
1

AGEC 662 Notes
Summer 1996
B.A. McCarl

Forming Probability Distributions

An important part of any analysis of decision making under stochastic conditions is a

probability distribution.  These notes talk through some procedures for developing probability

distributions as they apply to agricultural economics.  

Probability distributions state the relative frequency of occurrence of a set of mutually

exclusive events.  Probability distributions can be univariate or multi variate.  They give the

relative frequency of observing a particular event.  For example, a univariate distribution

could  describe the frequency of alternative yields for a crop at a particular point in time.  In

that case, the mutual exclusivity requirement would indicate that it was impossible to set more

than one yield at one particular point in time.  Multivariate distributions are needed where the

outcomes involve more than one item wherein the level of one item does not predetermine

another.  For example, a multivariate distribution would be needed to describe the yield on

two different plots of ground where the yields across plots are not independent or perfectly

correlated.  Mutual exclusively still must hold in that one cannot get more than one yield at

one point in time on the individual plots of land.  Thus, in the example case the probability

distribution would express the relative frequency the simultaneous levels of a pair of a yield

outcomes on the plots of ground.

Some Alternatives for Probability Distribution Description

There are a number of important alternative paths that can be followed in defining 
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probability distributions.  These are univariate-multivariate, continuous-discrete, full-moment

based, known versus unknown distribution form, conditional versus unconditional and

conditional on discrete or continuous events.  Each merits discussion.  

Univariate versus Multivariate  

The distinction between univariate and multivariate probability distributions depends

upon the events space.  If the events are entirely described in terms of the value of one

outcome or can be transformed to be described in terms of one outcome then a univariate

probability distribution is present.  If not the probability distribution is multivariate.  Notice

that having multiple items dependent upon the outcome of an event does not necessary imply

a multivariate probability distribution.  For example, one may have found that the yields of a

number of crops are perfectly correlated across weather states.  Thus, one might have multiple

yields dependent upon the historical weather year.  This is not a multivariate probability

distribution, but is really a set of univariate probability distributions which are perfectly

correlated across the single event weather.  

Continuous-Discrete

An important distinction in terms of probability distributions is whether they are

defined with respect to continuous or discrete events.  Most theoretical probability

distributions are generally developed with respect to a continuous event space.  Most

empirical probability distributions are developed from data on discrete events.  For example,

analysts often assume normality and a continuous set of yields.  Most historical data is

discrete with finite discrete observations.  Continuous probability distributions only arise

when one assumes or estimates a distributional form.
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Full-Distribution Versus Moment Based 

Probability distributions may be described either in terms of the moments of the

distributions or in terms of the full probability distribution.  Also, this often is combined with

distributional assumptions.  For example, one may use a technique which allows estimation of 

the mean and variance of the probability distribution, but does not estimate the full probability

distribution.  In cases, the mean and variance can fully describe the probability distribution for

the normal distribution.  Common techniques like regression estimate the mean of the

probability distribution.  There are techniques available such as the Just and Pope technique

which estimate higher moments.

Known versus Unknown Distributional Form

There are a lot of applied analyses where discrete “empiricial” distributions are used

without assumptions about the form of that distribution.  One can use a flexible functional

form distribution to approximate without finding the true distribution.  Finally, one can fit a

particular distributional form or assume for example that everything is normally distributed.

Conditional-Unconditional

An important distinction in applied work is the conditional-unconditional nature of

probability distributions.  Probability distributions are conditional if one assumes that an

external event shifts the probability distribution.  Consider the following examples.  The

current high prices in agriculture are in part a function of low government stocks that in turn

make more likely higher profit price distributions.  Thus, we could have a distribution of

prices with and without government stocks being low. In turn, the distribution of prices would

be conditional upon the level of stocks.  Similarly, one could develop a distribution of yields
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for an irrigated crop with the yield distribution a function of water applied.

Ultimately, almost all probability distributions used in applied work are conditional in

some form or fashion.  For example, almost all distributions are conditional on time giving the

distribution now.  However, one does not usually expect probability distributions to be

temporally stable.

Conditional and Discrete Versus Continuous Conditional Events

A very important distinction in some agricultural economics work is whether the

conditional probability distribution is based on continuous or discrete exogenous events.  For

example, one can develop a probability distribution for prices with and without a NAFTA

agreement being signed - a distribution conditional on discrete events.  On the other hand, one

may need to know how the probability distribution shifts when fertilizer usage changes and

thus might want a probability distribution that relates yields and the distribution of yields to

the amount of fertilizer that is used.  Thus, if fertilizers increases by 5% one might want to

know how the parameters of the probability distribution shift. 

Formation Approaches for Probability Distributions  

Fundamentally probability distributions formation can be approached in one of four

different ways.  Here we call these four ways: deductive assumption objective, subjective and

simulated. These notes will discuss everything concentrate on objective formation of

probability distributions.  First, however we will overview these methods.

Distribution by Deductive Assumptions

A common methodology in agricultural economics is to assume a probability

distribution form and then parameterize in a simple fashion using some data.  Fundamentally,
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one usually assumes normality and then given a mean and variance estimate goes forward

with the study.  This certainly is common in the vast variety of studies done with expected

value variance models.  Other distribution assumptions can also be made.

Objective

The second formation method for probability distributions (and the item on which

these notes will primarily concentrate) is the development of “objective” probability

distributions from historical data.  What one does is infer future probabilities of events based

on their past frequency of occurance.  In this case, one collects data on the variables of

interest and attempts to manipulate these data into a probability distribution.  One has to be

careful when using historical data to make sure the data are all brought up-to-date.   For

example, using prices from a period of 20 years without adjusting for inflation is usually an

improper procedure.  Similarly, using data with important trends over time without adjusting

for those trends is ordinarily improper.

Subjective Distributions 

Distributions can be formed through subjective questioning of the decision makers. 

This embodies contacts with decision makers asking them to reveal their anticipated

probability distribution.  There are a number of problems with this, one of which one is the

difficulty of  accurately asking individuals for the probability distribution and a second is to

avoid the probability distribution of being biased by currently observed factors (anchored). 

For example, during this year where prices are substantially higher than they have been in the

past, individuals might give substantially higher probability distribution than the long-run

distribution which might exist.  There are also substantial problems in getting conditional
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distributions when doing subjective probability solicitation and in getting accurate

distributions that the individuals believe in.  

Simulated Probability Distributions

An increasingly more popular way of developing probability distributions is through

the use of a simulation model.  Such models involve, for example, the EPIC crop simulation

model where one can develop a yield and fertilizer use or Richardson’s FLIPSIM where one

puts in some raw information on distributions of prices and yields and then simulates a net

revenue probability distribution.  The real difficulty with thte simulation approach is assuring

the simulatoin validity generates applicable data.  

Finding Probability Distributions Based on Objective Data

The most fundamental topic of these notes involves finding probability distributions

based on historical or cross sectional data.  Before launching into a discussion of techniques. 

First, let us talk about some desirable characteristics of a probability distribution.  

Desirable Characteristics of Probability Distributions 

There are several properties that characterize distributions which must be obtained in

order to have a usable probability distribution: 1) each of the states of nature must be mutually

exclusive; 2) a probability of occurrence of each of the states of nature must be an unbiased

measure of the current probability of that state of nature occurring; 3) the sum of the

probabilities across the states of nature must equal one

The second property is the most troubling in when using historical data.  Suppose there

is a trend in historical data.  What if that trend is upward, then what one must do in the phase

of the historical data is somehow remove the trend then extrapolate it to the time period of
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interest and form the probability distribution based on its historical observations in that time

period.  A very simple example.

The first questions regarding probability distributions is how do we form one from a

set of historical data assuming that data comes from a single stationary probability

distribution.  In such a case, one would employ the following procedure to form the

probability distribution.  

Step 1 - take the historical data and array it from high to low. 

Step 2 - decide if one wishes the probability distribution to just have the individual

observations in it or have ranges if individual items assign each observation to a cell and go to

Step 4. 

Step 3 - if ranges are desiredfind the range size.  Take the the high and low

observations subtract their difference divide by the number of points to be in the distribution

i.e., to find the lateral size if you want 10 points in the composite distribution and the low

number was 90 while high number was 180 one could use an range interval of 9.  Onee also

might want to use an interval of 10 for convience. 

Step 4 - go through the data and count the frequency for which the items fall in each

range.

Step 5 - Take the range count and compute the relative frequency by divide the

frequency in a cell by the total number of observations, this is the probability.  Assign the mid

point of the interval to be typical of the value.  

An example, this procedure is presented in Table 1.  The first column gives the

observation number, the second column gives the raw item, the third column gives the sorted
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items and if we look this sort of strange we group this into groups of five starting at 2.5, so

our first range is 2.5 to 7.5.  Our second range is 7.5 to 12.5 etc.  The resultant frequency table

up here is in Table 2.  

Making a Probability Distribution from a Set of Non-Stationary Data 

One key word in the above discussion is stationarity.  When one finds that the

probability distribution is not stationary than a stationry series needs to be developed from the

non-stationary set of data.  The most common way of doing it is it utilize a regression to

remove the systematic trends and then use the residuals to form the probability distribution. 

Let us consider a relatively simple ten point example of this.  Suppose we use national

average cotton yield data from  Agricultural Statistics from 1977-1986. The years of data

appear on Table 3.  Note, the yields are higher at the end than the begging.  Thus, a trend

exists and the data are likely not stationry.  In turn, suppose we run a simple time regression

where we predict the data as a simple linear function of time.  The regression output  is given

in panel B of Table 3.  In turn, suppose we use the equation to develop a forecast for each of

the years as in the third column of Panel A in Table 3.  Note, that the year for 1977 the

regression forecast 466 whereas the data is really 520.  We then calculate the residual error. 

In  the 1977 case the forecast equation has an error where it is 53 units underneath the actual

observation.  Finally, to form a stationary probability distribution we forecast to a period we

don’t have data for, in this case 1987.  The equation shows a forecast of 610.7, then we add

the residuals to each of the observations.  So under 1977 residuals the forecast for 1987 would

be 664.  This final column in Panel A is a stationary series with assuming that the distribution

of forecast errors in the past are relevant to the current time period.  In turn, given these data
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we would form the probability distribution as in the last section.                 A More Extensive

Example of Forming Probability Distributions

One way of looking at the problems encountered in formation of objective probability

distribution is to form one.  Suppose that we wish to form a total revenue distribution for

producers in an area.  In this particular case, let us draw strawberry data on prices and yields

for California from Agricultural Statistics for the period 1977-93.  The data for prices and

yields as well as the resultant multiplication of revenue are given in Table 4.  The prices are in

nominal dollars.  Thus, the table also includes the implicit GNP deflator. 

Now suppose we are going to construct a probability distribution for revenue but we

choose to do this by first constructing separate stationary price and yield distributions.  This

will be done under the questionable assumption that the California producers are price takers

in the strawberry market.  (In fact, this may not be the case and this leads to some further

discussion later).  

Let’s start by examining the probability distribution of price.  Figure 1 shows the

distribution of prices over time and the mean price.  We could use these data to form the

probability distribution.  Here are seventeen years there so we could say there 1/17 chance of

each price occurring.  Thus, we would get the distribution in Table 5.  The reason we should

not use this for a probability distribution is there is an obvious bias in the data introduced by

the fact that all of our low observations are in the first ten years of the data and all the high

observations are in the last ten years of the data.  We would try to remove this bias by

converting the data from nominal to real prices (Table 6).  Figure 2 gives the real price

distribution and its mean. Again, is clearly not a data set we should want to use in forming the
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price probability distribution as now the prices get lower over time.

We might posit an individual looking at the strawberry market would mentally

extrapolate the series with a linear time series model where price is equal to a constant plus b

times the year.  In this case, we estimate the price forecasting the equation using a simple

linear model.  The regression results appear in Table 7.  The results show that price is

trendling

significantly down and that the equation explains 80% of the variation.  A graph comparing

the real price observations and the projections appears in Figure 3.  We can now use this

figure to provide a definition of risk.  Mainly, suppose we posit that the decision maker’s

expectations follow the regression line and the deviations from those expectations is the

observed risk.  Thus, in 1982 the forecasted price was 72.8 whereas the actual real price is

73.4. Thus, there was an error where the observation was $.60 higher then the expectation,

i.e., there was a deviation between the assumed expectation and the observation.  In turn, we

can develop more stationary series for prices by projecting the forecast out to 1994 for the

price distribution and adding the residuals.  These calculations appear in Table 6.  Note that in

1994 the forecast equation predicts a price of $47.7.  We then take the deviations which the

real price and forecasting equation which in 1982 is $6.70 and then we add that $6.70 to the

$47.7 projection comes up with an even of $54.4.  Repeating this calculation for each year

results in a stationary distribution of prices.  Note, the effect this has on the probability

distribution.  The nominal prices had a standard error of 5.7.  The real prices had a standard

error of 8.0 and the stationary price distribution has a standard error of 3.5.  Thus, we have

gotten a narrower and more applicable probability distribution.  This distribution is also on the
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graph in Figure 5.  Note that the stationary price distribution has the smallest variance of all

three of the probability distributions.

We can follow the same procedure for yields.  Table 6 gives the historical yields,

Table 8 the results from time dependent regression and Table 9 the projected yields the

forecast errors and stationary probability distribution.  Figure 6 gives the historical yields and

Figure 7 gives the historical yield relationship with the trend line through it.  Figure 7  again

shows the difficulty of using the probability distribution derived straight from historical

yields, i.e., certainly nobody in 1993 would expect yields that were observed in 1977 rather

some yields in the neighborhood of 1993 would be more likely.  Figure 8 shows the stationary

probability distribution of yields.  

Finally, now we can turn our attention to the probability distribution for revenue. 

Note, that if we take the observed deal times the historical price we get the data in Table 10,

column 2.  We take the real price times the observed yield we get the data in column 3 and if

we take the detrended price distribution and detrended yield distribution we get the data in

column 4.  In this particular case, notice that the probability distribution of real revenue and

stationary revenue are very similar.  In fact the real revenue distribution has a smaller

variance.  This is most likely because of a strong correlation between prices and yields in the

California case and when the yields are down prices are up.  This leads to another challenge if

one was really forming this probability distribution one would probably have to go through

some sort of demand model formulation where one took yield and total acreage to form total

production and then looked at the relationship between total production and price but also

over a 20 year period one would also probably have to factor in the availability of imports
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from foreign countries, growth in population and some other demand factors before one could

say develop a price probability conditional on acreage, yield, population, etc. yielding pure

random.

General Lessons Learned on Objective Probabilities from the Above Exercises

The above exercises show several things.  First, one must use objective data with

caution when describing a probability distribution.  The presence of trends and other

systematic effects could bias the resultant probability distributions.  What one needs to do is

use a procedure to simulate expectations formation like regression or moving averages to

develop a series of values that were expected for each of the points in the data.  In turn, the

deviations between the actual observations and values expected are a stationary risk measure.  

One can then add that stationary risk measure to the extrapolated expectation and form a

stationary data set from which the probability distribution can be generated.  Expectation

models can be substantially more complicated than those used above.  For example, if one is

trying to estimate a probability distribution for crop yields with data where different amounts

of water and fertilizer  has been applied, by different people in different places one would

have to try to systematically remove the management, location, weather, water and

fertilization effects before one could get to the pure random probability distribution part of the

model.  One also may find that the residual terms are hetereoskedastic as will be the

discussion of a later part of this set of notes.

 Moving Onward Toward Conditional Distributions  

Now, how do we form  probability distributions for conditional situations. 

Fundamentally, the distribution above is conditional on the point in time.  What we discuss
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now is the development of distributions which are conditional on either discrete or continuous

events.  In order to do this we need a more complex data set.  

Suppose we use the data set from Tice.  That data set contains corn yields from the

Purdue Agronomy farm from a ten year fertilizer experiment.  This data contains observations

on year amount of nitrogen fertilizer applied, timing of fertilization (fall versus spring) and

whether an denitrification inhibitor was used. The data for this amount to some 283

observations and are given in Table 11.  Note in these data the first column gives the year, the

second the amount of nitrogen used, the third a zero one indicator of whether the ampliation

was done in the fall or spring (with a one indicating it was done in the fall) and a zero one

variable indicating whether or not the denitrification inhibitor was used.  The question now is

how do we form a conditional probability distribution for yield dependent upon on the

amount of nitrogen used, the application time and the inhibitor.  This is just a simple

extension of the procedure above.

The first step in forming such a probability distribution will again to make the data

stationary.  We choose to do this again through the use of regression by adding additional

independent variables.  In this regression we assume that yield is a quadratic function of

nitrogen and has slope shifter for each of the years, nitrogen timing and the inhibitor.  (Note

in Tice’s real analysis a set of weather data were used instead of the years but for class

purposes this is certainly adequate).  

The regression results are given in Table 12.  Notice here the equation explains 78% of

variation.  Also nitrogen applied has a positive and significant effect while nitrogen squared

has a negative effect indicating the diminishing returns to application of the variable input. 
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Also, fall applications of nitrogen reduces yields relative to spring application but the inhibiter

increases yield.

The question now is how can we use this forecast equation to develop a conditional

probability distribution.  Suppose we wish a distribution for 30 pounds and 120 of nitrogen

with spring application without the inhibitor.  First, let us develop the residuals..  This is done

by evaluating the function at each an every observation and forming a forecast then

computing residuals.  Thus, if we take this function and plug in for 1968 conditions and zero

nitrogen applied and any other items which correspond to the first observation of the base set

we get in a forecast of 51.7 bushels of corn whereas, the actual observed yield is 67 bushels,

as a consequence, we have a forecast error of 15.3 bushels.  We then repeat this procedure for

all observations then take these residuals we could add them to a mean forecast equation to

come up with a probability distribution.   We form this mean forecast by evaluating the

formula residuals plus the dummy variables.  Under these circumstances the expected yield is

59.7 bushels for 30 pounds and 117 bushels for 120 pounds without the resultant probability

distribution is graphed in Figure 12.  In this distribution notice that the line on the left is for

30 units of nitrogen and the line on the right is for 120 units.  

The formation of this forecast is a little bit more difficult than those above because

some of the independent variables we use are in fact stochastic.  Mainly, we assume a

distribution of the dummy variables across the years also occurs there is a frequency for

which the years occur.  For the base forecast what we will do is, we will take the simple

average across the dummy variables which is .06 I believe and add that to the forecast.  But

for forming the probability distributions what we will do is take the forecast of just the part of
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the model involving the non-stochastic independent variables, i.e. dropping the dummies. 

When we are forming a probability distribution  observation that corresponds to a particular

year and residual, we will add both the year dummy effect and the residual.  Thus, for the

1968 case, we take valuation of the terms and squared term plus the 1968 dummy variable

plus the residual for each of the replications in the data set and this gives us a 283 point

probability distribution which is graphed in Figure 12.       

Higher Order Moments - Just Pope 

Note, the estimates of the distributions above are exactly parallel and shaped

identically.  This is a consequence of our assumptions.  Namely, the mathematical formula for

the regression written in arbitrary functional form is: 

 Y = f(x) + 

In this function f(x) is non-stochastic while  is an error term with an expected value

of zero and variance of  .  Now suppose we find the mean and variance of Y using

mathematical statistics.  To find the mean we use the formulas:

  

The gives the expectation or average for Y and since f(x) is a nonstochastic we can

simple Y factor it out of the expectation.  Then since the expected value of the error term is

zero this means that the expected value of Y is simply the f(x) function that we have

estimated.  In turn if we look for the variance of Y, the mathematical formula for it is:
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In this case, we plug in our value for the expected value for y and simplify we get an

expression which is simply the expected value of the error term the quantity squared.  We

then add in the expected value of  without consequence because it is zero.  The resultant

expression is the definition of the variance of the error term.  Thus the variance of Y is just

the variance of the error term.  Notice what this means is that the variance given any level of

nitrogen fertilizer is always the same.  This is potentially a limitation and leads us into our

next form of probability distribution estimation.  That is estimation controlling the higher

order moments through regression.  

Fundamentally the technique that we used above is one in which we estimate an

expression for the mean which depends on X and then use this to make the distribution

stationary.  But as we show above with our linear functional form this leads to probability

distributions with variance independent of the level of x.  There may be cases where we wish

to examine alternative specifications.  

Let us do a little bit more mathematical statistics to show the implications of two

additional functional forms we might use.  If we take a traditional multiplicative approach to

this problem, we would estimate the equation y = (x)e .  This particular case we would

assume that the expected value of the exponentiated error term was one.  Thus, when we

estimate the model in logs the expected value of the error term is zero and the variance of that

term is .  In this particular case, if we go through our mathematical statistics estimation

given:



Y f(x) h 1/2(x)

E(Y) f(x)

Var(Y) h(x) 2

(Y) E(h(x)e )

h(x) (e )

h(x)

V(Y) (h(x)e (y)2 h 2(x) (e (e ))2 h 2(x)e
2

17

this shows that the expected value of h(x) again is the function estimated but that the variance

now is expected to be the square of the h(x) function times the variance of the error term. 

Note in this case and in the one derived above we have made restrictive assumptions about

how the variance behaves as x changes.  Those restrictive assumptions arise because of the

functional forms that we are using in our regression analysis.  Just and Pope recognized this

and proposed yet a third functional form 

Here a mathematical statistics analysis leads to the conclusion that the expected value of Y is

equal to f(x) and the variance of y is equal to h(x) times the variance of the error term.

What this means is that if we could estimate this function that f(x) would give the mean

response to the usage of the inputs whereas h (x) would tell how the variance of output½

changes as we change inputs.  Note, this is an interpretation of the heteroskedasticity

correction from econometrics.  The procedure Just and Pope proposed for estimating this is as

follows:

Step 1 - estimate the equation Y = f(x) +  

Step 2 - Compute the residuals from the equation given the estimated form of the 
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equation

.  

Step 3, take the absolute values of Ê and find h (x) using the functional form as½

follows.  

Where a is an intercept term and b’s are multiplicative powers on the various independent

variables.  This is a log linear regression so one can simple take the logarithms of both sides

and do an OLS estimation.  In turn, then one can go back to the original equation 

 

and divide the equation through by our estimate of the h (x) term as follows.  1/2

Estimate to find a new set of parameters for f(x).  In turn observe the parameters for

h (x) which show how the variances change as the levels of x change.  1/2

We implement this procedure in terms of the above data set with three regressions the

results of which are reported in Table 9. The first stage in Table 9 is identical to the regression

we had earlier.  However, in the second stage we take the residuals from the first stage and

take the absolute value and log them for estimation.  In this particular case then we get the

estimates in the stage 2 column which show that constant a in the above function would be the

antilog of 2.091.  (Just and Pope mention while Buccola and McCarl discuss the fact that
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0.6532 needs to be added to this estimate to remove bias).  The stage 2 results also show

nitrogen applied has a negative effect, (i.e., it is variance decreasing) but is not significant

while fall application is variance increasing and significant and the inhibitor is variance

decreasing but insignificant.  These data show that one could conclude that fall versus spring

application that the variances of fall applications are higher and that the variance of the spring

application is lower.  ( This isn’t surprising given that what that means is your applying the

nitrogen closer to the time that the crop is being planted).  

In turn, suppose we go back and form a new distribution.  In this case what happens is

we have to use the predicted error terms from the state 3 regression.  In this particular case,

the probability distribution is formed by evaluating the forecasted value for the particular

outcome desired, i.e., 30 or 120 lbs. of nitrogen plus the error terms from stage 3 multiplied

by the h (x) term with the corrected intercept.  The resultant probability distribution is then1/2

given in Figure    Final Thoughts  on Conditional Distributions

The basic approach estimating for conditional distribution is that followed above. 

Namely, what one does is estimate some sort of a function which has conditional item as an

independent variable to find how the data are statistically influenced by the conditional item. 

That function may involve a function where one only has controlled for the first moment, one

where the first and second moments are controlled for using the Just Pope procedures or one

where even higher order moments are treated as in Antle.   In turn one then one obtains

predictions from the model on the mean Y values then adjusts the residuals by the estimated

moments and forms the probability distribution.  One could also simply use the moments from

the regressions without forming a probability distribution.
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Multi-variate Distributions      

The next obvious step in the progression is to multi-variate distributions.  Suppose one

wishes to form a distribution on multicrop yields in different places including how they

covary over time.  What is commonly done in this case is that we estimate a set of regression

equations not a single regression equation then form the distributions.  For example, one

might estimate a set of models with time as an independent variable of yields with one done

for each crop in the 50 US states for each crop.  Given those equations we could form

univariate probability distributions by detrending (see Thaysen for an example).  One can also

preserve cross state correlations for example associating the 1977 observations in all the states

for all the crops together.  Thus, if 1977 tended to be unusually good weather year what

would happen is the yields for corn, soybean, and wheat would all be above the mean.  The

residuals would reflect this now by maintaining the integrity of the 1977 operations across all

crops and places one preserves correlation and therefore has a multi-variate distribution.  This

distribution gives not only the effects on the individual variables of changing inputs but also

gives some idea of the interrelationship between the variables.

Continuous Distributions

An item missing from the above discussion which we will really not add very much on

is how to estimate a continuous known form probability distribution.  What one does in that

case is apply some sort of regression based technique to develop a maximum likelihood

estimate of the probability distribution by fitting the parameters according to its known

functional form.  Taylor presents some information on this.  The only thing we have is that

this is very difficult to do.  We favor using empirical discrete distributions.  
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Table 1.  Data for Probability Distribution Formation.

Obs Num Raw Data Sorted Data Obs Num Raw Sorted

1 7 7 5 39 35 31 30

2 22 8 10 40 21 31 30

3 31 10 10 41 28 31 30

4 20 12 10 42 31 32 30

5 24 13 15 43 15 32 30

6 41 14 15 44 34 34 35

7 13 15 15 45 23 35 35

8 24 16 15 46 38 36 35

9 20 17 15 47 24 36 35

10 23 18 20 48 36 38 40

11 18 18 20 49 32 41 40

12 12 19 20 50 26 45 45

13 26 20 20

14 18 20 20 Mean 24.62 24.5

15 25 20 20 Std er 8.158 8.078

16 16 21 20

17 32 22 20

18 26 22 20

19 27 23 25

20 45 23 25

21 17 23 25

22 27 23 25

23 26 24 25

24 29 24 25

25 8 24 25

26 23 25 25

27 36 25 25

28 14 26 25

29 31 26 25

30 19 26 25

31 20 26 25

32 10 27 25

33 30 27 25

34 23 27 25

35 22 28 30

36 25 29 30

37 27 30 30

38 31 31 30
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Table 2.  Probability Distribution Data For Forecast.

Interval Mid Point Frequency Probability

2.5-7.5 5 1 .02

7.5-12.5 10 3 .06

12.5-17.5 15 5 .15

17.5-22.5 20 9 .18

22.5-27.5 25 16 .32

27.5-32.5 30 9 .18

32.5-37.5 35 4 .08

37.5-42.5 40 2 .04

42.5-47.5 45 1 .02

50 1.00
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Table 3.  Dealing With Non Stationary Distributions.

Year Data Forecast Residual Stationary Series

1977 520 466.3 53.7 664

1978 420 480.8 -61 550

1979 547 495.2 51.8 663

1980 404 509.6 -106 505

1981 542 524.1 17.9 629

1982 590 538.5 51.5 662

1983 508 553.0 -45 566

1984 600 567.4 32.6 643

1985 630 581.8 48.2 659

1986 552 596.3 -44 566

1987 610.7

Panel B Regression

Output

R Squared 0.3588013

No. Of Observation 10

Degrees of Freedom 8

Constant 61.999951

Year 6.826
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Table 4.  Raw Data

Year Strawberry Strawberry Revenue/Acre Implicit

Price/CWT Yield/Acre GNP Deflator

1977 33.2 186 6175 55.9

1978 31.7 175 5548 60.3

1979 38.9 175 6808 65.5

1980 41.2 195 8034 71.7

1981 42 200 8400 78.9

1982 48.9 219 10709 83.8

1983 45.5 207 9419 87.2

1984 41.7 229 9549 91

1985 44.3 230 10189 94.4

1986 49.5 229 11336 96.9

1987 49.4 242 11955 100

1988 46.2 250 11550 103.9

1989 47.1 248 11681 108.5

1990 46.3 272 12594 113.3

1991 46.3 293 13566 117.6

1992 52.1 265 13807 120.9

1993 52.4 276 14462 123.5

Mean 44.51176 228.8824 10339.98 92.54706

Standard Error 5.706434 34.88111 2599.357 20.47148
*Source Agricultural Statistics 1992 and 1994 Editions.
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Table 5.  Probability Distribution Nominal Prices.

Price Band Relative Frequency

30-35 2/17

35-40 1/17

40-45 4/17

45-50 8/17

50-55 2/17
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Table 6.  Price Data - Manipulated

Year Strawberry Real Prices Projected Forecast Stationary

Price/CWT Price Error Price

1977 33.2 73.3 72.8 0.6 48.3

1978 31.7 64.9 71.3 -6.4 41.4

1979 38.9 73.3 69.8 3.5 51.3

1980 41.2 71.0 68.3 2.6 50.4

1981 42 65.7 66.9 -1.1 46.6

1982 48.9 72.1 65.4 6.7 54.4

1983 45.5 64.4 63.9 0.5 48.2

1984 41.7 56.6 62.5 -5.9 41.9

1985 44.3 58.0 61.0 -3.0 44.7

1986 49.5 63.1 59.5 3.6 51.3

1987 49.4 61.0 58.0 3.0 50.7

1988 46.2 54.9 56.6 -1.7 46.1

1989 47.1 53.6 55.1 -1.5 46.3

1990 46.3 50.5 53.6 -3.2 44.6

1991 46.3 48.6 52.1 -3.5 44.2

1992 52.1 53.2 50.7 2.5 50.3

1993 52.4 52.4 49.2 3.2 50.9

1994 47.7

Mean 44.51176 60.98338 60.98338 4.0E-15 47.73303

Standard 5.706434 8.042726 7.212577 3.558674 3.558674

Error
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Table 7.  Real Price Forecast Regression Real Price on Time

Regression Output:

Constant 2983.422

Standard Error of Y Estimate 3.788498

R Squared 0.804219

Number of Observations 17

Degrees of Freedom 15

X Coefficient(s) (Time) -1.47226

Standard Error of Coefficient 0.187559
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Table 8.  Yield Regression Yield on Time

Regression Output:

Constant -13383.9

Standard Error of Y Estimate 9.985054

R Squared 0.927696

Number of Observations 17

Degress of Freedom 15

X Coefficient(s) (Time) 6.857843

Standard Error of Coefficient 0.494334
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Table 9.  Yield Data

Year Historical Yields Projected Yield Projection Stationary Yields

Yield Error

1977 186 174 12 303

1978 175 181 -6 285

1979 175 188 -13 278

1980 195 195 0 291

1981 200 201 -1 289

1982 219 208 11 301

1983 207 215 -8 282

1984 229 222 7 298

1985 230 229 1 292

1986 229 236 -7 284

1987 242 243 -1 290

1988 250 249 1 291

1989 248 256 -8 282

1990 272 263 9 299

1991 293 270 23 314

1992 265 277 -12 279

1993 276 284 -8 283

1994 291

Mean 228.8824 228.8824 3.3E-12 290.6029

Standard 34.88111 33.59643 9.379325 9.379325

Error
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Table 10.  Revenue Data

Year Historical Revenue Real Revenue Stationary Revenue

1977 6175 13643 14621

1978 5548 11362 11779

1979 6808 12836 14244

1980 8034 13838 14653

1981 8400 13148 13475

1982 10709 15783 16390

1983 9419 13339 13626

1984 9549 12960 12460

1985 10189 13330 13042

1986 11336 14447 14565

1987 11955 14764 14704

1988 11550 13729 13417

1989 11681 13296 13056

1990 12594 13727 13348

1991 13566 14247 13862

1992 13807 14103 14013

1993 14462 14462 14405

Mean 10339.98 13707 13862

Standard 2599.357 926 1016

Error
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Table 11.  Tices Raw Data

Year Yield N Fall Nserv Year Yield N Fall Nserv Year Yield N Fall Nserv

1968 67 0 1 0 1969 51 0 1 0 1970 36 0 1 0

1968 63 0 1 0 1969 50 0 1 0 1970 50 0 1 0

1968 34 0 1 0 1969 55 0 1 0 1970 47 0 1 0

1968 115 60 1 0 1969 81 60 1 0 1970 75 60 1 0

1968 107 60 1 0 1969 92 60 1 0 1970 86 60 1 0

1968 118 60 1 0 1969 94 60 1 0 1970 95 60 1 0

1968 145 120 1 0 1969 94 60 1 0 1970 114 120 1 0

1968 152 120 1 0 1969 92 60 1 0 1970 132 120 1 0

1968 141 120 1 0 1969 102 60 1 0 1970 126 120 1 0

1968 132 180 1 0 1969 113 120 1 0 1970 66 60 1 0

1968 152 180 1 0 1969 110 120 1 0 1970 81 60 1 0

1968 153 180 1 0 1969 106 120 1 0 1970 83 60 1 0

1968 116 60 0 0 1969 132 120 1 0 1970 82 120 1 0

1968 126 60 0 0 1969 131 120 1 0 1970 101 120 1 0

1968 121 60 0 0 1969 141 120 1 0 1970 116 120 1 0

1968 139 120 0 0 1969 119 180 1 0 1970 142 180 1 0

1968 147 120 0 0 1969 137 180 1 0 1970 146 180 1 0

1968 148 120 0 0 1969 140 180 1 0 1970 156 180 1 0

1968 154 180 0 0 1969 95 60 0 0 1970 58 60 0 0

1968 149 180 0 0 1969 105 60 0 0 1970 77 60 0 0

1968 151 180 0 0 1969 105 60 0 0 1970 77 60 0 0

1969 144 120 0 0 1970 115 120 0 0

1969 133 120 0 0 1970 114 120 0 0

1969 141 120 0 0 1970 124 120 0 0

1969 125 180 0 0 1970 143 180 0 0

1969 118 180 0 0 1970 147 180 0 0

1969 130 180 0 0 1970 152 180 0 0
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Table 11. Continued.

Year Yield N Fall Nserv Year Yield N Fall Nserv Year Yield N Fall Nserv

1971 15 0 1 0 1972 21 0 1 0 1973 22 0 1 0

1971 18 0 1 0 1972 27 0 1 0 1973 20 0 1 0

1971 15 0 1 0 1972 19 0 1 0 1973 20 0 1 0

1971 120 60 1 0 1972 32 60 1 0 1973 100 60 1 0

1971 118 60 1 0 1972 33 60 1 0 1973 102 60 1 0

1971 128 60 1 0 1972 30 60 1 0 1973 114 60 1 0

1971 54 60 1 0 1972 46 60 1 0 1973 60 60 1 0

1971 81 60 1 0 1972 66 60 1 0 1973 42 60 1 0

1971 69 60 1 0 1972 79 60 1 0 1973 58 60 1 0

1971 177 120 1 0 1972 45 120 1 0 1973 146 120 1 0

1971 166 120 1 0 1972 43 120 1 0 1973 142 120 1 0

1971 158 120 1 0 1972 40 120 1 0 1973 135 120 1 0

1971 108 120 1 0 1972 102 120 1 0 1973 42 120 1 0

1971 110 120 1 0 1972 116 120 1 0 1973 86 120 1 0

1971 123 120 1 0 1972 113 120 1 0 1973 101 120 1 0

1971 179 180 1 0 1972 67 180 1 0 1973 149 180 1 0

1971 187 180 1 0 1972 67 180 1 0 1973 149 180 1 0

1971 183 180 1 0 1972 106 180 1 0 1973 150 180 1 0

1971 109 60 0 0 1972 68 60 0 0 1973 53 60 0 0

1971 114 60 0 0 1972 72 60 0 0 1973 80 60 0 0

1971 96 60 0 0 1972 78 60 0 0 1973 76 60 0 0

1971 158 120 0 0 1972 112 120 0 0 1973 124 120 0 0

1971 157 120 0 0 1972 115 120 0 0 1973 115 120 0 0

1971 170 120 0 0 1972 127 120 0 0 1973 139 120 0 0

1971 183 180 0 0 1972 145 180 0 0 1973 143 180 0 0

1971 176 180 0 0 1972 135 180 0 0 1973 144 180 0 0

1971 198 180 0 0 1972 142 180 0 0 1973 139 180 0 0
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Table 11.  Continued.

Year Yield N Fall Nserv Year Yield N Fall Nserv Year Yield N Fall Nserv

1974 27 0 1 0 1975 2 0 1 0 1976 15 0 1 0

1974 30 0 1 0 1975 1 0 1 0 1976 5 0 1 0

1974 32 0 1 0 1975 4 0 1 0 1976 17 0 1 0

1974 83 60 1 0 1975 88 60 1 0 1976 90 60 1 0

1974 103 60 1 0 1975 108 60 1 0 1976 112 60 1 0

1974 79 60 1 0 1975 115 60 1 0 1976 107 60 1 0

1974 76 60 1 0 1975 82 60 1 0 1976 51 60 1 0

1974 54 60 1 0 1975 74 60 1 0 1976 54 60 1 0

1974 71 60 1 0 1975 94 60 1 0 1976 68 60 1 0

1974 88 120 1 0 1975 149 120 1 0 1976 126 120 1 0

1974 103 120 1 0 1975 154 120 1 0 1976 133 120 1 0

1974 106 120 1 0 1975 159 120 1 0 1976 109 120 1 0

1974 97 120 1 0 1975 128 120 1 0 1976 91 120 1 0

1974 90 120 1 0 1975 122 120 1 0 1976 8 120 1 0

1974 92 120 1 0 1975 134 120 1 0 1976 104 120 1 0

1974 85 180 1 0 1975 165 180 1 0 1976 113 180 1 0

1974 101 180 1 0 1975 170 180 1 0 1976 140 180 1 0

1974 93 180 1 0 1975 169 180 1 0 1976 122 180 1 0

1974 86 60 0 0 1975 53 0 0 0 1976 64 60 0 0

1974 94 60 0 0 1975 60 0 0 0 1976 63 60 0 0

1974 88 60 0 0 1975 66 0 0 0 1976 64 60 0 0

1974 134 120 0 0 1975 108 120 0 0 1976 104 120 0 0

1974 126 120 0 0 1975 127 120 0 0 1976 107 120 0 0

1974 131 120 0 0 1975 141 120 0 0 1976 118 120 0 0

1974 134 120 0 0 1975 150 180 0 0 1976 124 180 0 0

1974 136 120 0 0 1975 158 180 0 0 1976 133 180 0 0

1974 150 120 0 0 1975 165 180 0 0 1976 136 180 0 0

1975 86 0 1 0 1976 77 0 1 1

1975 134 60 1 0 1976 103 60 0 0

1975 153 60 1 1 1976 117 60 0 1

1975 161 120 1 0 1976 133 120 0 0

1975 171 120 1 1 1976 150 120 0 1

1975 154 60 1 0 1976 151 180 0 0

1975 151 60 0 1 1976 171 180 0 1

1975 174 120 0 0

1975 174 120 0 1

1975 185 180 0 1
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Table 11.  Continued.

Year Yield N Fall Nserv

1977 46 0 1 0

1977 48 0 1 0

1977 51 0 1 0

1977 85 60 1 0

1977 98 60 1 0

1977 112 60 1 0

1977 78 60 1 0

1977 73 60 1 0

1977 85 60 1 0

1977 114 120 1 0

1977 135 120 1 0

1977 119 120 1 0

1977 105 120 1 0

1977 110 120 1 0

1977 114 180 1 0

1977 117 180 1 0

1977 130 180 1 0

1977 116 180 1 0

1977 67 60 0 0

1977 74 60 0 0

1977 77 60 0 0

1977 95 60 0 0

1977 98 60 0 0

1977 107 60 0 0

1977 118 60 0 0

1977 113 60 0 0

1977 125 60 0 0

1977 123 150 1 0

1977 128 150 1 1
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Table 12.  Regression Model of Tice Data.

R Squared 0.7777254

No. Of Observations 283

Degrees of Freedom 269

Coef Std Err T

Constant 43.123313 20.268213 2.13

N applied 1.0174352 0.07368 13.8

N timing (1=Fall) -11.64241 2.590484 -4.5

Inhib use 33.144929 6.8449267 4.84

N squared -0.002508 0.0003669 -6.8

1968 20.227745 5.8412515 3.46

1969 4.7369295 5.4344857 0.87

1970 -2.485293 5.4344857 -0.5

1971 20.811004 5.4344857 3.83

1972 -28.22603 5.4344857 -5.2

1973 -5.818626 5.4344857 -1.1

1974 -10.05109 5.4296 -1.9

1975 17.728637 5.0823424 3.49

1976 -10.43183 5.17711059 -2

1977 (in intercept) 0
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Table 13.  Just Pope Approach Applied to Tice Data.
Stage 1 Stage 2 Stage 3

R Squared 0.778 0.045 0.886
No. of Observations 283 283 283
Degrees of Freedom 269 279 279

Coef Std err T
Constant 43.1233131 20.268213 2.12763272 2.09145598 1.14007739 1.83448598 43.0194002 5.0813523 8.4661322
N applied 1.01743522 0.0736877 13.8073975 -0.00046 0.001212 -0.3762994 1.03046209 0.076826 13.412958
N timing -11.642413 2.59048396 -4.4943005 0.45767084 0.14473997 3.16202117 -11.745355 2.3158456 -5.071735

8
Inhib use  33.14 6.85492674 4.83519812 -0.4335093 0.36888404 -1.1751913 33.3990791 14.323646 2.3317442
N squared -0.00251 0.00037 -6.8342305 -0.00249 0.0004 -6.831568
1968 20.2277445 5.84125152 3.46291278 16.5049886 5.3237476 3.1002576
1969 4.73692954 5.43448567 0.87164266 0.63315146 5.0961629 0.1242408
1970 -2.4852927 5.43448567 -0.4573188 -6.7963661 5.0961629 -1.333624
1971 20.8110036 5.43448567 3.8294339 22.453066 5.0961629 4.4058769
1972 -28.226033 5.43448567 -5.1938739 -24.587191 5.0961629 -4.824648
1973 -5.818626 5.43448567 -1.0706857 -8.6643557 5.0961629 -1.700172
1974 -10.05109 5.42959995 -1.8511659 -7.5560914 5.0876895 -1.485172
1975 17.728637 5.08234241 3.48828071 14.5007899 4.9183972 2.9482755
1976 -10.431833 5.17110587 -2.0173311 -13.941123 4.8832529 -2.854884
1977 0
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