Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig

\&

Bruce A. McCarl

Department of Agricultural Economics
Texas A\&M University

Course Outline

- Overview of CGE
- An Introduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models \& Calibration
- Incorporating a trade \& a basic CGE application
- Evaluating impacts of policy changes and casting nested functions \& a trade in GAMS
- Mixed Complementary Problems (MCP)

This Week's Road Map

- Fundamental relationships in a simple CGE model
- Incorporating taxes
- Including demand for products and factors
- Interpretation of results
- Comparative analysis

Fundamental Structure

- CGE models typically involve determination of economy wide levels of

1. commodity prices based on consumer demand and production possibilities/costs
2. factor prices based on supply and production possibilities/product prices
3. factor usage
4. production levels
5. income to households and resultant demand
6. Government balance

Fundamental Structure

- Basic relationships for a simple CGE

1. Supply-Demand identities for factors \& products
2. Zero profit condition for producing Industries
3. Factor demand by producers
4. Product demand by households
5. Income balance constraint for households
6. Government balance

Fundamental Structure

- Basic characteristics of CGE model solutions:

A set of non-zero prices, consumption levels, production levels, and factor usages constitutes an economic equilibrium solution (also called a Walrasian equilibrium) and a solution to a CGE of the situation if

1. Total market demand equals total market supply for each and every factor and output.
2. Prices are set so that equilibrium profits of firms are zero with all rents accruing to factors.
3. Household income equals household expenditures.
4. Government transfer payments to consumers equals taxes revenues.

■ Edgeworth Box Pure Exchange Economy \mathbf{Q}_{2}

■ Edgeworth Box Pure Exchange Economy

$\operatorname{Max} \mathbf{U}^{\mathbf{A}}$
s.t $P_{1} Q_{1}^{\mathbf{A}}+P_{2} Q_{2}^{\mathbf{A}} \leq P_{1} \bar{Q}_{1 \mathbf{A}}+P_{2} \bar{Q}_{2 \mathbf{A}}$
$\frac{\partial L}{\partial Q_{1}^{\mathbf{A}}}=>\frac{\partial \mathbf{U}^{\mathbf{A}}}{\partial Q_{1}^{\mathbf{A}}}-\lambda P_{1}=0$ and $\frac{\partial L}{\partial Q_{2}^{\mathbf{A}}}=>\frac{\partial \mathbf{U}^{\mathbf{A}}}{\partial Q_{2}^{\mathbf{A}}}-\lambda P_{2}=0$
$\frac{\partial \mathbf{U}^{\mathbf{A}}}{\partial Q_{1}^{\mathbf{A}}} / \frac{\partial \mathbf{U}^{\mathbf{A}}}{\partial Q_{2}^{\mathbf{A}}}=\frac{P_{1}}{P_{2}}$
$\operatorname{Max} \mathbf{U}^{\mathbf{B}}$
s.t $P_{1} Q_{1}^{B}+P_{2} Q_{2}^{B} \leq P_{1} \bar{Q}_{1 B}+P_{2} \bar{Q}_{2 B}$

$$
\begin{aligned}
& \frac{\partial L}{\partial Q_{1}^{B}}=>\frac{\partial \mathbf{U}^{\mathbf{B}}}{\partial Q_{1}^{B}}-\lambda P_{1}=0 \text { and } \frac{\partial L}{\partial Q_{2}^{B}}=>\frac{\partial \mathbf{U}^{\mathbf{B}}}{\partial Q_{2}^{B}}-\lambda P_{2}=0 \\
& \frac{\partial \mathbf{U}^{\mathbf{B}}}{\partial Q_{1}^{B}} / \frac{\partial \mathbf{U}^{\mathbf{B}}}{\partial Q_{2}^{B}}=\frac{P_{1}}{P_{2}}
\end{aligned}
$$

■ Edgeworth Box Pure Exchange Economy
Implications:

$$
\begin{aligned}
& \begin{array}{l}
Q_{1 A}+Q_{1 B}=\bar{Q}_{1 A}+\bar{Q}_{1 B}=Q_{1} \\
Q_{2 A}+Q_{2 B}-\bar{Q}_{2 A}+\bar{Q}_{2 B}=Q_{2}
\end{array} \\
& \left.\begin{array}{l}
\left.Q_{1 A}-\bar{Q}_{1 A}\right)+\left(Q_{1 B}-\bar{Q}_{1 B}\right)=0 \\
\left(Q_{2 A}-\bar{Q}_{2 A}\right)+\left(Q_{2 B}-\bar{Q}_{2 B}\right)=0 \\
Z_{1}=\left(Q_{1 A}-\bar{Q}_{1 A}\right)+\left(Q_{1 B}-\bar{Q}_{1 B}\right)=0 \\
Z_{2}=\left(Q_{2 A}-\bar{Q}_{2 A}\right)+\left(Q_{2 B}-\bar{Q}_{2 B}\right)=0
\end{array}\right) \\
& \left.\begin{array}{l}
P_{1} Q_{1 A}+P_{2} Q_{2 A}=P_{1} \bar{Q}_{1 A}+P_{2} \bar{Q}_{2 A} \\
P_{1} Q_{1 B}+P_{2} Q_{2 B}=P_{1} \bar{Q}_{1 B}+P_{2} \bar{Q}_{2 B} \\
P_{1}\left(Q_{1 A}-\bar{Q}_{1 A}\right)+P_{2}\left(Q_{2 A}-\bar{Q}_{2 A}\right)=0 \\
P_{1}\left(Q_{1 B}-\bar{Q}_{1 B}\right)+P_{2}\left(Q_{2 B}-\bar{Q}_{2 B}\right)=0
\end{array}\right) \quad \begin{array}{l}
\text { Feasible } \\
\text { allocation }
\end{array} \\
& \begin{array}{l}
\text { Excess } \\
\text { demand }
\end{array} \\
& \text { Budget } \\
& \text { constraint }
\end{aligned}
$$

Walras' Law
For any price vector $P, P Z(P)=0$; i.e., the value of the excess demand, is identically zero, (Varian, page 317)

Fundamental Structure

■ Basic characteristics of CGE model solutions:
A set of non-zero prices, consumption levels, production levels, and factor usages constitutes an economic equilibrium solution (also called a Walrasian equilibrium) and a solution to a CGE of the situation if

1. Total market demand equals total market supply for each and every factor and output.
2. Prices are set so that equilibrium profits of firms are zero with all rents accruing to factors.
3. Household incomes equal household expenditures.
4. Government transfer payments to consumers + consumptions equal taxes revenues.

Fundamental Structure

- Basic relationships for a simple CGE

1. Supply-Demand identities for factors \& products
2. Zero profit condition for producing Industries
3. Factor demand by producers
4. Product demand by households
5. Income balance constraint for households
6. Government balance

Fundamental Structure

- Basic notations:

Sectors denoted by j
Households denoted by h
Factors denoted by L and K and are owned by households
Q_{j} is the production of goods by the $f^{\text {th }}$ sector
P_{j} is the price of goods produced by the $j^{\text {th }}$ sector
$a_{j 1, j}$ is the amount of goods used from sector $j 1$ when producing one unit of goods in the $f^{\text {th }}$ sector
L_{j} is the usage of labor by the $f^{\text {th }}$ sector
W_{L} is the price of labor (the wage rate)
K_{j} is the usage of capital in the $j^{\text {th }}$ sector
W_{K} is the price of capital

Fundamental Structure

1. Supply-Demand identities for factors \& products
a. Factor market:

Total demand is less than or equal to total supply in every factor market or the excess demand in the factor market is less than or equal to zero.

$$
\begin{aligned}
& \sum_{j} L_{j}-\sum_{h} \bar{L}_{h} \leq 0 \\
& \sum_{j} K_{j}-\sum_{h} \bar{K}_{h} \leq 0
\end{aligned}
$$

Total supply is the sum across the household endowments

Fundamental Structure

1. Supply-Demand identities (con't)
b. Product or output market:

Total demand in every output market including consumer and intermediate production usage is less than or equal to total supply in that market or the excess demand in each output market is less than or equal to zero.

Consumer consumption (ff)

Intermediate usage
$-Q_{j} \leq 0$
Total production (ff)

Fundamental Structure

2. Zero profits in each sector

Note that: CRS + Perfect Competition
Unit price $=$ unit cost

Fundamental Structure

3. Household income identity

This relationship implies that household exhausts its income.

$$
\text { Income }_{h} \geq W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}
$$

Note that:

Household consumptions $\left(X_{j}\right)$ are a function of price and income.

Maximize $\mathrm{U}\left(\mathrm{X}_{\mathrm{j}}\right)$
s.t. $\quad \sum_{j} P_{j} X_{j} \leq W_{L} \bar{L}+W_{K} \bar{K}=$ Income

Complementarity

Recall:

Walras' Law: For any price vector $\mathbf{P}, \mathbf{P Z}(P)=0$; i.e., the value of the excess demand, is identically zero, (Varian, page 317)

Namely, if total demand is less than total supply for the factor/commodity markets then the price in that market must be zero; otherwise, prices will be nonzero only if supply equals demand

This implies PRICE OR EXCESS DEMAND $=0$.

This leads to the following complementary relationships.

Complementarity (con't)

In a CGE model, a set of prices P and quantities Q are defined as variables such that $D=S$ (Walras' Law)

$$
\begin{aligned}
& (Q s-Q d) P=0 \\
& (P d-P) Q d=0 \\
& (P s-P) Q s=0
\end{aligned}
$$

Implications:

Each equation must be binding or an associated complementary variable must be zero.

$$
\begin{aligned}
& \text { IF } P>0 \text { then } Q s=Q d \\
& I F Q d>0 \text { then } P d=P, \\
& I F Q s>0 \text { then } P s=P, \text { and }
\end{aligned}
$$

This is similar to KT conditions of the following optimization model.

Complementarity (con't)

$$
\begin{aligned}
& \text { Max 6Qd-0.15Qd }{ }^{2}-Q s-0.1 Q s^{2} \quad \text { Pd }=\mathbf{6 - 0 . 3 * Q d} \\
& \text { s.t } \quad Q d-Q s \leq 0 \\
& Q d, Q s \geq 0 \\
& P s=1+0.2^{*} \text { Qs } \\
& \frac{\partial L}{\partial Q d}=0 \rightarrow 6-0.3 Q d-P \leq 0 \\
& \left(\frac{\partial L}{\partial Q d}\right) Q d=0 \\
& \frac{\partial L}{\partial Q s}=0 \rightarrow 1+0.2 Q s-P \geq 0 \\
& \left(\frac{\partial L}{\partial Q s}\right) Q s=0 \\
& \frac{\partial L}{\partial P}=0 \rightarrow Q s-Q d \geq 0 \\
& \left(\frac{\partial L}{\partial P}\right) P=0 \\
& \begin{array}{l}
(P d-P) Q d=0 \\
\left(P_{S}-P\right) Q s=0 \\
(Q s-Q d) P=0
\end{array}
\end{aligned}
$$

where P is the dual variable associated with the first constraint.

Complementarity (con't)

1. $\begin{array}{ll}0 & \leq W_{L} \\ & 0 \leq W_{K} \perp \perp \sum_{j} L_{j}-\sum_{h} \bar{L}_{h} \leq 0 \\ \sum_{j} K_{j}-\sum_{h} \bar{K}_{h} \leq 0 & \begin{array}{l}\text { representing } \\ \text { complementary } \\ \text { relationship }\end{array} \\ \end{array}$

Factor prices must be zero if factors are not all used up.
Non zero prices exist if factors all are consumed.
2. $0 \leq P_{j} \perp \sum_{h} X_{j h}+\sum_{j 1} a_{j, j 1} Q_{j 1}-Q_{j} \leq 0 \quad \forall j$

Product prices must be zero if products are not all consumed. Non zero prices exist if products all are consumed.

Complementarity (con’t)

3. $0 \leq Q_{j} \perp P_{j} Q_{j} \leq \sum_{j 1} P_{j 1} \mathbf{a}_{\mathbf{j} 1, \mathrm{j}} Q_{j}+W_{L} L_{j}+W_{K} K_{j}$

Firm profits must equal zero and a non-zero production level is achieved.

Firm profits can be less than costs without the firm producing.
4. $0 \leq$ Income $_{h} \perp$ Income $_{h} \geq W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}$

Household incomes must be non-zero if expenditures exhaust incomes.

Complementarity (con't)

5. Factor demand by producers identity
(functional forms: CES, Cobb Douglas, Leontief?)
$0 \leq L_{j} \perp L_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}+\left(1-\delta_{j}\right)\left(\frac{\delta_{j} W_{K}}{\left(1-\delta_{j}\right) W_{L}}\right)^{\left(1-\sigma_{j}\right)}\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)}$
$0 \leq K_{j} \perp \quad K_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}\left(\frac{\left(1-\delta_{j}\right) W_{L}}{\delta_{j} W_{K}}\right)^{\left(1-\sigma_{j}\right)}+\left(1-\delta_{j}\right)\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)}$

Complementarity (con't)

6. Product demand by households identity

(functional forms: CES, Cobb Douglas, LES ?)

$$
0 \leq X_{j h} \perp \quad X_{j h}=\frac{\alpha_{j}\left(\text { Income }_{h}\right)}{P_{j}^{\sigma} \sum_{j}\left(\alpha_{j}\left(P_{j}\right)^{1-\sigma}\right)}
$$

Incorporating Taxes

■ Basic characteristics of CGE model solutions:
A set of non-zero prices, consumption levels, production levels, and factor usages constitutes an economic equilibrium solution (also called a Walrasian equilibrium) and a solution to a CGE of the situation if

1. Total market demand equals total market supply for each and every factor and output.
2. Prices are set so that equilibrium profits of firms are zero with all rents accruing to factors.
3. Household income equals household expenditures.
4. Government transfer payments to consumers equal taxes revenues.

Incorporating Taxes (con't)

- Fundamental structure

1. Supply-Demand identities
2. Zero profits in each sector
3. Household income-expenditure balance
4. Government tax revenue balance

This relationship implies that the government satisfies its budget constraint when total revenue is positive.

Incorporating Taxes (con't)

Assumptions:

1. Total tax revenues are
a. redistributed to households in the form of transfer payments $\left(\mathrm{TR}_{\mathrm{h}}\right)$ at the rate $\left(\mathrm{s}_{\mathrm{h}}\right)=>T R_{h}=s_{h} R$
OR b. expended on government purchase of goods $\left(G P_{j}\right)$
2. Government purchases are proportional to tax revenues at the rate $\left(\mathrm{s}_{\mathrm{j}}\right)=>G P_{j}=s_{j} R$
$\sum_{h} s_{h}+\sum_{j} s_{j}=1$
3. t_{h} percent is imposed on household income
$t_{f j}$ percent is imposed on factor f in sector j
F_{h} is a total deduction imposed on household

Incorporating Taxes (con't)

- Modification

1. The market balance
: include government purchases transformed to be in a quantity unit

$$
\sum_{h} X_{j h}+\sum_{j 1} \mathbf{a}_{\mathbf{j}, \mathbf{j} 1} Q_{j 1}-Q_{j}+s_{j} R / P_{j} \leq 0
$$

2. The zero profit condition
: include a tax effect as a cost of doing business
$P_{j} Q_{j} \leq \sum_{j 1} P_{j 1} a_{j 1, j} Q_{j}+1+t_{l j} W_{L} L_{j}+1+t_{k j} W_{K} K_{j} \quad \forall j$

Incorporating Taxes (con't)

3. The household income equation
: include tax effects to reflect tax incidence and tax revenue redistribution

$$
\left(1-t_{h}\right)\left(W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}-F_{h}\right)+s_{h} \mathbf{R} \leq \text { Income }_{h}
$$

4. Add the government tax revenue balance
: apply the household income tax (t_{h}) to gross revenue less deductions, and the factor tax $\left(\mathrm{t}_{\mathrm{fj}}\right)$

$$
\begin{aligned}
R \leq \quad & \sum_{h} t_{h}\left(W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}-F_{h}\right) \\
+ & t_{l j} W_{L} L_{j}+t_{k j} W_{K} K_{j}
\end{aligned}
$$

Incorporating Taxes (con't)

5. Complementary

$$
\begin{gathered}
0 \leq R \quad \perp \quad R \leq \sum_{h} t_{h}\left(W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}-F_{h}\right) \\
+t_{l j} W_{L} L_{j}+t_{k j} W_{K} K_{j}
\end{gathered}
$$

the government satisfies its budget constraint when total revenue is positive.

Including Demand for Products and Factors

- Specification of product and factor demand functions should be consistent with theory but analytically tractable.
(1). Theoretical approach
$>$ choosing functional forms that satisfy
: classical restrictions i.e. nonnegative, continuous, and homogenous degree zero in price
: Walras's law => the value of market excess demands equals zero at all prices
(2). Analytically tractable
$>$ choosing functional forms that are easy to evaluate e.g. Leontief, CD, CES, LES, etc.

Including Demand for Products and Factors

- Factor demand derived from CES function
: Production function

$$
Q_{j}=\phi_{j}\left(\delta_{j} L_{j}^{\left(\sigma_{j}-1\right) / \sigma_{j}}+\left(1-\delta_{j}\right) K_{j}^{\left(\sigma_{j}-1\right) / \sigma_{j}}\right)^{\sigma_{j} /\left(\sigma_{j}-1\right)}
$$

: Factor demand

$$
\begin{aligned}
& L_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}+\left(1-\delta_{j}\right)\left(\frac{\delta_{j} W_{K}}{\left(1-\delta_{j}\right) W_{L}}\right)^{\left(1-\sigma_{j}\right)}\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)} \\
& K_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}\left(\frac{\left(1-\delta_{j}\right) W_{L}}{\delta_{j} W_{K}}\right)^{\left(1-\sigma_{j}\right)}+\left(1-\delta_{j}\right)\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)}
\end{aligned}
$$

Note that: $\sigma \rightarrow 0$ then CES tends to Leontief $\sigma \rightarrow 1$ then CES tends to Cobb-Douglas

Including Demand for Products and factors

- Household product demand from CES Utility function

Maximize Utility

$$
U=\left[\sum_{j}(\alpha)^{1 / \sigma}\left(X_{j}\right)^{(\sigma-1) / \sigma}\right]^{\sigma /(\sigma-1)}
$$

s.t

$$
\sum_{j} P_{j} X_{j} \leq W_{L} \bar{L}+W_{K} \bar{K} \equiv \text { Income }
$$

Yields Demand Curve

$$
X_{j}=\frac{\alpha_{j}(\text { Income })}{P_{j}{ }^{\sigma} \sum_{j}\left(\alpha_{j}\left(P_{j}\right)^{1-\sigma}\right)}
$$

Numerical Example

Symbol	Brief Description
σ_{h}	Elasticity of substitution in household CES
$\alpha_{j h}$	Consumption share in household CES
$\bar{L}_{\boldsymbol{h}} \bar{K}_{\boldsymbol{K}}$	Household endowments of factors
$\mathbf{a}_{\mathbf{j}, \mathrm{j}}$	Use of goods in sector1 when producing in sector \mathbf{j}
$\phi{ }_{\boldsymbol{j}}$	Scale parameter in CES production function
$\delta{ }_{\boldsymbol{j}}$	Distribution parameter in CES production
σ_{j}	Elasticity of production factor substitution
Sh	Household share of tax disbursements
s_{j}	Government goods purchase dependence on revenues
${ }^{t} h$	Household tax level
${ }^{\mathbf{t}} \mathbf{f j}$	Tax on factor \boldsymbol{f} in sector \boldsymbol{j}
F_{h}	Household tax exemptions

Parameter Specification

- Example of simple $2 \times 2 \times 2$ CGE (Shoven and Whalley 1984)

Production Parameters					
Sector (j)		δ_{j}	σ_{j}		Labor
Food	1.5	0.6	2.0		0.0
Non-Food	2.0	0.7	0.5		0.0
Consumer Parameters					
Household (h)	σ_{h}	S_{h}	${ }^{t}$ h	F_{h}	
Farmer	0.75	0.6	0.00	0.0	
Non-Farmer	1.5	0.4	0.00	0.0	
	$\alpha_{h j}$			Endowments	
	Food	Non	-Food	Labor	Capital
Farmer	0.3	0		60	0
Non-Farmer	0.5	0		0	25
Government					
Food	0.0				
Non-Food	0.0				

Equilibrium Results

1. Total demand for each output exactly matches the amount produced

Equilibrium Results (con't)

2. Producer revenues equal consumer expenditures

	Food	NonFood		
NonFarmer	$\mathrm{r} \quad 16.110$	18.227		
Earmer	18.787	41.213		$\sum P_{j} X_{j h}$
Total	34.897	59.439		
3	323 PARAMETER ProdRev Producer revenues			
Food 3	34.897, NonEood 59.439,		Total	94.337

Equilibrium Results (con't)

3. Labor and capital are exhausted

$$
\begin{aligned}
& 323 \text { PARAMETER ResrcQuan Factor endowment levels } \\
& L_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}+\left(1-\delta_{j}\right)\left(\frac{\delta_{j} W_{K}}{\left(1-\delta_{j}\right) W_{L}}\right)^{\left(1-\sigma_{j}\right)}\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)} \\
& K_{j}=\frac{1}{\phi_{j}} Q_{j}\left[\delta_{j}\left(\frac{\left(1-\delta_{j}\right) W_{L}}{\delta_{j} W_{K}}\right)^{\left(1-\sigma_{j}\right)}+\left(1-\delta_{j}\right)\right]^{\sigma_{j} /\left(1-\sigma_{j}\right)}
\end{aligned}
$$

Equilibrium Results (con't)

4. Unit cost = selling price => zero profits

Equilibrium Results (con't)

5. Consumer factor incomes equal producer factor costs

Labor Capital

NonFarmer
Farmer
Total

323 PARAMETER ResrcCost Producer factor costs

> Food NonFood Total

Labor
Capital

$$
\begin{array}{r}
26.366 \\
8.532
\end{array}
$$

> 33.634
> 25.805

Equilibrium Results (con't)

6. Household expenditures exhaust their incomes

Introducing Shocks

(1). Imposing a 50\% tax on a capital used in a food sector

Production Parameters

Introducing Shocks

1. The market balance

$$
\sum_{h} X_{j h}-Q_{j}+s_{j} R / P_{j} \leq 0
$$

2. The zero profit condition

$$
P_{j} Q_{j} \leq \quad\left(1 \notin t_{l j}\right) W_{L} L_{j}+\left(1+t_{k j}\right) W_{K} K_{j}
$$

3. The household income equation

$$
\left(1-X_{i}\right) \quad\left(W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}-F_{h}\right)+s_{h} \mathbf{R} \leq \text { Income }_{h}
$$

4. Add the government tax revenue constraint

$$
R=\quad \sum_{h} X_{h}\left(W_{L} \bar{L}_{h}+W_{K} \bar{K}_{h}-F_{h}\right)+\chi_{火 j} W_{L} L_{j}+t_{k j} W_{K} K_{j}
$$

Introducing Shocks

(2). At equilibrium, transfer payments = tax revenues

Comparative Analysis

Note that: Tax revenue under non-CGE

| ---- | 639 | PARAMETER | cUnitCost |
| :--- | :---: | ---: | :--- | Unit cost

639 PA	cRsrcQuan NoTax	Factor endowment levels Tax
Capital.Eood	6.21	4.04
Capital.NonFood	18.79	20.96
Capital.Total	25.00	25.00

Factor Factor Tax level
Cost Quantity

Comparative Analysis (con't)

1. Unit cost = selling price => zero profits

----	639	PARAMETE NoTax	$\begin{gathered} \text { Cost } \\ \text { Tax } \end{gathered}$	Unit cost
Food		1.40	1.47	
NonFood		1.09	1.01	
----	639	PARAMETE NoTax	EPrice Tax	Unit selling price
Food		1.40	1.47	
NonFood		1.09	1.01	

Relative price $\mathbf{P 1} / \mathbf{P} 2$

$$
\begin{aligned}
& =1.40 / 1.09=1.28(\text { no tax }) \\
& =1.47 / 1.01=1.45(\text { with tax })
\end{aligned}
$$

Comparative Analysis

2. Total demand for each output exactly matches the amount produced

	639 ARPMETER cilldemand		Total quantity demand for output
		NoTax	Tax
NonE arm	er.Food	11.51	8.99
NonEarm	er.NonFood	16.67	15.83
Farmer	.Food	13.43	13.40
Farmer	. NonEood	37.70	41.48
Total	. Food	24.94	22.39
Total	.NonEood	54.38	57.31
639 PARAMETER cProdQ Total quantity produced			
	NoTax	Tax	
Food	24.94	22.39	
NonEood	54.38	57.31	

Comparative Analysis (con't)

3. Producer revenues equal consumer expenditures

Comparative Analysis (con't)

4. Labor and capital are exhausted

Comparative Analysis (con't)

5. Consumer factor incomes equal producer factor

 costs

Comparative Analysis (con't)

6. Household expenditures exhaust their incomes

----	639 PARAMETER	ConExpense	Consumer	expenditures
		NoTax	Tax	
NonFarmer.Food		16.11	13.18	
NonFarmer. NonFood		18.23	15.92	
Farmer	.Food	18.79	19.65	
Farmer	. NonFood	41.21	41.72	
Total Total	. Food	34.90	32.83	
	. NonFood	59.44	57.64	
----	639 Parameter	cRsccIncom	Consumer	factor incomes
NonF armer,	r.Capital	34.34	29.10	
Farmer	.Labor	60.00	60.00	
Farmer	. Capital		1.37	
Total	.Labor	60.00	60.00	
Total	.Capital	34.34	30.47	

- Overview of CGE
- Fundamental relationship of simple CGE model
- Interpretation of results
- Incorporating shocks (Taxes)
- Comparative analysis

Next:

- Using GAMS for CGE Modeling
- What is GAMS?
- GAMS IDE
- Dissecting GAMS Formulation

References

McCarl, B. A. and D. Gillig. "Notes on Formulating and Solving Computable General Equilibrium Models within GAMS."

Ferris, M. C. and J. S. Pang. "Engineering and Economic Applications of Complementarity Problems." SIAM Review, 39:669-713, 1997.

Shoven, J. B. and J. Whalley. "Applying general equilibrium." Surveys of Economic Literature, Chapters 3 and 4, 1998.

Shoven, J. B. and J. Whalley. "Applied General-Equilibrium Models of
Taxation and International Trade: An Introduction and Survey." J. Economic Literature, 22:1007-1051, 1984.

