641 FINAL EXAM

- 1. Discuss the qualifications you would place on the use of shadow prices from
 - a. Linear programming
 - b. Quadratic programming
 - c. Risk programming
 - d. Multiple objective programming under a weighted tradeoff objective function
 - e. Pure integer programming
 - f. Mixed integer programming
- 2. Suppose you were helping someone decide how to set up a new enterprise and had formulated the model

where j is activity type

k is activity type of new enterprises

and you now need to reflect

- a. the fixed costs of the enterprises (F_k) as well as the fact that you only get capacity (cap_k) if the fixed cost is incurred.
- b. the fact that across all the possible new enterprises (k) only 3 of them can be chosen with the rest zero.

Modify the model accordingly.

- 3. Suppose you have a problem with two objectives: why might you use a lexicographic or a weighted tradeoff model?
- 4. Given the quadratic program

- a. Give and explain the Kuhn Tucker conditions.
- b. Tell when the problem will lead to a guarantee that the solution satisfying the Kuhn Tucker conditions will be optimal.
- 5. Given the linear programming problem:

where X, Y, and Z are vectors.

- a. What is the nature of the demand and supply curves in the model for X, Q and the resources in the second constraint set.
- b. Modify the model so it includes linear downward sloping demand curves for X, as well as upward sloping supply curves for Q and the resources in the second constraint.
- c. Explain the consequences of the integrability assumptions as they affect the exogenous demand curve for X and supply curves that can be specified for Q in your answer to part b.
- 6. Suppose you have the problem

a. Structure a model under the conditions that c_1 , c_2 , a_1 , a_2 are uncertain and each have 3 possible values (c_{ik} k=1,2,3)and (a_{ik} k=1, 2, 3). Assume all activities are decided on now but the uncertainty is resolved later.

b. When c_1 is known but a_1 can take on the values 3 or 4 with probabilities .2 and .8 and the distribution of c_2 and a_2 is as below if $a_2 = 3$

event	prob.	c ₂	a_2
1	.3	4	2
2	.7	3	1
	but equals the following if	a ₂ = 4	
event	prob.	c ₂	a ₂
1	.7	7	2
2	.3	4	4

and x_2 is decided on after a_1 becomes known.

7. State the assumptions of linear programming, 2 ways to relax each of them (if there are that many) and qualifications you might place on whether the assumptions are truly relaxed by the ways you identify.