Introduction to Computable General Equilibrium Model (CGE)

Dhazn Gillig & Bruce A. McCarl

Department of Agricultural Economics Texas A&M University

Overview of CGE

- An Introduction to the Structure of CGE
- An Introduction to GAMS
- Casting CGE models into GAMS
- Data for CGE Models & Calibration
- Incorporating a trade & a basic CGE application
- Evaluating impacts of policy changes and casting nested functions & a trade in GAMS
- Mixed Complementary Problems (MCP)

This Week's Road Map

- What is (C)GE? and Why CGE?
- How does CGE fit into Ag-Econ or Econ
- Contrast with Partial Equilibrium & Econometrics
- Benefits and Drawbacks of CGE
- Overview of a CGE Model
- Theory Behind CGE

What is (C)GE Analysis?

- An analytical approach looking at the economy as a complete system of interdependent components (industries, households, investors, government, importers, exporters)
- Recognize economic shocks on one component creating ripple effects throughout the system
- Representative of producer and consumer behaviors
- "Computable" => a system providing quantitative analysis by solving the GE numerically.

Why use GE Analysis?

- Economy wide impact analysis
 - global, multi-regional, multi-sectoral economies
 - backward/forward impacts on other sectors from "shocks"
- Tracing distributional impacts of consumer income changes
 - factor and commodity markets
- Broad scope
 - institutions, production sectors, households
- Flexible to handle broad range of policy issues
 - tax, trade, pollution, ghg emission, etc

How does CGE fit in the AgEcon?

Moving away from

 individual analysis at a farm or firm or industry level ⇒ to a multi-industry level

Analysis of policy changes that cut across both Ag and non-Ag sectors

Why not use Partial Equilibrium?

- PE assumes that a "shock" produces direct price changes that do not have meaningful income effect and thus other prices are constant.
- Welfare measures are for direct price changes.
- Not consider resource endowments (subsidy pulls resources away from other sectors)
- Not capture income effects endogenously (no link between factor incomes and expenditures)

When is PE appropriate?

- When only interested in sectoral policies
- Small income shares
- "Shocks" produce direct price changes that do not cause any other prices to change. This assumption is satisfied only when other markets are dominated by price-fixing (perfect price elasticity of supply and demand functions)

Econometrics Modeling

- Regression estimations
- Simultaneous equations
- Relies on data size
- Time-Series method
- Identification problem
- Not appropriate for welfare analysis

CGE Modeling

- Benchmark data
- Deviation from benchmark equilibrium
- Explicit specifications
- Handling large movements in relative prices
- Welfare analysis
- Inter-industry analysis

Reference: Adam, C. "CGE Models: Specification, calibration and macroeconomic application" Department of Economics, University of Oxford, Oxford, UK

Benefits from Using CGE? (1)

Accounting and theoretical consistency:

- Accounting consistency: expenditures cannot exceed incomes
- Consistent factor allocation making sure that factor markets clear.
- Conceptual and computational consistency Walras' Law : hh are on their budget constraints
 - : zero profit conditions for firms

: supply = demand

 Tracking consequences of policy choices (e.g. taxes)

Benefits from Using CGE? (2)

- Inter-industry or multi-sector backward/forward linkage:
 - Agriculture to Non-agriculture and vice versa

Welfare analysis:

- A policy analysis focuses on changes in real income resulting from changes in prices (X% of GDP), not on CS or PS.
- e.g. farmers are consumers in input sectors (ie. fertilizer or energy markets) but are also producers in output sectors (ie. cotton market).

Benefits from Using CGE? (3)

Extension to include environmental indicators

 e.g.climate change issues : CO2 emission using SGM, MERGE, EPPA models

Reference: Hertel, T. W. "General equilibrium analysis of U.S. Agriculture: What does it contribute? *J. of Agr. Econ. Res*.42(1990):3-9.

Hertel, T. W. "Applied general equilibrium analysis of agricultural and resource policies. *Staff Paper 99-2*, Department of Agricultural Economics, Purdue University, March 1999.

Drawbacks of CGE?

- Difficulties of model selection, parameter specification, and functional forms (CES vs. Cobb)
 - Benchmark equilibrium => functional forms => choice of elasticities and other parameter values are based on empirical work
- Data consistency calibration problem
- Not a statistical test of the model specification
 - deterministic calibration
- Not good for monetary or fiscal policies
 - focuses on the relationship between relative price changes and the flow of goods and services, not levels of prices
- Complexity and require skill to maintain the model

CGE Overview -- Steps in CGE Modeling

CGE Overview -- Economy Representation

Adapted from Krauss, M. B. and H. G. Johnson. "General Equilibrium Analysis: A Micro-Economic Tex." Figure 1.2, page 27, 1974

CGE Overview -- Commodity Flow

Reference: Lofgren, H., R. L. Harris, S. Robinson, M. Thomas, and M. El-Said. "A Standard computable general equilibrium (CGE) model in GAMS, IFPRI, Washington, D.C.

Theory Behind CGE (1)

Consumption Case

$$P_{1}Q_{1A} + P_{2}Q_{2A} = P_{1}\overline{Q}_{1A} + P_{2}\overline{Q}_{2A}$$

$$P_{1}Q_{1B} + P_{2}Q_{2B} = P_{1}\overline{Q}_{1B} + P_{2}\overline{Q}_{2B}$$

$$P_{1}(Q_{1A} - \overline{Q}_{1A}) + P_{2}(Q_{2A} - \overline{Q}_{2A}) = 0$$

$$P_{1}Z_{1A} + P_{2}Z_{2A} = 0 \implies \text{Walras' Law}$$

$$P_{1}Z_{1B} + P_{2}Z_{2B} = 0$$

$$P_{1}(Z_{1A} + Z_{1B}) + P_{2}(Z_{2A} + Z_{2B}) = 0$$

Implication

• $MRS_A^{q1q2} = MRS_B^{q1q2}$

price adjustment process

Implication

- $MRS_A^{q1q2} = MRS_B^{q1q2}$
- Homo degree "0" in price
 - ⇒ doubling in prices doubles incomes and therefore quantities demanded are unchanged
 - $\Rightarrow If p^* = (p^*1, p^*2) is a Walrasian equilibrium price$ $vector then so is ap^* = (a p^*1, ap^*2) for a > 0$
 - \Rightarrow relative price p*1/ p*2 is a focus

Theory Behind CGE (3)

Production Case

- tracing contract curves (CC) or efficiency production locus
- MRTS measures a rate at which one input can be substituted for another while maintaining the same level of output
- $MRTSq_1^{LK} = MRTSq_2^{LK} = factor price ratio (w/r)$

Consumption:

The value of market demands equals the value of the economy's endowment.

$$\sum_{i=1}^{N} p_i X_i(p) = \sum_{i=1}^{N} p_i w_i$$

The value of market excess demands equals zero at all prices.

$$\sum_{i=1}^{N} p_i [X_i(p) - w_i] = 0$$

• A general equilibrium in this system is a set of prices p_i^* such that $X_i(p^*) - w_i \le 0$.

If
$$p_i^* > 0$$
 then $X_i(p^*) - w_i = 0$; otherwise, $X_i(p^*) - w_i < 0$.
wi is an endowment of goods i.

Walrasian Equilibrium (2)

Production:

- A general equilibrium in this system is a set of prices p_j^* and activity Q_j^* such that:
 - (1) demand is less than or equal to the supply.

$$X_{j} + \sum_{i} a_{ji}Q_{i} - Q_{j} \leq 0 \quad \forall j$$

If $p_{j}^{*} > 0$ then $X_{j} + \sum_{i} a_{ji}Q_{i} - Q_{j} = 0 \quad \forall j$

(2) no production activity makes positive profits.

$$P_{j}Q_{j} - \sum_{i} P_{i}a_{ij}Q_{j} - rW_{j} \leq \mathbf{0} \forall j$$

If $Q_{j}^{*} > 0$ then $P_{j}Q_{j} - \sum_{i} P_{i}a_{ij}Q_{j} - rW_{j} = \mathbf{0} \forall j$

 W_j is a factor usage in sector j and r is a factor price, aij = use of goods i in activity j.

Examples of CGE?

Welfare effects of tax reform

Trade policy

- single country
- global trade (GTAP: Hertel T.)

Energy and environment

- Whalley and Wigle (1990)
- GHG emission (MERGE: Manne A., SGM: Sands R., EPPA: MIT)
- Labor markets
- Public finance

Wrap Up

- What and Why CGE
- Benefits and Drawbacks
- Overview of CGE Modeling
- Theory Behind CGE
- Next:
- Structure of CGE
 - : fundamental relationship
 - : interpretation of results
 - : incorporating shocks
 - : comparative analysis

References

- Adam, C. "CGE Models: Specification, calibration and macroeconomic application." Department of Economics, University of Oxford, Oxford, UK.
- Andreu Mas-Collell, Michael D. Whinston, and Jerry R. Green, <u>Microeconomic Theory</u>. Chapters 15 and 16. Oxford University Press, NY, 1995.
- Hertel, T. W. "General equilibrium analysis of U.S. Agriculture: What does it contribute?" *J. of Agr. Econ. Res.*42(1990):3-9.
- Hertel, T. W. "Applied general equilibrium analysis of agricultural and resource policies. *Staff Paper 99-2*, Department of Agricultural Economics, Purdue University, March 1999.
- Just, R. E., D. L. Hueth, A. Schmitz. "Applied welfare economics and public policy." Chapter9, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1982.
- Lofgren, H., R. L. Harris, S. Robinson, M. Thomas, and M. El-Said. "A standard computable general equilibrium (CGE) model in GAMS, IFPRI, Washington D.C.
- McKitrick R. R. "The econometric critique of computable general equilibrium modeling: The role of functional form choice." *Economic Modeling* 15(1998):543-573.
- Shoven, J. B. and J. Whalley. "Applying general equilibrium." *Surveys of Economic Literature*, p.104, 1998.
- Shoven, J. B. and J. Whalley. "Applying general equilibrium." *Surveys of Economic Literature*, Chapters 2 and 3, 1998.
- Whalley, J. "How reliable is Partial Equilibrium analysis?" *The Review of Economics and Statistic 57*(*3*):299-310, 1975.