Agricultural Economics 622

Midterm Exam on LP Topic
Feb, 2003

1. (25 points) Dollar Hog Company is planning its weekly hog cutting operation. Dollar buys hogs and can either skin them or scald them and then cut them up via one of four patterns. Technical data follow.

Table 1. Technical Data by Processing Type			
	Hog Processing Type		
	Skin	Scald	
Cost of processing/Hog	10	8	
AddedByproduct ${ }^{\prime \prime} /$ hog	0 lbs.	30 lbs.	
Skin yield/hog	1	0	
Labor to skin or scald/hog	6	4	
1/ byproduct yield in addition to those shown in Table 2.			

Table 2. Yield of product in pounds by cutting pattern					
	Cutting Pattern				
Product	1	2	3	4	
Ham	40	40			
Bacon	20		30		
Sausage	50	70	90	130	
By-product	50	50	40	30	
Waste	40	40	40	40	
Labor hours/hog	2.5	3.2	2.2	2.1	

Products sell for the following prices:
Skins: $\$ 8$ Bacon: $\$ 1.85 / \mathrm{lb}$. Byproduct: $\$ 0.40 / \mathrm{lb}$.
Ham: \$1.90/lb. Sausage: $\$ 1.00 / \mathrm{lb}$.
Hogs cost $\$ 40.5000$ man hours of labor are available. Waste costs $\$ 0.01 / \mathrm{lb}$. to dispose of. Formulate a linear programming problem to determine the best operation.
2. (25 points) In the context of problem number 5 below state a small case where each of the assumptions of LP might be violated (using no more than 2-3 sentences for each assumption).
3. (20 points) Suppose that you have solved an LP problem and found the optimal solution for a client in Mexico but you set the problem up in dollars. Now suppose the client wants the answer in pesos. Use the LP matrix approach to determine whether changing the objective function to Pesos will
a. Cause the current solution (basis) to cease to be optimal.
b. Cause the current solution (basis) to cease to be feasible.
c. Alter the value of the decision variables.
d. Alter the value of the objective function.
e. Alter the value of the shadow prices.
f. Alter the value of the reduced costs.
4. (10 points) State tests you would use to check the units of the coefficients in the rows and columns of a linear programming formulation.
5. (20 points) Given the following problem which is the feed problem from class making 100 kg of feed at minimum cost and the Excel solution below it what is the
a. amount of each variable in the solution and a one sentence interpretation one would place on one nonzero and one zero variable
b. shadow prices on the resources and a one sentence interpretation one would place on one of those shadow prices which is zero and one which is non zero
c. reduced costs for variables not produced and a one sentence interpretation one would place on one of those reduced costs which is non zero.
d. objective function value and the one sentence interpretation one would place on that value

	Com	Hay	Soybean	Urea	Dical	Salt	Vitarin A	Slury		
Cost	0.113	0.077	0.3	0.332	0.498	0.11	0.286	0.2		
Protein Max	0.075	0.127	0.438	2.62				0.032	\leq	0.13
Fat Max	0.0357	0.022	0.013					0.009	\leq	0.05
Salt Max						1			\leq	0.02
Calcium Max	0.002	0.0125	0.0036		0.2313			0.002	\leq	0.01
Phospohrous Max	0.0035	0.0023	0.0075	0.68	0.1865			0.0024	\leq	0.013
Calories Min	1.48	0.49	1.29					1.39	\geq	1.34
Protein Min	0.075	0.127	0.438	2.62				0.032	\geq	0.07
Vitamin A Min	600	50880	80				2204600		\geq	2200
Salt Min						1			\geq	0.015
Calcium Min	0.002	0.0125	0.036		0.2313			0.002	\geq	0.0025
Phosphorous Min	0.0035	0.0023	0.0075	0.68	0.1865			0.0024	\geq	0.0035
Volume	1	1	1	1	1	1	1	1	=	100

Plus all variables greater than or equal to zero

The solution follows on this and the next page

EXCEL sensitivity sheet

Adjustable Cells

Cell	Name	Final Value	Reduced Gradient
\$B\$3	Corn	86.61526027	0
\$C\$3	Hay	11.85594856	0
\$D\$3	Soybean	0	0.19220763
\$E\$3	Urea	0.02879104	0
\$F\$3	Dical	0	0.364491785
\$G\$3	Salt	1.5	0
\$ ${ }^{\text {W }} 3$	Vitamin A	0	0.227504397
\$1\$3	Slurry	0	0.090671288

Constraints
$\left.\begin{array}{lrr}\hline \text { Cell } & \text { Name } & \begin{array}{c}\text { Final } \\ \text { Value }\end{array}\end{array} \begin{array}{c}\text { Lagrange } \\ \text { Multiplier }\end{array}\right]$

EXCEL answer sheet

Cell	Name	Original Yalue	Final Yalue
\$K\$20	Cost	10.87493108	10.87493108
Adjustable Cells			
Cell	Name	Original Yalue	Final Yalue
\$B\$3	Com	86.61526027	86.61526027
\$C\$3	Hay	11.85594856	11.85594856
	Soybean	0	0
\$ ${ }^{\text {¢ }}$ \$ 3	Urea	0.02879104	0.02879104
\$F\$3	Dical	0	0
\$G\$3	Salt	1.5	1.5
\$ ${ }^{\text {\$ }}$ 3	Vitamin A	0	0
\$1\$3	Slurry	0	0

First Alternative Answer to \#1
Hog Hog Hog Hog

Plus all variables greater than or equal to zero.
Points 25
Obj +3 , variables +5 , parts bal +3 , skin scald +3 , waste +3 , product sale +3 , labor +3 , bonus +2

Second Alternative Answer \#1

	Skin and cut Hog pattern	Skin and c Hog patter 2	Skin and c Hog patter 3	Skin and cu Hog pattern 4	Scald and cut Hog pattern	Scald and cu Hog pattern 2	Scald and cu Hog pattern 3	Scald and cu Hog pattern 4		Hams	Bacon		By roduc	Waste		
Profit	-50	-50	-50	-50	-48	-48	-48	-48	8	1.90	1.85	1.00	0.40	-0.01		
Hogs for slaughter	r 1	1	1	1	1	1	1	1							\leq	0
Skins	-1	-1	-1	-1					1						\leq	0
Ham	-40	-40			-40	-40				1					\leq	0
Bacon	-20		-30		-20		-30				1				\leq	0
Sausage	-50	-70	-90	-130	-50	-70	-90	-130				1			\leq	0
Byproduct	-50	-50	-40	-30	-50-30	-50-30	-40-30	-30-30					1		\leq	0
Waste	-40	-40	-40	-40	-40	-40	-40	-40						1	$\begin{gathered} =\text { or } \\ \geq \end{gathered}$	0
Labor	$6+2.5$	6+3.2	6+2.2	$6+2.1$	$4+2.5$	$4+3.2$	$4+2.2$	$4+2.1$							\leq	5000

Plus all variables greater than or equal to zero.
Points 25

Answer \#2

7 assumptions
4 points for anything
1 point for stating each of the 7 assumptions
2 points for each of the 7 interpretations

Objective Function Appropriateness

In case above have right objective as cost min and numbers therein are right
Decision Variable Appropriateness
In case above have not omitted any major choices like additional feedstuffs.
Constraint Appropriateness
In case above have not omitted any major restrictions like other nutrien max and min.
Proportionality
In case above there might be increasing prices the more of a good you feed Additivity

In case above there might be interactions between feeds
Divisibility
What if we always require feeds in amounts no smaller than $1 / 10$ of a kilogram
Certainty
Do we really know the nutrient requirements

Answer \#3

2 for stating each relation (12)
1 for each conclusion (6)
2 for showing up

NEW problem
\max Ecx
ax $<=b$
$x \quad>=0$
where E is pesos per dollar
so new $\mathrm{c}=\mathrm{E}$ * old c
and new $\mathrm{c}_{\mathrm{B}}=\mathrm{E}^{*}$ old c_{b}
a. Cause the current solution (basis) to cease to be optimal.

Optimality when

$$
-\left(\mathrm{C}_{\mathrm{b}} \mathrm{~B}^{-1} \mathrm{~A}_{\mathrm{j}} \quad-\mathrm{C}_{\mathrm{j}}\right)<0 \text { for all } \mathrm{j}
$$

Now becomes

$$
-E\left(C_{b} B^{-1} A_{j} \quad-C_{j}\right)<0 \text { for all } j
$$

just multiplied by E so basis is still optimal
b. Cause the current solution (basis) to cease to be feasible.

$$
\mathrm{X}_{\mathrm{b}}=\mathrm{B}^{-1} \mathrm{~b} \quad \text { is unchanged and remains } \geq 0
$$

c. Alter the value of the decision variables.
$\mathrm{X}_{\mathrm{b}}=\mathrm{B}^{-1} \mathrm{~b} \quad$ is unchanged and remains ≥ 0
d. Alter the value of the objective function.

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{b}} \mathrm{X}_{\mathrm{b}}=\mathrm{C}_{\mathrm{b}} \mathrm{~B}^{-1} \mathrm{~b} & \text { becomes } \\
\mathrm{EC}_{\mathrm{b}} \mathrm{X}_{\mathrm{b}}=\mathrm{EC}_{\mathrm{b}} \mathrm{~B}^{-1} \mathrm{~b} & \text { multiplied by exchange rate }
\end{array}
$$

e. Alter the value of the shadow prices.
$\mathrm{C}_{\mathrm{b}} \mathrm{B}^{-1}$ becomes
$\mathrm{EC}_{\mathrm{b}} \mathrm{B}^{-1}$ multiplied by exchange rate
f. Alter the value of the reduced costs.
$-\left(C_{b} B^{-1} A_{j} \quad-C_{j}\right)<0$ for all j
Now becomes

$$
-E\left(C_{b} B^{-1} A_{j} \quad-C_{j}\right)<0 \text { for all } j
$$

just multiplied by E

Answer \#4

2 points for concept , 4 for row numerator, 4 for column denominator.
Homogeneity of units test
Rows must have constant numerator columns denominator.

Answer \#5

6 points
a. amount of each variable in the solution and a one sentence interpretation one would place on one nonzero and one zero variable
Final value column under adjustable cell section below
Those numbers give amount of feedstuffs to use. Solution says feed zero slurry and 86.81 kg corn.

Adjustable Cells			
Cell	Name	Original Yalue	Final Yalue
$\$ \mathrm{~B} \$ 3$	Corn	86.61526027	86.61526027
$\$ \mathrm{C} \$ 3$	Hay	11.85594856	11.85594856
$\$ \mathrm{D} \$ 3$	Soybean	0	0
$\$ \mathrm{E} \$ 3$	Urea	0.02879104	0.02879104
$\$ \mathrm{~F} \$ 3$	Dical	0	0
$\$ \mathrm{G} \$ 3$	Salt	1.5	1.5
$\$ \mathrm{H} \$ 3$	Vitamin A	0	0
$\$ \$ 3$	Slurry	0	0

6 points
b. shadow prices on the resources and a one sentence interpretation one
would place on one of those shadow prices which is zero and one which is non zero
Shadow price is Lagrange multiplier column in second part below
Says volume (in row k 32) cost $0.58 \$ / \mathrm{kg}$ o the margin, calorie min (row 7) worth 0.03587 on margin.
Constraints

| Cell | Name | $\begin{array}{c}\text { Final } \\ \text { Value }\end{array}$ |
| :--- | ---: | ---: | \(\left.\begin{array}{c}Lagrange

Multiplier\end{array}\right]\)

3 points
c. reduced costs for variables not produced and a one sentence interpretation one would place on one of those reduced costs
Reduced cost is Reduced gradient column in table just below
Says forcing in soybeans would cost $\$ 0.19$ per kg on the margin.
Adjustable Cells

Cell	Name	Final Value	Reduced Gradient
$\$ \mathrm{~B} \$ 3$	Corn	86.61526027	0
$\$ C \$ 3$	Hay	11.85594856	0
$\$ \mathrm{D} \$ 3$	Soybean	0	0.19220763
$\$ E \$ 3$	Urea	0.02879104	0
$\$ F \$ 3$	Dical	0	0.364491785
$\$ G \$ 3$	Salt	1.5	0
$\$ \mathrm{H} \$ 3$	Vitamin A	0	0.227504397
$\$ \$ 3$	Slurry	0	0.090671288

3 points
d. objective function value and the one sentence interpretation one would place on that value

Use objective row sum from table below $=\$ 10.87$ and that is firm cost per 100 kg of feed.
Target Cell (Min)

Cell	Name	Original Yalue
$\$ \$ 20$ Cost	10.87499108	10.87499108

