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Handling  Indivisibilities All or None -- Integer Programming 
McCarl and Spreen Chapter 15 

 
Many investment and problems involve cases where one has to take all or none 
of an item.  We cannot build ½ of a plant or buy 3/4 of a machine.  We build 1 
or 2 or 3 or none but not a fractional part This leads to integer programming 
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    W is a normal,continuous LP variable,  
 X is an integer variable,  
 Y is a zero one variable  
 

When problems have  only X they are called pure integer 
     only Y they are called pure zero one 
     W and X they are called mixed integer 
other variants exist 
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Handling Indivisibilities 
Logical Conditions -- Integer Programming 

 
Integer programming also allows logical conditions to be imposed.   
 
Suppose I am modeling a bottling plant that runs white milk but can run 
chocolate. If they run any chocolate they encounter cleaning cost of F.  Let X be  
amount of chocolate milk processed. Then add model component  
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Note in this component M is a big number (10 billion) and for X>0 this implies 
Y=1 while if F>0 Y=0 if X=0. 
 
So if we run any chocolate milk we clean whether it be 1 gallon or one million.  
Y is an indicator variable. 
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Handling Indivisibilities 
Integer Programming 

 
Suppose we can buy from k different types of machines and get from them 
capacity for the ith time period 
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In this case if they were mutually exclusive we could also add 
1=∑ k

k
Y  

 
or if buying one meant we must buy another 

Y1 -Y2 =0 
 

or if a  machine can only be purchased if we have a minimum volume 
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Handling Indivisibilities 
Integer Programming Solution Difficulty 

 
All sounds good but problems are hard.  Let’s explore why 
Calculus is basis of all continuous optimization but not here because there is no 
neighborhood around a point in which a derivative can be defined 
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Handling Indivisibilities 
Integer Programming Solution Difficulty 

 

Note  
1. Solutions are finite 
2. A line between 2 feasible points does not contain all feasible points 
3. Moving between points is not always easy 
4. Points are on boundary, interior and not in general at corners 
5. Rounding of LP point may not be bad 
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Handling Indivisibilities 
Integer Programming Solution Difficulty 
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Figure 15.2 Graph of Feasible Integer Points for Second Integer Problem
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Handling Indivisibilities 
Integer Programming Solution Difficulty 

 
Mixed Integer Programming Feasible Region X1 integer, X2 continuous 
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Figure 15.3 Mixed Integer Feasible Region

0 2 4 6 8 10
0

2

4

6

8

10

X2

X
1



 
9 

Handling Indivisibilities 
Integer Programming Solution –  Rounding 

 
Solving the problem 
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as an LP yields X1=X2=3.2 Obj=7.68  
 
which can be rounded to X1=X2=3 , Obj=7.2 
 
But this may not always be feasible or optimal  
 
In this case an objective of 7.6 arises at X1=4,X2=2 (solint.gms) 
 
Rounding only works well if variable values are large 
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Handling Indivisibilities 
Integer Programming Solution -- Branch and Bound 

 

Solving                          
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as an LP yields X1=X2=3.2 obj=7.68 
 
We can generate 2 related problems that collectively do not exclude integer 
variables as follows 
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Suppose we solveProb A we get x1=3.x2=3.33 and again generate 2 more 
problems the first with x2#3 and the other with x2 ∃4.  Solving these yields an 
integer solution at x1=x2=3 obj=7.2 and another at x1=2,x2=4 obj=6.8.   
 
But optimat solution is x1=4,x2=2, obj=7.6 from problem B above 
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Handling Indivisibilities 
Integer Programming Solution -- Branch and Bound 

 
Now since we are maximizing we choose the 7.2 as the best solution and call it 
the incumbent.  But it is not necessarily optimal (in fact it is not at all).  To 
verify its optimality we need to go back and investigate the problems we have 
not yet solved which still have the potential of having an objective function 
above our current best (7.2).  We would then go back to the right hand problem 
from the first setup and eventually find X1=4,X2=2, Obj=7.6.   
 
The above reveals the basic nature of branch and bound.  It begins by solving an 
LP then finds a variable that is not integer and generates 2 problems (creating a 
branch).  It then solves one of these and continues until it finds an integer 
solution which establishes a bound.  We then backtrack and try to eliminate all 
other possible branches either by finding they cannot have a better objective 
than the incumbent (the bounding step) or are infeasible. 
 
This means intermediate solutions are found and we converge to within a 
tolerance 
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Handling Indivisibilities 
Integer Programming Solution in EXCEL 

 
Integer programming problems can be solved with Excel.  To do this one adds a 
constraint restricting the variables to take on integer  values.  This constraint is 
imposed as one adds any other constraints.  Namely a variable is chosen with the 
inquality imposed as one of the last two choices.  This is portrayed in the 
following screenshot. 
 

 
 

Namely choosing int restricts the variables to integer values and Bin  is chosen 
to restrict variables to binary or 0-1 values.   
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Handling Indivisibilities 

Integer Programming Solution in EXCEL 
 
 
Unfortunately the default Excel solver does not reliably get the proper solution 
for integer programming problems unless you set some options 
 
Namely when you call up the solver go into the options box.  Then check that 
you are to assume a linear model and set the tolerance smaller. 
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Handling Indivisibilities 
Integer Programming Solution in EXCEL 

 
 
In addition, students should realize that EXCEL is not an extraordinarily good 
choice for the solution of large linear, integer, or nonlinear programming 
problems and software like GAMS may be better in a professional setting. 
 
 
Excel was taught in this class so as to not require students to learn multiple and 
initially unfamiliar software packages 

 
 
One can buy improved plug-ins by looking on the Internet and purchasing an 
upgraded solver which has this capability.  For example, a Google search for the 
words excel in solver integer turns up a number of choices.  
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Handling Indivisibilities 
McCarl and Spreen Chapter 16 

Integer Programming Solution -- Knapsack 
 
The knapsack problem is a famous IP formulation.  Suppose a hiker selects the 
most valuable items to carry, subject to a weight or capacity limit.  Partial items 
are not allowed, thus choices are depicted by zero-one variables.  
 
The general problem formulation assuming only one of each item is available is 
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The decision variables indicate whether the jth alternative item is chosen.  Each 
item is worth vj.  The objective function gives total value of items chosen.  The 
capacity used by each Xj is dj.  The constraint requires total capacity use to be 
less than or equal to the capacity limit (W).  
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Handling Indivisibilities 
Integer Programming Solution -- Knapsack 

 
Suppose an individual is preparing to move.  Assume a truck is available that 
can hold at most 250 cubic feet of items.  Suppose there are 10 items which can 
be taken and that their names, volumes and values implicit below.  The resultant 
formulation is  
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The optimal objective function value equals 128.  The solution indicates that all 
items except furniture, X7, should be taken.   
 
There are peculiarities which should be noted.  First, the constraint has 65 units 
in slack (250-185) and no shadow price.  However, for practical purposes the 
constraint does have a shadow price as the X7 variable would come into the 
solution if there were 120 more units of capacity, but slack is only 65.  Further, 
note that each of the variables has a non-zero reduced cost.  This is because 
bounds have been added.  Shadow price and red cost are misleading.  
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Handling Indivisibilities 
Warehouse Location 

McCarl and Spreen Chapter 16 
 

Warehouse location problems involve location of warehouses within a 
transportation system so as to minimize overall costs.  Basic decision involves 
tradeoffs between fixed warehouse construction costs and transportation costs.  
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Handling Indivisibilities 

Warehouse Location 
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Merges Fixed Charge - Capacity and Transportation Problem with 
transshipments. We consider moving goods from supply i to demand j or from i 
to warehouse k and then on to demand j. 
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Handling Indivisibilities 
Warehouse Location 
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Handling Indivisibilities 
Warehouse Location 

 

Variable Value Reduced Cost Row Activity Shadow Price
VA 0 0 1 50 -3.00 
VB 0 2 2 75 0 
VC 1 0 3 75 7.00 
X1A 0 0 4 50 5.00 
X1B 0 2.00 5 0 -4 
X1C 0 10.00 6 0 -3.00 
X2A 0 2 7 0 -1.00 
X2B 0 0 8 0 -0.05 
X2C 70 0 9 0 -1.00 
YA1 0 1.052 10 0 -1.00 
YA2 0 5.052 11 1 -2 
YB1 0 0    
YB2 0 3.00    
YC1 20 0    
YC2 50 0    
Y11 50 0    
Y 12 0 6.00    
Y 21 5 0    
Y 22 0 1.00    
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Handling Indivisibilities 
Machinery Selection 

McCarl and Spreen Chapter 16 
 
The machinery selection problem is a common investment problem.  In this problem one maximizes 
profits, trading off the annual costs of machinery purchase with the extra profits obtained by having that 
machinery.  A general formulation of this problem is 
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The decision variables are Yk, the integer number of units of the kth type machinery purchased; Xjm, the 
quantity of the jth activity produced using the mth machinery alternative.  The parameters of the model 
are:  Fk, the annualized fixed cost of the kth machinery type; Capik, the annual capacity of the kth 
machinery type to supply the ith resource; Grk, the usage of the rth machinery restriction when 
purchasing the kth machinery type; Cjm, the per unit net profit of Xjm; Aijkm, the per unit use by Xjm of the 
ith capacity resource supplied by purchasing machine k; Dnjm, the per unit usage of fixed resources of 
the nth type by Xjm; bn, the endowment of the nth resource in the year being modeled; and er, the 
endowment of the rth machinery restriction. 



 
22 

Handling Indivisibilities Machinery Selection 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Machinery Use Continuous Variables 
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Machinery Acquisition Integer Variables 

and Plow 1 and Plow 2 and Plow 1 ans Plow 2 Tractor 1 Tractor 2 Tractor 1 Tractor 2  
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Table 16.17. Solution for the Machinery Selection Problem 
obj = 116,100 
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Plow with Tractor 2 and Plow 1 in Period 1 
 

0 
 

-1.825 
 

 
 
Harvester 1 

 
0 

 
50  

Plow with Tractor 2 and Plow 1 in Period 2 
 

0 
 

-1.46 
 

 
 
Harvester 2 

 
50 

 
0  

Plow with Tractor 2 and Plow 2 in Period 1 
 

0 
 

0 
 

 
 
Labor available in Period 1 

 
128 

 
0  

Plow with Tractor 2 and Plow 2 in Period 2 
 

0 
 

0.13 
 

 
 
Labor available in Period 2 

 
144 

 
0  

Plant with Tractor 1 and Planter 1 
 

0 
 

-1.91 
 

 
 
Labor available in Period 3 

 
25 

 
0  

Plant with Tractor 1 and Planter 2 
 

600 
 

0 
 

 
 
Plow Plant 

 
0 

 
230.533  

Plant with Tractor 2 and Planter 1 
 

0 
 

-1.077 
 

 
 
Plant Harvester 

 
0 

 
341.75  

Plant with Tractor 2 and Planter 2 
 

0 
 

0 
 

 
 
Land 

 
0 

 
229.333  

Harvest with Tractor 1 and Harvester 1 
 

0 
 

-17.75 
 

 
 
One Planter 

 
0 

 
0  

Harvest with Tractor 1 and Harvester 2  
 

600 
 

0 
 

 
 
One Disc 

 
0 

 
0  

Harvest with Tractor 2 and Harvester 1 
 

0 
 

-25.17 
 

 
 
Planter 1 to Disc 1 

 
0 

 
0  

Harvest with Tractor 2 and Harvester 2 
 

0 
 

-5.565 
 

 
 
Planter 2 to Disc 2 

 
0 

 
0  

Sell Crop 
 

84,000 
 

0 
 

 
 
Yield Balance 

 
0 

 
2.5  

Purchase Inputs 
 

600 
 

0 
 

 
 
Input Balance 

 
0 

 
110 

 


