
copyright 1997 Bruce A. McCarl and Thomas H. Spreen

CHAPTER XIX: COMPUTERIZED AIDS FOR PROGRAMMING STUDIES 1

19.1 Model Generation Tools .. 1

19.1.1 Potential Functions of a Matrix Generator ... 1

19.1.1.1 Input Preparation .. 1

19.1.1.2 Formulation Manipulation ... 1

19.1.1.3 Documentation ... 2

19.1.1.4 Analysis Facilitation .. 2

19.1.2 When not to use a Matrix Generator ... 2

19.2 Pre-Solution Formulation Analysis Tools ... 2

19.3 Solution Interpretation Aids .. 2

19.3.1 Solution Summarization ... 2

19.3.2 Solution Debugging .. 3

19.3.3 Solution Interpretation .. 3

19.4 Getting the most from GAMS ... 3

19.4.1 Setting Up Data... 3

19.4.2 Changing Model Structure .. 3

19.4.3 Providing an Advanced Basis ... 4

19.4.4 Report Writing .. 5

19.4.5 Debugging Models .. 6

19.4.6 Conducting a Comparative Model Analysis ... 7

19.4.7 Sensitivity Analysis .. 8

19.4.8 Speeding up GAMS .. 8

19.4.9 Minimizing Model Size .. 9

19.4.10 Avoiding GAMS Failures ... 9

References ... 9

1

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

CHAPTER XIX: COMPUTERIZED AIDS FOR PROGRAMMING STUDIES

Data manipulation, model specification, debugging, validation and experimentation within moderate sized

programming models can be complex. Computerized procedures may facilitate these tasks. This chapter

reviews ways computerized procedures may facilitate programming studies. In addition, material on

modeling with GAMS will be presented.

Given the model structure and data, computerized procedures may be used to retrieve necessary data items;

calculate coefficients; prepare equations for solver input; check numerical formulations for errors;

summarize solution content; debug the model; predict implications of data alterations; and execute model

validation tests. Many of these options are available within modeling systems such as GAMS, but some are

not and a more general discussion is in order.

 Before discussing computerized approaches, three caveats are pertinent:

 1) This chapter assumes that a programming formulation is the appropriate analysis tool.

2) The chapter is based upon the authors' experience and does not reflect experience with

packages such as OSL or ANALYZE (Greenberg, 1991).

3) The chapter is oriented toward solving moderate to large models (more than 100 rows

and/or columns).

19.1 Model Generation Tools
Numerical programming models must be constructed in a form consistent with solver input requirements.

Construction of the numeric formulation is commonly called matrix generation. Problems of the size dealt

with herein virtually require a computerized matrix generator (MG). Williams (1978a, pg. 35) argues that

"the clerical problems (of building moderate to large models by hand) almost always become prohibitive."

Different types of MGs can be employed. These run the continuum from simple specific model MGs to

MGs designed to facilitate direct model use by decision makers (see McCarl and Nuthall or McCarl, et al.)

on to general purpose matrix generators as in modeling systems (i.e., GAMS-Brooke, et al.). The funda-

mental distinction made here is between custom, problem specific and general purpose modeling system

based MGs.

19.1.1 Potential Functions of a Matrix Generator
Potentially there are several functions MGs can perform. We group these into input preparation,

formulation manipulation, documentation and analysis facilitation.

19.1.1.1 Input Preparation
Fundamentally MGs prepare solver input from data and equation specifications. Programming models

usually permit a large model to be generated from a smaller set of input (e.g., Kutcher and Meeraus state

that 400 lines of data and a 1000 statement FORTRAN matrix generator yielded an 80,000 line numerical

model file). Matrix generators calculate and place coefficients avoiding clerical errors.

19.1.1.2 Formulation Manipulation
Initial formulations are almost always different from final formulations due to omissions, errors, improper

data or oversights. Model based analysis usually involves new and altered equations and variables, as well

as data changes. MGs enable rapid, efficient modification of model structure and/or data usually requiring

modification of a few commands or input tables.

2

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

19.1.1.3 Documentation
Often, it is very hard for someone other than the model author to use a model. Documentation is often

inadequate. MG use can partially solve the documentation problem. MGs utilize specific data, carry out

data transformations, and place the coefficients. This contributes to documentation. Nevertheless,

accompanying documentation is still important.

19.1.1.4 Analysis Facilitation
MGs may facilitate analysis reducing the time to do a run and correct errors. Thus, a more extensive

analysis may be done (since it is easier to do individual runs). Other possible MG functions include:

suggesting an advanced basis (Dillon); resolving degeneracies (McCarl, 1977); resolving alternative

optimals (McCarl et al., 1977); checking for inconsistent or improper data -- when the modeler codes in

such checks; aiding in the discovery of causes of infeasibility (adding artificial variables) or unboundedness

(by adding large upper bounds); and automatically setting up approximations of nonlinear phenomena (i.e.,

generating a separable programming approximation).

19.1.2 When not to use a Matrix Generator
MGs are not always appropriate. MGs should only be used when the time required to do all analysis with

the MG is less than or equal to the time to do the analysis without it. (This is an elusive criterion since many

uncertain factors enter.) Thus, if the analysis may be done efficiently without a MG, don't use one. This

criterion also applies to the choice between a generalized (e.g., GAMS) and a problem tailored MG.

Problem specific MGs are more time consuming to construct and can be difficult to change because of

accompanying documentation and complexity of the implementation. This situation could well lead to an

analysis done with the wrong model. A matrix generator should be used with the attitude that it will change

to accommodate the problem rather than vice versa.

19.2 Pre-Solution Formulation Analysis Tools
The first problem formulation is rarely the final formulation used in the study. Computerized tools may

facilitate the identification of formulation difficulties. Unfortunately, GAMS does not contain much in the

way of such tools although GAMSCHK (McCarl 1994) does contain such tools. The primary aid in

verification is a "picture" routine which generates a schematic of a programming problem (Orchard-Hays).

A page of "picture" output (e.g., Figure 19.1) typically represents 50-60 columns and 40-50 rows.

Characters on the page indicate the location, sign and magnitude of a coefficient. A picture thereby allows

verification of whether coefficients with proper sign and magnitude are in their proper places.

Preanalysis routines may also generate data on problem scaling, and check for obvious structural defects.

Finally, presolution formulation analysis may use redundancy identification techniques (Luenberger, Ch. 6)

which are an integral part of some large commercial packages (e.g., OSL automatically reduces the

problem).

19.3 Solution Interpretation Aids
Computerized techniques can be developed to aid solution interpretation. They can be used to summarize

solutions, aid in solution debugging, or augment solution information.

19.3.1 Solution Summarization
The primary solution summarization tool is the report writer (RW). A RW takes solution information and

reformats it into tables for decision makers.1 Linear programming solver output is usually an inadequate

1 For example, see the GAMS report writing example above, or McCarl et al.

3

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

description of a solution. Substantive summary reports are usually necessary and may be the only effective

way to involve nontechnical decision makers in model use. Report writers are frequently based upon

rudimentary accounting procedures involving data tabulation, labeling and organization. (McCarl and

Nuthall discuss report writers at length.)

 RWs may be either problem specific or general purpose. The arguments for a problem specific report

writer are weaker than those for a matrix generator. This is due to both the ability to add accounting

equations summing up variables of interest and the report writing features of modeling systems like GAMS

(see the discussion of GAMS report writing later in this chapter). The proper trade-off in selecting whether

to develop a problem specific report writer is between time required to do the whole analysis with the report

writer versus other methods (hand and/or generalized report writers).

19.3.2 Solution Debugging
Post-solution computational aids may also help in debugging "bad" solutions. Often, the analyst has doubts

about the validity of an LP solution. Specifically, three potential questions are asked: 1) Why is a particular

variable in (or not in) the solution?; 2) Why is a particular shadow price so large?; and 3) Why does a

particular row exhibit slack resources? The resolution of these questions revolves around the budgeting and

row summing procedures discussed above. These items are easily computerized and have been in

GAMSCHK (McCarl 1994).

19.3.3 Solution Interpretation
Post solution computational aids can enhance or augment solution information. Linear programming solver

output typically consists of solution levels, shadow prices, reduced costs and slacks. Less often, cost and

right hand side ranges are obtained. Post optimality routines (or programs which request parametric

analysis) may provide additional information (e.g., the impact of ranging a number of right hand sides

simultaneously). Similarly, calculations may be done on, or requests generated for, information from the

final tableau. (In larger problems this information is virtually never available and may be difficult to calcu-

late. Although, it is sometimes quite useful.)

19.4 Getting the most from GAMS
There are a number of GAMS features which can facilitate a programming exercise. These features will be

discussed under the topics: setting up data, changing model structure, providing an advanced basis, report

writing, debugging models, conducting a comparative model analysis, sensitivity analysis, speeding up

GAMS, minimizing model size, and avoiding GAMS failures.

19.4.1 Setting Up Data
GAMS has excellent facilities for data entry and computation as well as the ability to document data. We

recommend that users enter primary data with comments on data sources and long labels. In turn, one

should then calculate the needed data. External calculations are usually inadvisable as they are difficult to

trace at a future time. For example, in the transportation example the distance and the formula relating

distance to cost were entered with the costs computed. Users following such a strategy would find it easy to

alter raw data assumptions and reanalyze the problem.

19.4.2 Changing Model Structure
One of the big advantages of using a modeling system is the ability to add constraints or variables and

reanalyze the problem. However with large models or comparative studies, it may be desirable to make

equations or terms in equations temporarily active or inactive. This can be achieved with $ controls. For

example if the following lines were put in a GAMS problem

4

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

 SCALAR ISITACTIVE tells whether items are active /0/

 CONDEQ$ISITACTIVE.. sum(stuff,x(stuff)) =L= 1;

 EQNOTH(index).. sum(stuff,r(index,stuff)*x(stuff)) +

 4*sum(stuff,Y(stuff))$ISITACTIVE =L= 50;

they would cause the CONDEQ equation and the Y term in the EQNOTH equations to only appear in the

empirical model when the ISITACTIVE parameter was nonzero. Thus, the sequence

 ISITACTIVE = 0;

 SOLVE MODELNAME USING LP MAXIMIZING OBJ;

 ISITACTIVE =1;

 SOLVE MODELNAME USING LP MAXIMIZING OBJ;

would cause the model to be solved with and without the constraint and term.

19.4.3 Providing an Advanced Basis
The importance of an advanced basis has long been recognized in mathematical programming. Models

which take more than 24 hours to solve from scratch, can be solved in less than 3 hours from a good basis.

GAMS can accept an advanced basis under certain conditions. In any model involving a sequence of

solves, GAMS automatically uses the basis from the first solve to restart the second and later solves. But

this does not carry over to models solved from scratch.

So what can you do when solving a model from scratch? Three possibilities are available.

1. One can let GAMS solve without worrying with the basis. This should certainly be done

for small models.

2. One can try to suggest a basis by setting the levels and marginals for the variables and the

marginals for the equations. For example the statements

 X.L("VAR1") = 10;

 X.L("VAR2") = 0;

 X.M("VAR1") = 0;

 X.M("VAR2") = 10;

 CONSTRAINT.M("RES1")=20;

 CONSTRAINT.M("RES2")=0;

would result in a basis being suggested with the first variable and the slack from the second

constraint.

3. One can save the variable and equation information from previous solves and restart

including that information by setting the levels and marginals as above (a small example is

given in the context of the Chapter 5 DIET problem in the files SAVBASIS and

5

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

ADVBASIS) option savepoint and execute_loadpoint does this automatically.

19.4.4 Report Writing
GAMS report writing has been discussed before in this text. However, a few additional comments are

relevant. The normal GAMS output format is not always desirable. All *.lst files have the GAMS

instructions listed first and may be followed by: a cross reference map; output from pre-solution displays;

the equation and variable listings; the solver output; and post-solution displays. Several methods may be

employed to manage this output. One may

 1. Suppress the cross reference map by using the command

 $OFFSYMLIST OFFSYMXREF

 2. Suppress the variable and equation listings by using

 OPTION LIMROW = 0;

 OPTION LIMCOL = 0;

3. Limit the amount of GAMS code echoed back by restarting the job with a very short file

containing display statements only. For example the batch file (REDUCED.BAT)

 GAMS MAINPART S=SAVED

 GAMS FINALOUT R=SAVED

does this where MAINPART contains all the model statements (in the example on the disc

these are from the file EVPORTFO) and FINALOUT is just a display of the relevant

output. This generates a much smaller FINALOUT.LST file.

 4. Suppress the solution information using

 OPTION SOLPRINT=OFF;

 5. Suppress the listing of lines between $OFFLISTING and $ONLISTING commands

One may also wish to control the GAMS output ordering and format. In this context one should be

aware that

a. The order in which things appear in terms of elements of sets, variables etc. is determined

by the order in which GAMS saw those items. In particular the order that the variables

appear in the equation, variable and solution listings depends on the ordering of the

VARIABLES declarations. Thus, if you want the TRANSPORT variable to proceed the

DEMAND and OBJ variables you need to declare them in that order. The same holds for

the equations.

The ordering of set elements is somewhat more tricky and depends on the order in which

the set elements were seen across all sets. Thus the set statements

 SETS ONE / SALT, PROTEIN , TOTAL/

 TWO / INDUSTRIAL , MUNICIPAL, TOTAL/

would result in any listing over data indexed by the set TWO appearing with the TOTAL

element first since that word appeared first in set definitions before the other words.

6

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

The ordering of items in a parameter defined over multiple sets is also an issue. GAMS

output is ordered with the sets varied from left to right. Thus, when displaying X(A,B,C) A

will vary the slowest. The sets should be ordered in the pattern desired.

b. The page width and page length are at the users control. Both can be specified in the

GAMS initiation command. For example, the command

 GAMS FILE PW=130 PS=9999

 would result in 130 character wide output arrayed in 9,999 line long pages.

c. One can control the formatting of output from a display statement using two option

commands. The command

 OPTION DECIMALS = 0;

would result in all displayed numbers being rounded to zero decimals (although GAMS

still insists on reporting all decimals for numbers less than one).2 The command

 OPTION TRADE:3:2:1;DISPLAY "TRADE FLOWS", TRADE;

would result in the data in the TRADE array being displayed with three indices displayed

in the rows, two in the column headings, and the data would appear with one decimal place.

Further, the label TRADE FLOWS would precede the display in the output.

d. Users may create much more customized output files using the GAMS "PUT" command.

This is a rather extensive feature (GAMS Development Corporation, 1992) but can

generate output such as in Table 19.1 which constitutes a reformatting of the Report Writer

output as tabled in chapter 6 (this is generated by the file PUTEXPL)

19.4.5 Debugging Models
GAMS allows one to work with large models. PC based GAMS can be used to solve problems with

hundreds of thousands of variables and tens of thousands of equations. However, debugging formulations

that big is not easy. The debugging aids in most commercial systems are not available within GAMS.3

However, the algebraic structure of GAMS does provide one with the ability to work from small to large.

This should always be exploited. For example, the full structure of a GAMS transportation problem

implementation for a problem with N destinations and M sources can be worked out on a 2x2 problem. Data

calculations, model equations, report writing tables, comparative model analysis procedures etc. can be

worked out in a fast turn around limited output situation. Later the full data set can be entered.

GAMS supports several other debugging techniques:

1. One may examine the individual rows or equations within the model using the option

statements for variable and equation listing. For example, the commands:

 OPTION LIMROW=10;

2 One can overcome this using the command OUTPUTITEM$(OUTPUTITEM GE 0.5)

=OUTPUTITEM before the display statement.

3 Moves are now afoot to correct that situation with the development of a GAMS interfaced version

of ANALYZE (Greenberg, 1991) and GAMSCHECK (McCarl, 1994).

7

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

 OPTION LIMCOL=10;

would result in the print out of the first 10 elements in each equation and variable block

whenever a SOLVE is executed. One may control the ordering of these items so the proper

items appear first by ordering the set elements and variable/equation names as discussed in

the output control section above.

2. One may hand generate versions of the tests in the FIXING MODELS chapter using

GAMS calculations. For example, in a resource allocation model the lines below could be

used to test for unbounded variables.

 PARAMETER UNBOUN(J) equals 1 if variable j is unbounded;

 UNBOUN(J)=1$(C(J) GT 0 AND SUM(I,1$(A(I,J) GT O) LE 0);

 DISPLAY UNBOUN;

Similarly, after solution, the following code would provide a budget analysis

 PARAMETER BUDGET(J,*,*) BUDGET OF COLUMN J;

 BUDGET(J,I,"AIJ")=A(I,J);

 BUDGET(J,I,"SHADOWPRIC")=CONSTRAINT.M(I);

 BUDGET(J,I,"PRODUCT")=A(I,J)*CONSTRAINT.M(I);

 BUDGET(J,"SUMINDIRCT","PRODUCT")=

 SUM(I,BUDGET(J,I,"PRODUCT"));

 BUDGET(J,"OBJECTIVE","PRODUCT")=C(J);

 BUDGET(J,"REDUCECOST,"PRODUCT")=

 BUDGET(J,"SUMINDIRCT","PRODUCT")-

 BUDGET(J,"OBJECTIVE","PRODUCT");

 DISPLAY BUDGET;

However, such coding is specific to a structure and is easier done using auxiliary aids such as those in

McCarl (1994b); and Greenberg.

19.4.6 Conducting a Comparative Model Analysis
Models, once setup, are usually employed in a comparative statics analysis. Such an exercise involves

repeated solutions of the same problem. There are several GAMS features which are relevant in such a

setting.

1. More than one model can be solved in a run. Thus, one can stack solve statements or loop

over solves as in the LP modeling DIET and risk EVPORTFO example models.

2. When solving multiple model versions one needs to be careful with data revisions as the

values in the model once changed remain so. For example the commands

8

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

 SCALAR LAND /100/

 PARAMETER SAVELAND;

 SAVELAND = LAND;

 SET LANDCHANGE SCENARIOS FOR CHANGES IN LAND

 /R1,R2,R3/

 PARAMETER VALUE(LANDCHANGE) PERCENT CHANGE IN LAND

 /R1 10 , R2 20 , R3 30/

 LOOP (LANDCHANGE,

 LAND = LAND * (1 + VALUE (LANDCHANGE) / 100.));

results in land equaling 110, 132 and 171.6 during the loop. However, alteration of the

calculation statement, so it operated from a saved parameter value

 LAND = SAVELAND * (1 + VALUE (LANDCHANGE) / 100.)

 result in values of 110 , 120, and 130.

3. The development of a comparative report writer may be attractive when doing multiple

runs. Such a report writer is illustrated in the Risk chapter EVPORTFO example and is in

TABLE 19.2. In that case a parameter is defined over the loop set - OUTPUT(*,RAPS).

In turn, during loop execution the OUTPUT array is saved with scenario dependent values

of variables, shadow prices, data etc. Finally, when the output is displayed a comparison

across scenarios appears.

19.4.7 Sensitivity Analysis
A number of users are interested in getting sensitivity analysis information from GAMS usually in the form

of LP ranging analysis results. Unfortunately, the base version of GAMS does not yield such information.

The user wishing for such information has two alternatives. First, one may cause the model to be repeatedly

solved varying a parameter and examine the results (as in Table 19.2). Second, one can use solver

dependent features of GAMS (which currently work with OSL or CPLEX) and retrieve the ranging

information (GAMS Development Corporation , 1993)

19.4.8 Speeding up GAMS
One can speed up GAMS execution time. Models with a lot of subscripts and a lot of dimensions to those

subscripts can be quite slow in performance. The use of $ conditions in such models is essential. For

example the report writing equation

 Y=SUM((A,B,C,D,E,F,G), (DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G))

will perform much faster with the addition of a $ condition as follows

 Y=SUM((A,B,C,D,E,F,G$X.L(A,B,C,D,E,F,G),

 (DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G));

this will result in the calculation only being done when nonzero values are involved and will avoid excess

9

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

work.4 The ordering of subscripts is also important where the data arrays should be referenced in an order

consistent with their definition. For example, summing the above in the order F,D,A,C,E,B,G would be

much slower. Also one should compute intermediate products to avoid repetitive and complex calculations

(i.e., one could add the DAT and IT items into another parameter ahead of time if they were frequently

added). GAMS also gives help in reporting particularly slow statements. During execution, a report

appears on the screen giving the line being executed, and one can observe progress making notes of

statements which are computed for a long time to see if they can be streamlined. Also one may use the

undocumented PROFILE feature which produces a report of the time spent on code segments5.

19.4.9 Minimizing Model Size
GAMS can generate very large problems when models contain a lot of sets with many elements. The

statements above on speeding up GAMS are also relevant when setting up models. It is usually highly

desirable to define $ conditions on equations and the sums leading to generation of variables to avoid

unneeded model features.

19.4.10 Avoiding GAMS Failures
Finally we need to mention strategies for avoiding GAMS solver failures. Solver failures generally happen

because of numerical difficulties caused by scaling, degeneracy, or nonlinearities. Cycling without making

progress can often be resolved by adding small numbers to the right hand sides and/or scaling. Both of

these procedures are explained in the fixing models chapter. Gradient problems or a lack of progress may

require separable approximation of nonlinear problems as explained in the LP approximation chapter.

Improved starting values for the nonlinear variables can also help.

References
Brooke, A., D. Kendrick, and A. Meeraus. GAMS: A User's Guide. Boyd and Fraser Publishers,

Version 2.25, 1993.

Dillon, M., "Heuristic Selection of Advanced Bases for a Class of Linear Programming Models,"

Operations Research, 18(1970):90-100.

GAMS Development Corporation. "Sensitivity Analysis with GAMS/CPLEX and GAMS/OSL."

Washington, DC, 1993.

GAMS Development Corporation. "Guide to the 'Put' Writing Facility." Washington, DC, 1990.

Greenberg, H.J. "A Primer for ANALYZE(c): A Computer-Assisted Analysis System for

Mathematical Programming Models and Solutions." Mathematics Department, University

of Colorado at Denver, Denver, CO, February 1991.

Kutcher, G. and A. Meeraus, "Computational Considerations for Sectoral Programming Models," in The

Book of CHAC: Programming Studies for Mexican Agriculture. R. Norton and L. Solis, (Eds.),

Johns Hopkins Press for the World Bank, 1983.

Luenberger, D., Introduction to Linear and Nonlinear Programming, Addison Wesley, 1973.

4 Such a modification reduced run time for a report writer from 2 hours to 10 minutes.

5 This is invoked by including the OPTION PROFILE=1, or including PROFILE=1 on the GAMS

call.

10

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

McCarl, B.A. "GAMSCHECK USER DOCUMENTATION: A System for Examining the

Structure and Solution Properties of Linear Programming Problems Solved using GAMS."

Working Documentation, Department of Agricultural Economics, Texas A&M University,

1994.

McCarl, B.A. "Degeneracy, Duality and Shadow prices in Linear Programming," Canadian Journal of

Agricultural Economics, 25(1977):70-73.

McCarl, B.A., W.V. Candler, D.H. Doster and P. Robbins, "Experiences with Farmer Oriented

Linear Programming for Crop Planning," Canadian Journal of Agricultural Economics,

25(1977):17-30.

McCarl, B.A. and P. Nuthall, "Linear Programming for Repeated use in the Analysis of

Agricultural Systems," Agricultural Systems, 8(1982):17-39.

Optimization Subroutine Library (OSL). IBM Guide and Reference, Release 2. Ed. J.A. George

and J.W.H. Liu. IBM Corporation, 1990-91.

Orchard-Hays, W., Advanced Linear-Programming Computing Techniques, McGraw-Hill Book

Company, 1968.

Williams, H., Model Building in Mathematical Programming, John Wiley & Sons, 1978.

11

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Figure 19.1 Sample Picture of BLOCKDIAG Problem

 GAMSCHECK PICTURE - COEFFICIENT CODES

 LOWER BOUND CODE UPPER BOUND

 (INCLUSIVE) (LESS THAN)

 1000.00000 G +INFINITY

 100.00000 F 1000.00000

 10.00000 E 100.00000

 1.00000 D 10.00000

 1.00000 C 1.00000

 .50000 B 1.00000

 .00000 A .50000

 .00000 0 .00000

 -.50000 1 .00000

 -1.00000 2 -.50000

 -1.00000 3 -1.00000

 -10.00000 4 -1.00000

 -100.00000 5 -10.00000

 -1000.00000 6 -100.00000

 -INFINITY 7 -1000.00000

 | M M M M M M N H O I E I O

 | A A A A A A T T T T T T E S S J G J W

 | K K K K K K R R R R R R T I , A ,

 | E E E E E E N N N N N N I C T S T S C

 | T T T T T T S S S S S S N O I I N

 | M A K E C H A I R M A K A A A A A A P P P P P P S E L L S E L L S E C E V V T

 | B B B B B B O O O O O O O F E E S

 | L L L L L L R R R R R R M F

 | E E E E E E T T T T T T E S

 | 1 1 1 1

 | 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 0 1

 --

 OBJT 1| E E E E E E E E E E E E E F E F D D E E D D 6 6 6 7 5 6 6 6 5 6 C = 0 2 3 1 0 3 3

 R 1| D D < F 2 0 2

 E 2| C C < E 2 0 2

 S 3| B D A D D B < F 6 0 6

 O 4| B A D B A D < E 6 0 6

 U 5| A A A C C C < F 6 0 6

 R 6| C D D B B B D D < F 8 0 8

 E 7| C C < 0 2 0 2

 Q 8| B D A D D B < F 6 0 6

 R 9| B A D B A D < F 6 0 6

 E 10| A A A C C C < F 6 0 6

 S 11| C D D B B B D D < F 8 0 8

 O 12| C C < E 2 0 2

 LINKTABLE 1| 3 3 C C < 0 2 2 4

 LINKTABLE 2| 3 3 C C < 0 2 2 4

 LINKCHAIR 1| 3 3 D < 0 1 2 3

 LINKCHAIR 2| 3 3 D < 0 1 2 3

TRNCHAIREQ 1| 3 3 3 C C < 0 2 3 5

TRNCHAIREQ 2| 3 3 3 C C < 0 2 3 5

TRNCHAIREQ 3| 3 3 3 C C < 0 2 3 5

TRNCHAIREQ 4| 3 3 3 C C < 0 2 3 5

TRNTABLEEQ 1| 3 C C < 0 2 1 3

TRNTABLEEQ 2| 3 C C < 0 2 1 3

 |--

POSITIVE | 5 5 5 5 5 5 3 2 3 2 2 2 1 2 1 1 1 1

COLUMN CTS | 5 5 5 5 5 5 3 2 3 2 2 2 1 2 1 1 1

NEGATIVE | 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

COLUMN CTS | 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

COLUMN | 6 6 6 6 6 6 4 2 4 3 3 3 2 3 2 2 2 1

COUNTS | 6 6 6 6 6 6 4 2 4 3 3 3 2 3 2 2 2

 --

12

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Figure 19.1. Sample Picture of BLOCKDIAG Problem(continued)

 #### Dictionary of Variables

 M 1: MAKECHAIR(PLANT2,FUNCTIONAL,NORMAL)

 A 2: MAKECHAIR(PLANT2,FUNCTIONAL,MAXSML)

 K 3: MAKECHAIR(PLANT2,FUNCTIONAL,MAXLRG)

 E 4: MAKECHAIR(PLANT2,FANCY,NORMAL)

 C 5: MAKECHAIR(PLANT2,FANCY,MAXSML)

 H 6: MAKECHAIR(PLANT2,FANCY,MAXLRG)

 A 7: MAKECHAIR(PLANT3,FUNCTIONAL,NORMAL)

 I 8: MAKECHAIR(PLANT3,FUNCTIONAL,MAXSML)

 R 9: MAKECHAIR(PLANT3,FUNCTIONAL,MAXLRG)

 M 10: MAKECHAIR(PLANT3,FANCY,NORMAL)

 A 11: MAKECHAIR(PLANT3,FANCY,MAXSML

 K 12: MAKECHAIR(PLANT3,FANCY,MAXLRG)

 MAKETABLE 1: MAKETABLE(PLANT1,FUNCTIONAL)

 MAKETABLE 2: MAKETABLE(PLANT1,FANCY)

 MAKETABLE 3: MAKETABLE(PLANT2,FUNCTIONAL)

 MAKETABLE 4: MAKETABLE(PLANT2,FANCY)

 MAKETABLE 5: MAKETABLE(PLANT3,FUNCTIONAL)

 MAKETABLE 6: MAKETABLE(PLANT3,FANCY)

 TRNSPORT 1: TRNSPORT(PLANT2,CHAIRS,FUNCTIONAL)

 TRNSPORT 2: TRNSPORT(PLANT2,CHAIRS,FANCY)

 TRNSPORT 3: TRNSPORT(PLANT3,TABLES,FUNCTIONAL)

 TRNSPORT 4: TRNSPORT(PLANT3,TABLES,FANCY)

 TRNSPORT 5: TRNSPORT(PLANT3,CHAIRS,FUNCTIONAL)

 TRNSPORT 6: TRNSPORT(PLANT3,CHAIRS,FANCY)

 S 1: SELL(PLANT1,TABLES,FUNCTIONAL)

 E 2: SELL(PLANT1,TABLES,FANCY)

 L 3: SELL(PLANT1,DINSETS,FUNCTIONAL)

 L 4: SELL(PLANT1,DINSETS,FANCY)

 S 5: SELL(PLANT2,CHAIRS,FUNCTIONAL)

 E 6: SELL(PLANT2,CHAIRS,FANCY)

 L 7: SELL(PLANT3,TABLES,FUNCTIONAL)

 L 8: SELL(PLANT3,TABLES,FANCY)

 S 9: SELL(PLANT3,CHAIRS,FUNCTIONAL)

 E 10: SELL(PLANT3,CHAIRS,FANCY)

 NETINCOME 1: NETINCOME

 #### Dictionary of Equations

 OBJT 1: OBJT

 R 1: RESOUREQ(PLANT1,LABOR)

 E 2: RESOUREQ(PLANT1,TOP)

 S 3: RESOUREQ(PLANT2,SMLLATHE)

 O 4: RESOUREQ(PLANT2,LRGLATHE)

 U 5: RESOUREQ(PLANT2,CARVER)

 R 6: RESOUREQ(PLANT2,LABOR)

 E 7: RESOUREQ(PLANT2,TOP)

 Q 8: RESOUREQ(PLANT3,SMLLATHE)

 R 9: RESOUREQ(PLANT3,LRGLATHE)

 E 10: RESOUREQ(PLANT3,CARVER)

 S 11: RESOUREQ(PLANT3,LABOR)

 O 12: RESOUREQ(PLANT3,TOP)

 LINKTABLE 1: LINKTABLE(FUNCTIONAL)

 LINKTABLE 2: LINKTABLE(FANCY)

 LINKCHAIR 1: LINKCHAIR(FUNCTIONAL)

 LINKCHAIR 2: LINKCHAIR(FANCY)

 TRNCHAIREQ 1: TRNCHAIREQ(PLANT2,FUNCTIONAL)

 TRNCHAIREQ 2: TRNCHAIREQ(PLANT2,FANCY)

 TRNCHAIREQ 3: TRNCHAIREQ(PLANT3,FUNCTIONAL)

 TRNCHAIREQ 4: TRNCHAIREQ(PLANT3,FANCY)

 TRNTABLEEQ 1: TRNTABLEEQ(PLANT3,FUNCTIONAL)
 TRNTABLEEQ 2: TRNTABLEEQ(PLANT3,FANCY)

13

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 19.1 PUT file Output for TRANSPRT example used in Chapter 6.

 Report of Output from Solve of Transport Model

 Run Done on 01/18/94 at 10:01:13

 Commodity Movements Between Cities
 all units in tons

Origin Destination City

 City MIAMI HOUSTON MINEPLIS PORTLAND Total

NEWYORK 30 35 15 0 80

CHICAGO 0 0 75 0 75

LOSANGLS 0 40 0 50 90

 ---- ---- ---- ---- ----

Total 30 75 90 50 245

 Cost of Commodity Movements Between Cities

 Origin Destination Quantity Cost

 City City Shipped Cost/unit Incurred

 tons $/ton $

 NEWYORK MIAMI 30 20 600

 NEWYORK HOUSTON 35 40 1400

 NEWYORK MINEPLIS 15 35 525

 CHICAGO MINEPLIS 75 20 1500

 LOSANGLS HOUSTON 40 35 1400

 LOSANGLS PORTLAND 50 40 2000

Total Cost of Shipping 7425

 Report on Status of Commodity Usage by Plant

Plant Quantity Available Quantity Shipped Value of More Supply

 in tons in tons in $ / ton

NEWYORK 100 80 0.00

CHICAGO 75 75 15.00

LOSANGLS 90 90 5.00

 Report on Status of Supply By Market

Market Quantity Needed Quantity Received Cost of Meeting Demand

 in tons in tons in $ / ton

MIAMI 30 30 20.00

HOUSTON 75 75 40.00

MINEPLIS 90 90 35.00

PORTLAND 50 50 45.00

 Cost of Altering Commodity Movements Between Cities

 all units in $/ton

Origin Destination City

 City MIAMI HOUSTON MINEPLIS PORTLAND

NEWYORK 0.00 0.00 0.00 75.00

CHICAGO 45.00 35.00 0.00 40.00

LOSANGLS 75.00 0.00 40.00 0.00

14

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 19.2 Comparative Report Writer Code from EVPORTFO File

PARAMETER RISKAVER(RAPS) RISK AVERSION COEFFICIENTS

/ R0 0.00000, R1 0.00025, R2 0.00050, R3 0.00075,

 R4 0.00100, R5 0.00150, R6 0.00200, R7 0.00300,

 R8 0.00500, R9 0.01000, R10 0.01100, R11 0.01250,

 R12 0.01500, R13 0.02500, R14 0.05000, R15 0.10000,

 R16 0.30000, R17 0.50000, R18 1.00000, R19 2.50000,

 R20 5.00000, R21 10.0000, R22 15. , R23 20.

 R24 40. , R25 80./

 PARAMETER OUTPUT(*,RAPS) RESULTS FROM MODEL RUNS WITH VARYING RAP

 OPTION SOLPRINT = OFF;

 LOOP (RAPS,RAP=RISKAVER(RAPS);

 SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;

 VAR = SUM(STOCK, SUM(STOCKS,

 INVEST.L(STOCK)* COVAR(STOCK,STOCKS) * INVEST.L(STOCKS))) ;

 OUTPUT("OBJ",RAPS)=OBJ.L;

 OUTPUT("RAP",RAPS)=RAP;

 OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS);

 OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS) * INVEST.L(STOCKS));

 OUTPUT("VAR",RAPS) = VAR;

 OUTPUT("STD",RAPS)=SQRT(VAR);

 OUTPUT("SHADPRICE",RAPS)=INVESTAV.M;

 OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L

);

 DISPLAY OUTPUT;

