependent
- 2) Parameters for items that are vectors (can be multidimensional)
- 3) Tables for items with 2 or more dimensions

Scalar commands:

Basic format:

SCALAR ItemName optional text / value / ;

In the CGE example:

SCALAR Incometax Household tax level / 0.00 / ;

Data Entry - PARAMETER commands

Basic format:

PARAMETER ItemName(setdependency) optional text / element1 value1.

element1value1 ,element2value2 / ;

In the CGE example:

NonFood

PARAMETER

SigmaC(HouseHolds)	Household elas. of substitution
/ NonFarmer	1.5
Farmer	0.75 /
Phi <mark>(Sector)</mark>	Production scale parameter
/ Food	1.5

2.0

13

Data Entry – TABLE commands

Basic format:

TABLE	ItemName(set1dep,set2dep)	optional text
-------	---------------------------	---------------

	set2elem1	set2elem2	
set1element1	value11	value12	
set1element2	value12	value22	

In our example:

TABLE Intercept(Curvetype,Commodities) intercept term

	Corn	Wheat	$ \longrightarrow $	Elements from
Demand	6	8		(2nd set)
Supply	1	2	;	
Ţ				
Elements from	n <mark>Curvetype</mark> se	et		
(1st set)				1.4

•

Data Entry – TABLE commands

More than two dimensional data entry using TABLE

Basic format:

VARIALBE VarName1(setdependency) optional text VarName2(setdependency) optional text

to declare variables $< \text{ or } \ge 0$

Or

....

....

POSITIVE VARIABLE

VarName1(setdependency) optional text

VarName2(setdependency) optional text

To declare > 0 variables

In our example:

POSITIVE VARIABLES

P(Commodities) Qd(Commodities) Qs(Commodities) Equilibrium price Quantity demanded Quantity supply

Note that this defines a variable for each case in the set commodities and thus encompasses the cases:

 $P_c, P_w, Qd_c, Qd_w, Qs_c, Qs_w \geq 0$

Formulation – Equation Declarations

Basic format:

. . . .

EquationEqName1(setdependency) optional textEqName2(setdependency) optional text

In our example:

EQUATIONS

PDemand(Commodities) PSupply(Commodities) Equilibrium(Commodities)

Demand equation Supply equation Equilibrium equation ;

Note that this defines an equation for each case in the set commodities

Formulation – Equation Specifications

General Structure:

DeclaredEquationName(SetDependency).. LHSalgebra EquationRelationType RHSalgebra ;

where

DeclaredEquationName was in an equation declaration with this **setdependency**.

LHSalgebra and **RHSalgebra** can contain any mixture of variables, parameters, and data in algebraic relations.

EquationRelationType tells equality or inequality nature

; are mandatory

Formulation – Equation Specifications

Algebraic Structure

Demand: $P_{c} \geq Pd_{c} = 6 - 0.3*Qd_{c} - 0.1*Qd_{w}$ $P_{w} \geq Pd_{w} = 8 - 0.07*Qd_{c} - 0.4*Qd_{w}$

Quotes " " are used to select a specific set elements. Recall: ALIAS(commodity,commodities);

Summation Digression

Formulation – Equation Specifications

Algebraic Structure

```
Supply: Ps_c = 1 + 0.5*Qs_c + 0.1*Qs_w \ge P_c
Ps_w = 2 + 0.1*Qs_c + 0.3*Qs_w \ge P_w
```

Formulation – Equation Specifications

Algebraic Structure

Equilibrium: $Qs_c \ge Qd_c$ $Qs_w \ge Qd_w$

```
Equilibrium(commodities)..
Qs(commodities)
=G=
Qd(commodities) ;
```

Formulation – Model and Solve Statement

Recall: MCP Requirements

- consistent dimension (sets) of complementary variables and equations
- no variable is complementary with more than one equation or vice versa
- every variable and equation has a complementary partner

POSITIVE VARIABLES

P(Commodities) Qd(Commodities) Qs(Commodities)

EQUATIONS

PDemand (Commodities) PSupply (Commodities) Equilibrium (Commodities)

Solution

EQU	PDemand	Demand eq	uation	
	LOWER	LEVEL	UPPER	MARGINAL
Corn Wheat	6.000 8.000	6.000 8.000	+INF +INF	4.373 7.510
EQU	PSupply	Supply eq	uation	
	LOWER	LEVEL	UPPER	MARGINAL
Corn Wheat	-1.000 -2.000	-1.000 -2.000	+INF +INF	4.373 7.510
EQU	Equilibr	ium Equil	ibrium eq	uation
	LOWER	LEVEL	UPPER	MARGINAL
Corn Wheat			+INF +INF	3.937 4.690

Solution

VAR	P Equili	orium pric	e	
	LOWER	LEVEL	UPPER	MARGINAL
Corn Wheat		3.937 4.690	+INF +INF	
VAR	Qd Quant:	ity demand	led	
	LOWER	LEVEL	UPPER	MARGINAL
Corn Wheat		4.373 7.510	+INF +INF	•
VAR	Qs Quant:	ity supply		
	LOWER	LEVEL	UPPER	MARGINAL
Corn Wheat		4.373 7.510	+INF +INF	•

Lets set up a model depicting a 2x2x2 economy with

Two factors of production (labor and capital) Two commodities produced (food and nonfood) Two household classes (farmer and nonfarmer)

STEPS

- 1. Set definitions
- 2. Data entry
- 3. Variables specification
- 4. Equations specification
 - a. declaration
 - b. algebraic structure specification

Sets definition for a 2x2x2 CGE model

SET

Factor	Factors of production	/ Labor, Capital /
Sector	Producing industries	/ Food, NonFood /
Households	Household types	<pre>/ Farmer,NonFarmer / ;</pre>

Data Entry – TABLE commands

TABLE Alpha(Sector, HouseHolds) Consumption share

	NonFarmer	Farmer
Food	0.5	0.3
NonFood	0.5	0.7;

TABLE Endowment(Factor,HouseHolds) Factor EndowNonFarmer FarmerLabor060Capital250 ;

_	Non-Farmer	Farmer	
Food	0.5	0.3	
Non-Food	0.5	0.7	
Labor	0.0	60	
Capital	25	0.0	

Basic format:

PARAMETER ItemName(set1dep,set2dep) optional text ; ItemName(set1dep,set2dep) = 0;

In our example:

PARAMETER TaxRate(Factor,Sector) Consumption share ; TaxRate(Factor,Sector) = 0 ;

31

CGE Variable Specification

POSITIVE VARIABLE

FactorPrice(Factor)Prices for factorsFactorQuan(Factor,Sector)Factors used by a sectorComPrice(Sector)Prices of commoditiesDemCommod(Households,Sector)Demand by householdProduction(Sector)Production quantity levelHHIncome(Households)Household incomeTaxRevenueGovernment tax revenue

CGE Equation Specification

EQUATION

FactorMkt(Factor)Factor market balancesFactorDem(Factor,Sector)Factor demand by a sectorCommodMkt(Sector)Commodity market balanceCommodDem(Households,Sector)Commodity demandProfit(Sector)Zero profit conditionIncome(households)Household budgetGovBalGovernment budget

Equation Specification

1. Supply-Demand identities for each factor market

The total demand is less than or equal to the total supply in every factor market.

$$\left. \sum_{\substack{j \leq h \\ j \leq k}} \overline{L}_{h} \atop j \leq k} \right\} \implies \sum_{\substack{j \in K_{fj} \leq k}} \overline{F}_{fj} \leq \sum_{h} \overline{F}_{fh} \atop j \leq k}$$

FactorMkt(Factor).. SUM(Sector,FactorQuan(Factor,Sector)) =L= SUM(HouseHolds,Endowment(Factor,HouseHolds))

2. Supply-Demand identities for each output market

CommodMkt(Sector)..

SUM(Households, DemCommod(Households, Sector))

+ SUM(OtherSector,

IntermediateUse(Sector,OtherSector)

*Production(OtherSector))

+ GovernmentPurch(Sector)*TaxRevenue/ComPrice(Sector)

=L= Production(Sector);

$$\sum_{h} X_{hj} + \sum_{j1} a_{j,j1} Q_{j1} + s_j R/P_j \leq Q_j$$

CommodMkt(Sector)..

SUM(Households,DemCommod(Households,Sector))

+ SUM(OtherSector,

IntermediateUse(Sector,OtherSector)

*Production(OtherSector))

+ GovernmentPurch(Sector)*TaxRevenue/ComPrice(Sector)

=L=

Production(Sector)

3. Zero Profit Conditions

 $\sum_{i} P_{j1} a_{j1,j} Q_j + \sum_{f} (1 + t_{fj}) W_f F_{fj}$ *i*1

 $\geq P_j Q_j$

$$\sum_{j1} P_{j1} a_{j1,j} Q_j + \sum_{j} (1 + t_{fj}) W_f F_{fj} \geq P_j Q_j$$

Profit(Sector)..

 + SUM(OtherSector, ComPrice(OtherSector)*IntermediateUse(OtherSector,Sector) * Production(Sector))
 + SUM(Factor, (1+TaxRate(Factor,Sector))*FactorPrice(Factor) *FactorQuan(Factor,Sector))

=G=

ComPrice(Sector)* Production(Sector) ;

4. Factor demand by producers

$$F_{fj} = Q_j \phi_j^{(\sigma_j - 1)} \times \left(\delta_{fj} \left(\sum_{f'} \left(\sum_{f'} \left(\frac{W_f}{f'_j} (W_f \cdot (1 + t_{fj}))^{(1 - \sigma_j)} \right)^{1/(1 - \sigma_j)} / \phi_j \right) / (W_f (1 + t_{fj})) \right)^{\sigma_j}$$

FactorDem(Factor,Sector).. FactorQuan(Factor,Sector)

=E=

Production(Sector)*Phi(Sector)**(sigma(Sector)-1)

```
*( Delta(Factor,Sector)

*( SUM(Factor1,Delta(Factor1,Sector)**sigma(Sector)

*(FactorPrice(Factor1)*(1 + taxrate(Factor1,Sector)))

**(1 - sigma(Sector))

)**(1/(1-sigma(Sector))) /Phi(Sector)

) / (FactorPrice(Factor) * (1+taxrate(Factor,Sector)))

) **sigma(Sector) ;
```

Note: using ALIAS (f,f');

5. Product demand by households

$$\boldsymbol{X}_{hj} = \frac{\alpha_{jh} \ Income_{h}}{\boldsymbol{P}_{j}^{\sigma_{h}} \sum_{j'} \left(\alpha_{j'h} \left(\boldsymbol{P}_{j'} \right)^{1-\sigma_{h}} \right)}$$

CommodDem(Households,Sector)..

DemCommod(Households,Sector)

=E=

(Alpha(Sector, HouseHolds) * HHIncome(HouseHolds))

/ (ComPrice(Sector)**sigmaC(HouseHolds)

```
* SUM(Sector1,
```

Alpha(Sector1,HouseHolds)

* ComPrice(Sector1)**(1-SigmaC(HouseHolds)))

6. Household income constraint

Income(HouseHolds)..

HHIncome(HouseHolds)

=G=

SUM(Factor,Endowment(Factor,HouseHolds)

* FactorPrice(Factor))

- incometax(HouseHolds)*

SUM(Factor, Endowment(Factor, HouseHolds)

* FactorPrice(Factor))

+ TaxShare(HouseHolds) * TaxRevenue

.

Income_h $\geq \sum_{f} \overline{F}_{fj} W_{f} - t_{h} \sum_{f} \overline{F}_{fj} W_{f} + s_{h} R$

Income(HouseHolds)..

HHIncome(HouseHolds)

=G=

SUM(Factor, Endowment(Factor, HouseHolds)

* FactorPrice(Factor))

- incometax(HouseHolds)*

SUM(Factor, Endowment(Factor, HouseHolds)

* FactorPrice(Factor))

+ TaxShare(HouseHolds) * TaxRevenue

7. Government income constraint

=L=

SUM(Households, Incometax(Households) *

SUM(Factor,Endowment(Factor,HouseHolds)* FactorPrice(Factor)))

+ SUM((Factor,Sector),TaxRate(Factor,Sector) * FactorPrice(Factor)

```
*FactorQuan(Factor,Sector));
```

$$R \leq \sum_{h} \left(t_{h} \sum_{f} \overline{F}_{fh} W_{f} \right) + \sum_{fj} t_{fj} W_{f} F_{fj}$$

GovBal..

TaxRevenue

=L=

SUM(Households, Incometax(Households) *

SUM(Factor,Endowment(Factor,HouseHolds)* FactorPrice(Factor)))

+ SUM((Factor,Sector),TaxRate(Factor,Sector) * FactorPrice(Factor)

*FactorQuan(Factor,Sector));

Model Complementarity Relationship

MODEL CGEModel

/ FactorMkt.FactorPrice FactorDem . FactorQuan Commoddem . DemCommod CommodMkt . ComPrice Profit . Production Income . HHincome Govbal . TaxRevenue CommodDem . DemCommod

1;

45

Equation Name	Variable Name
FactoMkt(Factor)	FactorPrice(Factor)
FactorDem(Factor,Sector)	FactorQuan(Factor,Sector)
CommodMkt(Sector)	ComPrice(Sector)
Profit(Sector)	Production(Sector)
Income(households)	HHIncome(households)
GovBal	TaxRevenue
CommodDem(Households,Sector)	DemCommod(Households,Sector)

Other Features

Normalizing Prices

Recall: a property of our model is that we are homogenous of degree zero in prices, thus an infinite number of prices will solve above equations. To overcome this problem, we need to normalize on something. We can set

- the income for one household equal to one,
- or the price of a commodity to one.

Recall only **relative prices** affect behavior in CGE, so it does not matter which price is chosen. **FactorPrice.FX("Labor")= 1**;

In the 2x2x2 example, labor price is set as numeraire.

Solution example:		NoTax	Tax
	Labor	1.00	1.00
	Capital	1.37	1.13
	Food	1.40	1.47
	NonFood	1.09	1.01

Other Features

Starting points, bounds, and SOLVE statements

To avoid numerical problems with lots of zero variables and to speed up convergence, starting points (*.L) and lower bounds (*.LO) are needed.

FactorPrice.L(Factor) = 1;

FactorPrice.LO(Factor) = 0.0001;

The CGE model is best solved with the PATH solver.

(http://www.gams.com/solver.htm#PATH)

OPTION MCP = PATH; => choose PATH as the solver **SOLVE** CGEModel **USING MCP**;

Status Reports

After the solver executes, GAMS prints out a brief "SOLVE SUMMARY" indicating "SOLVER STATUS" and the "MODEL STATUS".

		s o	гv	Ε	S	и м м	ARY	Y	
	MODEL TYPE SOLVER	CGEMoc MCP PATH	lel			FROM	LINE	306	
* * * *	SOLVER MODEL S	STATUS TATUS		1 1	NORMAL OPTIMAI	COMPLI	ETION		
RES(ITER EVAI	DURCE US RATION C LUATION	AGE, LI OUNT, I ERRORS	MIT JIMID	C		0.660 4 0	:	1000 10000 0	.000

Solution Reports

The report summary gives the total number of non-optimal, infeasible, and unbounded.

```
**** REPORT SUMMARY : 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 REDEFINED
0 ERRORS
```

Solutions can be presented in several ways:

- 1. GAMS solution output format as above
- 2. Addition of **DISPLAY** commands to write out values associated with identified sets, parameters, variables, and equations
- 3. Added computed reports using values from solutions

1. A standard GAMS solution format

---- EQU Profit Zero profit condition LOWER LEVEL UPPER MARGINAL Food . . +INF 24.942 NonFood . . . +INF 54.378

---- VAR Production Production quantity levels LOWER LEVEL UPPER MARGINAL Food . 24.942 +INF . NonFood . 54.378 +INF .

The single dot "." represents zeros; **INF** = infinity

Solutions

2. A display command

DISPLAY DemCommod.L, Production.L, Profit.M, Sigma ;

	307 VARIABLE DemCommod.L Commodity demand by households
	Food NonFood for a variable using L
NonFarm	er 11.515 16.675
Farmer	13.428 37.704
	307 VARIABLE Production.L Production quantity levels
Food	24.942, NonFood 54.378
	for an equation using .M
	307 EQUATION Profit.M Zero profit condition
Food	24.942, NonFood 54.378
	307 PARAMETER Sigma elasticity of factor substitution
Food	2.000, NonFood 0.500 for a parameter nothing
	for a parameter, nothing

Solutions

You can also control precision in displays

OPTION DECIMALS = 0 ;

DISPLAY DemCommod .L, Production.L ;

	309	VARIABLE Food	DemCommod.L NonFood	Commodity	demand }	οу	households
NonFarm Farmer	ər	12 13	17 38				
 Food	309 25,	VARIABLE NonFood	Production.L 154	Productio	on quanti	ity	levels
ΟΡΤΙΟ)N D	ECIMALS :	= 2;				
	309	VARIABLE	DemCommod.L	Commodity	/ demand	by	households
		Food	NonFood				
NonFarme Farmer	ər	11.51 13.43	16.67 37.70				

You can compute reports involving solution variable values

PARAMETER

ProdRev(Sector) Producer revenues ;

ProdRev(Sector) = Production.L(Sector) * ComPrice.L(Sector) ;

DISPLAY ProdRev ; 352 PARAMETER ProdRev Producer revenues Food 34.90 NonFood 59.44 356 VARIABLE ComPrice.L Commodity price Food 1.40 NonFood 1.09 354 VARIABLE Production.L Production quantity levels Food 24.94 NonFood 54.38

Two ways to conduct comparative analysis

- 1. Use multiple GAMS submissions or multiple solves generating report writing output and then manually compare the analysis results
- 2. Use the GAMS LOOP procedure and set up a comparative scenario analysis system that creates cross scenario comparison tables

Comparative Analysis

1.Use multiple GAMS submissions

```
PARAMETER
TaxRate(Factor,Sector) Tax rates affect factor prices
TaxRate(Factor,Sector) = 0 ;
OPTION MCP = PATH ;
```

SOLVE CGEModel **USING MCP**;

TaxRate("Capital","Food") = 0.5 ; SOLVE CGEModel USING MCP ;

The model is first solved at the original TaxRate 0.

Then the TaxRate is changed to equal 0.5 and model is solved again with the altered TaxRate in effect doing a comparative static analysis of solution sensitivity to TaxRate.

Comparative Analysis

Report writing commands always use values from the most recent solution, so one must save the data if comparative reports are desired by creating parameter to store the report data.

SOLVE CGEModel **USING MCP**; **PARAMETER** Compare(Households,Sector,*); Compare(Households,Sector,"NoTax")

= DemCommod.L(Households,Sector);

TaxRate("Capital","Food") = 0.1 ;
SOLVE CGEModel USING MCP ;
Compare(Households,Sector,"Tax10%")
 = DemCommod.L(Households,Sector);

TaxRate("Capital","Food") = 0.5 ; SOLVE CGEModel USING MCP ; Compare(Households,Sector,"Tax50%") = DemCommod.L(Households,Sector) ;

DISPLAY Compare;

---- 754 PARAMETER Compare consumption

		NoTax	Tax10%	Tax50%
NonFarm	er.Food	11.51	10.83	8.99
NonFarmer.NonFood		16.67	16.47	15.83
Farmer	.Food	13.43	13.46	13.40
Farmer	.NonFood	37.70	38.72	41.48

Comparative Analysis

2. Use the GAMS LOOP procedure

The code contains a **LOOP** which causes GAMS to repeat execution of statement enclosed in the parentheses defining the **LOOP**.

LOOP(Scenario,

```
TaxRate(Factor,Sector) = sTaxRate(Factor,Sector);
TaxRate(Factor,Sector) = scenTax(Factor,Sector,Scenario) ;
```

SOLVE CGEModel **USING MCP**;

Compare("TaxRate",Factor,Sector,Scenario)

= TaxRate(Factor,Sector);

Compare("Consumption", Households, Sector, Scenario)

= DemCommod.L(Households,Sector);

OPTION Compare:2:3:1; DISPLAY Compare;

);

Comparative Analysis

2. Use the GAMS LOOP procedure (Con't)

SET Scenario / NoTax NoTax Tax10 "10% Tax on Factor" Tax50 "50% Tax on Factor" /;

TABLE ScenTax(Factor, Sector, Scenarios)

	NoTax	Tax10	Tax50
Labor.Food	0	0.0	0.0
Labor.NonFood	0	0.0	0.0
Capital.Food	0	0.1	0.5
Capital.NonFood	0	0.0	0.0;

PARAMETER

Compare(*,*,*,*) Saving comparative report sTaxRate(Factor,Sector) save tax rate

sTaxRate(Factor,Sector) = TaxRate(Factor,Sector);

DISPLAY Compare;

---- 352 PARAMETER Compare Saving comparative report

		NoTax	Tax10%	Tax50%
TaxRate .Capital	.Food		0.10	0.50
Consumption.NonFari	mer.Food	11.51	10.83	8.99
Consumption.NonFari	mer.NonFood	16.67	16.47	15.83
Consumption.Farmer	.Food	13.43	13.46	13.40
Consumption.Farmer	.NonFood	37.70	38.72	41.48

Advantage of using the GAMS LOOP procedure

SET	Scenario	/ NoTax	NoTax	
		Tax10	"10% Tax on Factor"	
		Tax50	"50% Tax on Factor"	
		Tax70	"70% Tax on Factor"	
		Tax80	"80% Tax on Factor"	
		Tax100	"100% Tax on Factor"	/;

TABLE	ScenTax(Fac	ctor,Sector,S	Scenario)				
		NoTax	Tax10	Tax50	Tax70	Tax80	Tax100
Labor	.Food	0	0.0	0.0	0	0.0	0.0
Labor	.NonFood	0	0.0	0.0	0	0.0	0.0
Capital	.Food	0	0.1	0.5	0.7	0.8	1.0
Capital	.NonFood	0	0.0	0.0	0	0.0	0.0 ;

---- 352 PARAMETER Compare Saving comparative report

	NoTax	Tax10	Tax50	Tax70	Tax80	Tax100
TaxRate.Capital.Food	0	0.10	0.50	0.70	0.80	1.00
Consumption.NonFarmer.Food	11.51	10.83	8.99	8.39	8.13	7.70
Consumption. NonFarmer.NonFoo	d 16.67	16.47	15.83	15.58	15.47	15.27
Consumption. Farmer .Food	13.43	13.46	13.40	13.32	13.28	13.20
Consumption. Farmer .NonFood	37.70	38.72	41.48	42.37	42.74	43.35

Wrap Up

- Casting CGE via GAMS
 - 1. Sets definition & data entry
 - 2. Variables & equation specifications
 - 3. Model complementarity relationship
 - 4. Solution reports
 - 5. Comparative analysis

Next:

- Hierarchical (nested) function & functional forms
- Social Accounting Matrices
- Input-output table
- Building benchmark equilibrium data sets
- Parameters calibration

References

Brooke, A., D. Kendrick, and A. Meeraus. "GAMS: A User's Guide".

Ferris, M. C. and J. S. Pang. "Engineering and Economic Applications of Complementarity Problems." *SIAM Review*, 39:669-713, 1997.

McCarl, B. A. and D. Gillig. "Notes on Formulating and Solving Computable General Equilibrium Models within GAMS."

Shoven, J. B. and J. Whalley. "Applying general equilibrium." *Surveys of Economic Literature*, Chapters 3 and 4, 1998.

Shoven, J. B. and J. Whalley. "Applied General-Equilibrium Models of Taxation and International Trade: An Introduction and Survey." *J. Economic Literature*, 22:1007-1051, 1984.