## Agricultural Economics 622, Spring 2004

Midterm Exam on Math programming Topic

1. (25 points) Temple Outland forest group is trying to set up a plan for utilizing its land and wood processing facilities. Temple harvests trees and makes wood chips for sending to pulp and paper mills along with $2 \times 4$ 's and $4 \times 4$ 's. Labor can be used to either cut trees or make wood products.

Temple has 300 sections of mature forest land and 38,000 hours of labor available.
When trees are harvested the cost is $\$ 1000$ per section with 50 units of labor used. The tree yield per section is 5 truckloads.

When trees are brought into the saw mill they can be cut by one of three processes.
Process 1- Whole log chipping- costs $\$ 120$ per truck load, uses 10 hours of labor and yields 75 cwt of wood chips.
Process 2-2x4 targeting - costs $\$ 140$ per truck load, uses 18 hours of labor and yields 20 cwt of wood chips, 10 bundles of $4 \times 4$ 's and 61 bundles of $2 \times 4$ 's.
Process 3-4x4 targeting - costs $\$ 100$ per truck load, uses 15 hours of labor and yields 15 cwt of wood chips, 40 bundles of $4 \times 4$ 's and 5 bundles of $2 \times 4$ 's.

Wood chips sell for $\$ 4$ per cwt, $4 \times 4$ 's for $\$ 110$ per bundle and $2 \times 4$ 's for $\$ 55$ per bundle.
Set up an LP model of this situation.
2. ( 15 points) In the context of problem number 1 above state a small case where each of the assumptions of LP might be violated (using no more than 2-3 sentences for each assumption).
3. (15 points) Describe the E-V model algebraically and state how one
a. might use the risk aversion parameter to generate solutions with different amounts of risk
b. might interpret the shadow prices
4. ( 15 points) Give an example of where you would use the LP in problem 1 in each of
a. a predictive setting and
b. a prescriptive setting.

Limit the answer for each to no more than 4 sentences.
5. (10 points) Why might you use integer programming?

Limit the answer to no more than 4 sentences.

6．（20 points）Given the following problem and the Excel solution below it what is the
a．amount of each variable in the solution and a one sentence interpretation one would place on one nonzero and one zero variable
b．value of the shadow price for each constraint and a one sentence interpretation one would place on one of those shadow prices which is zero and one which is non zero
c．value of the reduced costs for each variable not produced and a one sentence interpretation one would place on one of those reduced costs which is non zero．
d．objective function value and a one sentence interpretation one would place on that

|  | Make steel Make Ingots Make pig iron |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sell steel | Sell Ingots | Sell pig iron |  |  |  |  |  |
| Profit Objective | -120 | -200 | -100 | 3000 | 100 | 100 |  |  |
| Ore |  |  | 1 |  |  |  | $<=$ | 20 |
| Coal | 10 | 8 | 5 |  |  |  | $<=$ | 300 |
| Labor | 11 | 5 | 1 |  |  |  | $<=$ | 250 |
| Rolling Mill | 22 |  |  |  |  |  | $<=$ | 250 |
| Smelter |  |  | 20 |  |  |  | $<=$ | 300 |
| Steel | -0.7 |  |  | 1 |  |  | $<=$ | 0 |
| Ingots | 1 | -1 |  |  | 1 |  | $<=$ | 0 |
| Pig Iron |  | 1 | -1 |  |  | 1 | $<=$ | 0 |

Plus all variables greater than or equal to zero

The solution follows
EXCEL answer sheet

## EXCEL sensitivity sheet

Microsoft Excel 9．0 Answer Report
Vorksheet：［Iptest2003．z1s］Sheet1
Report Created：2／10r2004 3：41：39 PM

| Target Cell（Mas） |  |  |
| :---: | :---: | :---: |
| Cell Name | Original Yalue | Final Yalue |
| \＄$\$ \$ 25$ Profit Objective Row sum | 19090.90869 | 19090.90869 |
| Adjustable Cells |  |  |
| Cell Name | Original Yalue | Final Yalue |
| \＄ $\mathbf{~} \$ 35$ vars Make steel | 11.36363636 | 11.36363636 |
| \＄C $\$ 35$ vars Make Ingots | 11.36363636 | 11.36363636 |
| \＄ $\mathbf{\$} \mathbf{3 5}$ vars Make pigiron | 15.00000005 | 15.00000005 |
| \＄E\＄35 vars Sell steel | 7.95454532 | 7.95454532 |
| \＄F\＄35 vars Sell Ingots | 0 | 0 |
| \＄G\＄35 vars Sell pig iron | 3.636363686 | 3.636363686 |


| Constraints |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Cell Name | Cell Yalue | Formula | Status | Slack |
| \＄$\$ \$ 26$＜＝Row sum | 15.00000005 | \＄$\$^{\text {d }} 26$ く $=\$ 1 \$ 26$ | Not Binding | 4.99999995 |
| \＄$\$$ \＄27＜R Row sum | 279.5454548 | \＄${ }^{\text {d }}$ 27＜＝$\$ 1 \$ 27$ | Not Binding | 20.4545452 |
| \＄$\$$ \＄28＜＝Row sum | 196.8181819 | \＄${ }^{\text {d }}$ 28く＝$\$ 1 \$ 28$ | Not Binding | 53.18181813 |
| \＄J\＄29＜＝Row sum | 250 | \＄$\$ \$ 29<=\$ 1 \$ 29$ | Binding | 0 |
| \＄$\$$ \＄30＜＝Row sum | 300.000001 | \＄$\$ 130<=\$ 1 \$ 30$ | Binding | 0 |
| \＄$\$ 131$＜＝Row sum | －1．34869E－07 | \＄ 1 \＄31＜＝$\$ 1 \$ 31$ | Binding | 0 |
| \＄$\$$ \＄ 32 ＜＝Rowsum | 0 | \＄$\$ 1.32<=\$ 1 \$ 32$ | Binding | 0 |
| \＄$\$ 333$＜＝Row sum | 0 | \＄$\$ \$ 33<=\$ 1 \$ 33$ | Binding | 0 |
| \＄ $\mathbf{B} \$ 35$ vars Make steel | 11.36363636 | \＄ $\mathrm{B} \$ 35\rangle=0$ | Not Binding | 11.36363636 |
| \＄C \＄ $\mathbf{3 5}$ vars Make Ingots | 11.36363636 | \＄ $\mathrm{C} \$ 35>=0$ | Not Binding | 11.36363636 |
| \＄$\$$ \＄35 vars Make pigiron | 15.00000005 | \＄ D \＄35＞＞0 | Not Binding | 15.00000005 |
| \＄E\＄35 vars Sell steel | 7.95454532 | \＄E $\$ 35>=0$ | Not Binding | 7.95454532 |
| \＄F\＄35 vars Sell Ingots | 0 | \＄F\＄35＞＝0 | Binding | 0 |
| \＄G\＄35 vars Sell pig iron | 3.636363686 | \＄G $\$ 355>0$ | Not Binding | 3.636363686 |

亿 Microsoft Excel 9．0 Sensitivity Report Worksheet：［Iptest2003．xIs］Sheet1 Report Created：2／10／2004 3：45：26 PM

Adjustable Cells
$\left.\begin{array}{lrr}\text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\ \text { Value }\end{array}\end{array} \begin{array}{c}\text { Reduced } \\ \text { Gradient }\end{array}\right]$

Constraints

| Cell | Name | Final <br> Value | Lagrange <br> Multiplier |
| :--- | ---: | ---: | ---: |
| $\$ \mathrm{~K} \$ 26$ | Ore Row sum | 15.00000005 | 0 |
| $\$ \mathrm{~K} \$ 27$ | Coal Row sum | 279.5454548 | 0 |
| $\$ \mathrm{~K} \$ 28$ | Labor Row sum | 196.8181819 | 0 |
| $\$ \mathrm{~K} \$ 29$ | Rolling Mill Row sum | 250 | 76.36363474 |
| $\$ \mathrm{~K} \$ 30$ | Smelter Row sum | 300.000001 | 0 |
| $\$ \mathrm{~K} \$ 31$ | Steel Row sum | $-1.34869 \mathrm{E}-07$ | 3000 |
| $\$ \mathrm{~K} \$ 32$ | Ingots Row sum | 0 | 300 |
| $\$ \mathrm{~K} \$ 33$ | Pig Iron Row sum | 0 | 100 |

## Test Answers and Grading Key

1. LP model ( 25 points)

- Point allocation
- Proper Decision variables (3 points),
- Objective function (3 points)
- Forest harvest linked to processing (3),
- Joint products (3)
- Labor constraint (3)
- Product balances linking processing and sale (3)
- Product sales properly specified (3)
- Forest land constraint (3)
- non-negativity (1)
variant 1

|  | Forest (sec) | Processing (in truckloads) |  |  | Sell Product |  |  | Sum |  | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decision Variables | Harvesting | Process 1 | Process 2 | Process 3 | W. Chips | 4*4 | 2*4 |  |  |  |
| Objective Function | -1000 | -120 | -140 | -100 | 4 | 110 | 55 | 0 | Max |  |
| Constraints |  |  |  |  |  |  |  |  |  |  |
| Forest resource | 1 |  |  |  |  |  |  | 0 | $\leq$ | 300 |
| Labor resource | 50 | 10 | 18 | 15 |  |  |  | 0 | $\leq$ | 38000 |
| Logs balance | -5 | 1 | 1 | 1 |  |  |  | 0 | $\leq$ | 0 |
| Chips balance |  | -75 | -20 | -15 | 1 |  |  | 0 | $\leq$ | 0 |
| $4^{*} 4$ balance |  |  | -10 | -40 |  | 1 |  | 0 | $\leq$ | 0 |
| 2*4 balance |  |  | -61 | -5 |  |  | 1 | 0 | $\leq$ | 0 |

note all variables non negative
variant 2 with forest harvest combined with processing

|  | Cut Forest and Process (in truck loads) |  |  |  | Sell Product |  |  |  | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Decision Variables | Process 1 | Process 2 | Process 3 | W. Chips | 4* 4 | 2*4 | Sum |  |  |
| Objective Function | -320 | -340 | -300 | 4 | 110 | 55 | 0 | Max |  |
| Constraints |  |  |  |  |  |  |  |  |  |
| Forest resource | 0.2 | 0.2 | 0.2 |  |  |  | 0 | $\leq$ | 300 |
| Labor resource | 20 | 28 | 25 |  |  |  | 0 | $\leq$ | 38000 |
| Chips balance | -75 | -20 | -15 | 1 |  |  | 0 | $\leq$ | 0 |
| 4*4 balance |  | -10 | -40 |  | 1 |  | 0 | $\leq$ | 0 |
| 2*4 balance |  | -61 | -5 |  |  | 1 | 0 | $\leq$ | 0 |

note all variables non negative
variant 3 with forest harvest combined with processing and sale also folded in

|  | Cut + Process + Sell Products <br> (in truck loads) |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Process 1 Process 2 Process 3 | Sum |  | RHS |  |  |
| Decision Variables | -20 | 4195 | 4,435 | 0 | Max |  |
| Objective Function |  |  |  |  |  |  |
| Constraints | 0.2 | 0.2 | 0.2 | 0 | $\leq$ | 300 |
| Forest resource | 20 | 28 | 25 | 0 | $\leq$ | 38000 |
| Labor resource |  |  |  |  |  |  |

note all variables non negative
2. Violation of LP assumptions (15 points)

- 7 assumptions (2 points per each)
- 1 point for showing up

1) Objective Function Appropriateness

- Obj. Fn in the above case might not be the sole criteria for choosing the decision variables. The firm might take the business risk into account

2) Decision Variable Appropriateness

- We might have omitted major choice variables like processing logs other than in the 3 cases for which we have data

3) Constraint Appropriateness

- There might be any omitted restrictions such as labor by facility (ie harvest labor is probably not sawmill labor)

4) Proportionality

- Harvesting cost per section or processing cost per truck load might be increasing or decreasing as the firm produces more
- Labor use per section or truck load might be decreasing as produces more

5) Additivity

- There might be interactions between sale items leading to higher prices as collective volume goes up

6) Divisibility

- The firm might not be permitted to sell $4 x 4 s$ or $2 x 4 s$ in amounts smaller than one bundle

7) Certainty

- The yields per log of product might vary

3. E-V Model (15 points)

Model specification (5 points)
$\operatorname{Max} E-\phi \sigma^{2}{ }_{Z}=\bar{c} X-R A P^{*} X^{\prime} S Z=\sum_{j} \bar{c}_{j} X_{j}-R A P^{*} \sum_{j} \sum_{k} s_{j k} X_{j} X_{k}$ (3 points)
s.t. $\sum_{j} X_{j} \leq$ funds (1 points)
$X_{j} \geq 0$ for all j (1 points)

- 5 points for each (a) and (b)
(a) We can solve the E-V Model for various RAP values starting at zero and then becoming larger heading toward infinity, and then we would obtain a set of possible solutions, which include maximum return ( $r a p=0$ ), minimum risk ( $r a p=$ infinity), and intermediate efficient mean-variance combination ( $0<$ rap< infinity), across various risk preferences of investor (RAP) . This yields different portfolios with different mean and variance.
(b) In E-V Model, shadow price is equal to $\partial \mathrm{E} / \partial \mathrm{X}-\Phi^{*}(\partial \sigma / \partial \mathrm{X})$, where X is total fund available.

Shadow price is the difference between "change in expected return which is mean return" and "the product of marginal change in variance and risk preference (RAP)" when we increase one unit of fund. It is the risk discounted rate of return.

## 4. Predictive and Prescriptive ( 15 points)

- 7 points for (a) and 8 points for (b)
(a) Predictive
- If we buy additional forest section or hire additional labor, what are the projected profit and optimal decision variable consequences
- If one of the processing patterns is unavailable, then how does it affect the profit and optimal decision variables
(b) Prescriptive
- What is the optimal harvesting, processing, and sale pattern the firm should follow to reach maximum profit


## 5. Integer programming ( 10 points)

We use it to handle

- Decision variables are integer or binary (indivisible)
- Lumpy investment and fixed costs
- Logical Conditions - mutual exclusivity of items etc.


## 6. Interpretation of the Excel Solution

- 5 points for each question (2 points for values and 3 points for interpretation)
(a) Decision variables
- Final Value column under Adjustable Cells

Make steel $=11.36$, Make ingots $=11.36$, Mike pig iron $=15$
Sell steel $=7.95$, Cell ingots $=0$, Sell pig iron $=3.63$

- Those numbers give the amount of each product which the firm should make or sell. The firm should make 11.36 of ingots but sell none of ingots to maximize profit.
(b) Shadow price
- Lagrange Multiplier column under Constraints

$$
\text { Ore }=0, \text { Coal }=0, \text { Labor }=0, \text { Rolling Mill }=76.36, \text { Smelter }=0
$$

Steel $=3000$, Ingots $=300$, Pig Iron $=100$

- Those numbers give the change in the objective function value when one unit of those constraints is changed. If the firm increases one unit of rolling mill capacity, then profit will be increased by 3000 . However one unit of incensement in Ore is worth nothing because Ore is non-binding resource
(c) Reduced cost
- Reduced Gradient column under Adjustable Cells Sell Ingots = -200
- Reduced cost means the change in objective function value when one unit of a decision variable that is not in the solution is forced into solution. If the firm alters operations to sell one unit of Ingots, then the obj. fn value would be decreased by 200
(d) Objective function value
- Final value under Target Cell Objective Function Value $=19,090.9$
- The value is the maximum profit that the achieves given the resources and parameters

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $7$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note this is 15 by 15 and does not imply the problem is that size

