
1

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

CHAPTER XVII: FIXING IMPROPERLY WORKING MODELS 1

17.1 Unacceptable Solution Conditions .. 1

17.1.1 Solver Failure -- Causes and Prevention ... 1

17.1.2 Unbounded or Infeasible Solutions ... 1

17.1.3 Unsatisfactory Optimal Solutions ... 2

17.2 Techniques for Diagnosing Improper Models ... 2

17.2.1 Simple Structural Checking .. 2

17.2.1.1 Analytical Checking.. 2

17.2.1.2 Numerical Model Analysis ... 3

17.2.2 A Priori Degeneracy Resolution ... 4

17.2.3 Altering Units of Constraints and Variables: Scaling ... 4

17.2.3.1 Scaling-The Basic Procedure .. 4

17.2.3.2 Mathematical Investigation of Scaling ... 6

17.2.3.2.1 Variable Scaling ... 7

17.2.3.2.2 Effects of Constraint Scaling .. 9

17.2.3.2.3 Objective Function and Right Hand Side Scaling .. 11

17.2.3.4 Summary ... 11

17.2.3.5 Empirical Example of Scaling .. 12

17.2.4 The Use of Artificial Variables to Diagnose Infeasibility... 14

17.2.5 Use Unrealistically Large Upper Bounds to Find Causes of Unboundedness 16

17.2.6 Budgeting .. 17

17.2.7 Row Summing ... 19

References ... 20

1

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

CHAPTER XVII: FIXING IMPROPERLY WORKING MODELS

Empirical models do not always yield acceptable solutions. This chapter contains discussion of

unacceptable solution conditions and techniques for diagnosing the causes of such conditions.

17.1 Unacceptable Solution Conditions

Four cases of improper solutions can arise. First, a solver could fail exhibiting: a) a time, iteration,

or resource limit; b) a lack of meaningful progress; or c) a report of numerical difficulties. Second,

a solver may halt identifying that the problem is infeasible. Third, a solver may halt identifying

that the problem is unbounded. Fourth, the solver may yield an "optimal," but unacceptable

solution.

17.1.1 Solver Failure -- Causes and Prevention

When solvers fail because of numerical difficulties or use an unrealistically large amount of

resources to make little progress, the modeler is often in an awkward position. However, several

actions may alleviate the situation.

One should first examine whether the model specification is proper. The section on structural

checking below gives some techniques for examining model structure. In addition traditional

input (commonly called MPS input) based solvers frequently fail because of improper coefficient

location (although GAMS prevents some of these errors). In particular, errors can arise in MPS

coefficient placement or item naming resulting in more than one (duplicate) coefficient being

defined for a single matrix location. Given our concentration on the GAMS modeling system,

procedures for finding duplicate coefficients will not be discussed. Nevertheless, this is probably

the most common reason why MPS input based solvers run out of time.

The second reason for solver failure involves degeneracy induced cycling. Apparently, even the

best solvers can become stuck or iterate excessively in the presence of massive degeneracy. Our

experience with such cases indicates one should use an a priori degeneracy resolution scheme as

discussed below. We have always observed reduced solution times with this modification.

Thirdly, a solver may fail citing numerical difficulties, an ill-conditioned basis or a lack of

progress. Such events can be caused by model specification errors or more commonly poor

scaling. Often one needs to rescale the model to narrow the disparity between the magnitudes of

the coefficients. Scaling techniques are discussed below.

All of the preventative techniques for avoiding solver failures can be used before solving a model.

Modelers should check structure and consider scaling before attempting model solutions.

However, degeneracy resolution should not usually be employed until a problem is identified.

17.1.2 Unbounded or Infeasible Solutions

Often the applied modeler finds the solver has stopped, indicating that the model is infeasible or

unbounded. This situation, often marks the beginning of a difficult exercise directed toward

2

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

finding the cause of the infeasibility or unboundedness, particularly when dealing with large

models. There are several techniques one can use when this occurs. The first involves structural

checking to find obvious model formulation defects. The second and third techniques involve the

use of artificial variables and large upper bounds to find difficulties. Finally one could use the

techniques called budgeting and row summing.

17.1.3 Unsatisfactory Optimal Solutions

Unfortunately, optimal solutions can be unrealistic. Discovering an optimal solution means the

problem has a mathematically consistent optimum. However, mathematical consistency does not

necessarily imply real world consistency (Heady and Candler). Usually, unrealistic solutions may

be caused by improper problem specification or assumption violations. Cases arise where the

model solution is improper because of: a) omitted constraints or variables; b) errors in coefficient

estimation; c) algebraic errors; or d) coefficient placement errors.

Basically, a model may be judged improper because of incorrect valuation or allocation results.

Valuation difficulties arise from the reduced cost or shadow price information, such items take on

values when primal reduced costs are formed. Allocation difficulties arise when the slack or

decision variable values are unrealistic. The values of these items are formed through the

constraint interactions. Thus, to diagnose the cause of the unrealistic solution, one investigates

either the reduced costs associated with the nonbasic primal variables or the calculations inherent

in the primal constraints. Two techniques are presented below, one for the investigation of

reduced costs, which we call "budgeting"; and another for the reconstruction of the constraint

calculations, which we call "row summing."

17.2 Techniques for Diagnosing Improper Models
Now suppose we turn our attention to the techniques one might use to alleviate model solution

difficulties. Table 17.1 presents an array of the possible problems and an indication of the

techniques one might use to diagnose such problems.

17.2.1 Simple Structural Checking

There are some simple yet powerful techniques for checking LP formulations, regardless of their

presentation method. These fall into two categories: one numerical and one analytical.

17.2.1.1 Analytical Checking
In the case of analytical techniques, consider the problem:

j allfor 0X

m allfor gXf

n allfor dXe

i allfor bXas.t.

XcMax

j

m
j

jmj

n
j

jnj

i
j

jij

j
jj











3

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Certain values of these parameters can cause the model to: 1) be infeasible, 2) contain a set of

variables that must be zero, 3) contain redundant constraints, and 4) yield an unbounded solution,

or 5) contain variables that are always unattractive. Table 17.2 presents a set of cases where model

structures will guarantee these properties. Suppose we elaborate on one case which leads to each

of the five properties.

A model formulation can cause infeasibility. Suppose in the first constraint, bi, is less than zero

and all the aij's in that particular constraint are nonnegative. Obviously this constraint causes the

model to be infeasible, since it is impossible for the sum of nonnegative numbers to be less than or

equal to a negative number.

Second, it is possible that the constraints require that certain variables be zero. Consider what

happens if in the second constraint the right hand side (dn) equals to zero and all enj's are greater

than or equal to zero, then every variable with a nonzero coefficient in that constraint must be zero.

There are also cases where the model possesses redundant constraints. Suppose bi is positive, but

all aij's are negative or zero; then, clearly, this constraint will be redundant as the sum of negative

numbers will always be less than or equal to a positive number.

Checks can also be made for whether the problem is unbounded or contains variables which will

never come into the solution. Consider an activity with a positive objective function coefficient

which has all nonzero aij's negative, all zero enj's and all nonzero fmj's positive. Clearly, then, this

variable contributes revenue but relaxes all constraints. This will be unbounded regardless of the

numerical values. Further, variables may be specified which will never come into the solution.

For example, this is true when cj is less than 0, all nonzero aij's are greater than 0, enj's zero, and

nonzero fmj's negative.

These particular structural checks allow one to examine the algebraic formulation or its numerical

counterpart. Unfortunately, it is not possible to make simple statements when the constraint

coefficients are of mixed sign. In such cases, one will have to resort to numerical checking. All of

the procedures above have been automated in GAMSCHCK although they can be programmed in

GAMS (See McCarl, 1977).

17.2.1.2 Numerical Model Analysis
Another model analysis methodology involves numerical investigation of the equations and

variables. Here, one prints out the equations of a model (in GAMS by using the OPTION

LIMROW and LIMCOL command) and mentally fixes variables at certain levels, and then

examines the relationship of these variables with other variables by examining the equations.

Examples of this are given in the joint products problem above. Numerical model analysis can

also be carried out by making sure that units are proper, using the homogeneity of units tests.

Another numerical technique involves use of a "PICTURE" with which coefficient placement and

signs can be checked. GAMS does not contain PICTURE facilities, so we do not discuss the topic

here, although one is contained in GAMSCHK (see McCarl, 1977).

4

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

17.2.2 A Priori Degeneracy Resolution

Degeneracy can cause solvers to cycle endlessly making little or no progress. Solvers like MINOS

(Murtaugh and Saunders, 1983) on occasion give messages like "terminating since no progress

made in last 1000 iterations" or "Sorry fellows we seem to be stuck." Our experience with such

cases indicates one should use an a priori degeneracy resolution scheme adding small numbers to

the right hand sides, especially to those constraints which start out with zero or identical right hand

sides. The magnitude of the small numbers should be specified so that they are not the same for all

rows and so that they do not materially affect the solution. Thus, they might be random or

systematically chosen numbers of the order 10-3 or 10-4 (although they can be larger or smaller

depending on the scaling and purpose of the constraints as in McCarl, 1977). We have always

observed reduced solution times with this modification. OSL automatically invokes such a

procedure.

17.2.3 Altering Units of Constraints and Variables: Scaling

Scaling is done automatically in a number of algorithms including MINOS which is used in

GAMS. However, automatic scaling is not always successful. Modelers are virtually always more

effective in scaling (Orchard-Hayes). This section explores scaling procedures, discussing the

effects on resulting optimal solutions.

Altering the units of constraints and variables improves the numerical accuracy of computer

algorithms and can reduce solution time. Scaling is needed when the disparity of matrix

coefficient magnitudes is large. An appropriate rule of thumb is, one should scale when the matrix

coefficient magnitudes differ in magnitude by more than 103 or 104. In other words, scaling is

needed if the aij coefficient with the largest absolute value divided by the coefficient with the

smallest nonzero absolute value exceeds 10000. One achieves scaling by altering the formulation

so as to convert: a) the objective function to aggregate units (i.e., thousands of dollars rather than

dollars), b) constraints to thousands of units rather than units (i.e., one might alter a row from

pounds to tons), or c) variables into thousands of units (e.g., transport of tons rather than pounds).

17.2.3.1 Scaling-The Basic Procedure
 Given the LP problem

0X ,X

bXaXa

bXaXas.t.

XcXcMax

21

2222121

1212111

2211









Suppose one wished to change the units of a variable (for example, from pounds to thousand

pounds). The homogeneity of units test requires like denominators in a column. This implies

every coefficient under that variable needs to be multiplied by a scaling factor which equals the

number of old variable units in the new unit; i.e., if Xj is in old units and X'j is to be in a new unit,

with aij and a'ij being the associated units.

5

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Xj' = Xj/ SCj;

where SCj equals the scaling coefficient giving the new units over the old units

aij' = aij / (SCj).

 The scaling procedure can be demonstrated by multiplying and dividing each entry associated

with the variable by the scaling factor. Suppose we scale X1 using SC1

0 X X

b XaSC / X a SC

b XaSC / X a SCs.t.

XcSC / X c SCMax

21

222211211

121211111

221111









or substituting a new variable X1' = X1/SC1 we get

0 X X

b XaX a SC

b XaX a SCs.t.

XcX c SCMax

21

2222

'

1211

1212

'

1111

22

'

111









Variable scaling alters the magnitude of the solution values for the variables and their reduced cost

as we will prove later.

Scaling can also be done on the constraints. When scaling constraints; e.g., transforming their

units from hours to thousands of hours, every constraint coefficient is divided by the scaling factor

(SR)

as follows:

0 X ,X

b Xa Xa

SR / b X SR / aX SR / a

Xc Xc Max

21

2222121

1212111

2211









where SR is the number of old units in a new unit and must be positive. Constraint scaling affects

:1) the slack variable solution value, which is divided by the scaling factor; 2) the reduced cost for

that slack, which is multiplied by the scaling factor; and 3) the shadow price, which is multiplied

by the scaling factor.

The way scaling factors are utilized may be motivated by reference to the homogeneity of units

section. The coefficients associated with any variable are homogeneous in terms of their

denominator units. Thus, when a variable is scaled, one multiplies all coefficients by a scaling

factor (the old unit over the new unit) changing the denominator of the associated coefficients.

Constraints, however, possess homogeneity of numerator units so, in scaling, we divide through by

6

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

the new unit divided by the old unit. Thus, when changing a constraint from pounds to tons one

divides through by 2000 (lbs/tons).

Two other types of scaling are also relevant in LP problems. Suppose that the right hand sides are

scaled, i.e., scaled from single units of resources available to thousands of units of resources

available. Then one would modify the model as follows:

0X ,X

SH / bXaXa

SH / bXaXas.t.

XcXcMax

21

2222121

1212111

2211









The net effects of this alteration will be that the optimal value of every decision variable and slack

would be divided by the scaling factor, as would the optimal objective function value. The shadow

prices and reduced costs would be unchanged.

One may also scale the objective function coefficients by dividing every objective function

coefficient through by a uniform constant (SO).

0X ,X

bXa Xa

bXa X a

X SO / cX SO / cMax

21

2222121

1212111

2211









Under these circumstances, the optimal decision variables and slack solutions will be unchanged;

but both the shadow prices and reduced costs will be divided by the objective function scaling

factor as will be the optimal objective function value.

Scaling may be done in GAMS. Namely putting in the statement variablename.scale = 1000

would cause all variables in the named variable block to be scaled by 1000 with the solution

automatically being readjusted. Similarly equationname.scale = 1000 will scale all constraints in a

block. This must be coupled with the command Modelname.scaleopt=1.

17.2.3.2 Mathematical Investigation of Scaling
In this section an investigation will be carried out on the effects of scaling using the matrix algebra

optimality conditions for a linear program. Readers not interested in such rigor may wish to skip to

the summary and empirical example.

The optimality conditions for the LP problem are given by

CB B-1 aj - cj ≤ 0 for all j

B-1 b ≤ 0.

7

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Given such a solution the optimal decision variables are given by

XB = B-1 b,

the shadow prices by

U = CB B-1

and the reduced costs by

CB B-1 aj - cj,

and the optimal Z value is

Z = CB B-1 b

 In our investigation, we examine the impact of scaling on each of these items.

17.2.3.2.1 Variable Scaling

When a variable is scaled, the problem becomes:

0 X X

b XaX a SC

b XaX a SCs.t.

XcX c SCMax

21

2222

'

1211

1212

'

1111

22

'

111









where X1 equals SCX'
1 and SC is a positive scalar.

The effect on the solution depends on whether the scaled variable is basic or nonbasic. First,

consider nonbasic variables. If a nonbasic variable is scaled, then the scaling operation does not

affect the basis inverse. Thus, the only thing that needs to be investigated is whether or not scaling

the nonbasic variable renders it attractive to bring into the basis. This involves an investigation of

the reduced cost after scaling. Constructing the reduced cost for this particular variable

CB B-1 SC aj - SC cj = SC (CB B-1 aj - cj)

we find that the reduced cost after scaling (new) equals the reduced cost before scaling (old) times

the scaling factor. Thus, we have the old reduced cost multiplied by the scaling constant and under

positive SC the before scaling solution remains optimal. The only alteration introduced by scaling

a nonbasic variable is that its reduced cost is multiplied by the scaling factor. This can be

motivated practically. If it costs $50 to enter one acre of a crop not being grown into solution, it

would logically cost $50,000 to bring in a thousand acres of that crop.

Now suppose a basic variable is scaled. In this case, the basis inverse is altered. Suppose that the

basis matrix before scaling is B, while the matrix of technical coefficients before scaling is A. The

new matrices (B*,A*) can be expressed as the old matrices (B,A) post-multiplied by matrices KA

and KB which are modified identity matrices. Assuming the nth column of B is being scaled, then

the element on the diagonal in the nth column of the KB matrix will be the scaling factor. Thus,

8

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

A* = AKA B* = BKB

where































1...0...000

.....................

0...SC...000

.....................

0...0...100

0...0...010

0...0...001

K B

The KA matrix would be formed similarly with the column in the A matrix being scaled identifying

the diagonal element where SC appears.

We may derive a relationship between the basis inverses before and after scaling. Matrix algebra

theory shows that

(B*)-1 = (BKB)-1 = KB
-1 B-1

We should also note that the scaled objective function coefficients of the basic variables are

post-multiplied by KB, i.e.,

CB = CB KB

Now let us look at the optimality criteria for non-basic variables

.c - a B C *

j

*

j

1-**

B

The reduced cost after scaling becomes

0 c - a BC

c - a KKCc - a BC

jj

1-

B

jj

-1

BBB

*

j

*

j

1-**

B





since KBK-1 = I. Thus, the reduced costs after scaling equal the reduced costs before scaling. Thus,

we have proven that the solution will remain optimal.

We now need to turn our attention to whether or not the basic variables remain nonnegative. The

values of the basic variables at optimality are given by B*-1b. Substituting in our relationships, we

obtain

.X K b B K b B X B

-1

B

-1-1

B

1-**

B 

The scaled solution equals KB
-1 times the unscaled solution. The inverse of KB is an identity-like

matrix with one over the scaling factor on the diagonal in the position where the scaled variable

9

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

enters the basis.































1...0...000

.....................

0...1/SC...000

.....................

0...0...100

0...0...010

0...0...001

K 1-

B

The KB
-1 XB multiplication yields the vector





























mB

KB

2B

1B

B

1-

BB

X

...

SC / X

...

X

X

XKX

Thus, scaling reduces the magnitude of the particular basic variable being scaled, while all other

variables are unaffected.

 We may also investigate the objective function consequences. The optimal objective

function value of the scaled problem is

 Z bBC bBKK C bBC Z -1

B

1-*-1

BB

*

B

1-**

B

* 

Clearly, then, the objective function value after the change equals the objective function value

before the change. All in all, column scaling leaves the problem with the same qualitative answer.

The solution value of the particular variable being scaled and its reduced cost are altered by the

scaling factor.

17.2.3.2.2 Effects of Constraint Scaling

When one scales a constraint, the resultant problem appears as

0X ,X

bXa Xa

SR / bX SR / aX SR / a

Xc Xc Max

21

2222121

1212111

2211









10

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

or

,

0X 0X

bXAs.t.orRbRAXs.t.

CXMaxCXMax
**





where R is a scaling matrix of the form































1...0...000

.....................

0...1/RS...000

.....................

0...0...100

0...0...010

0...0...001

R

Further, the new basis (B*) is related to the old basis as follows

B* = RB

and the basis inverse is the old basis inverse multiplied by the inverse of R.

B*-1 = B-1 R-1

Again, R-1 is an identity-like matrix quality.































1...0...000

.....................

0...RS...000

.....................

0...0...100

0...0...010

0...0...001

R 1-

Now let us turn our attention to the effects of scaling a constraint. We will derive the results

assuming the slack variable is not in the basis. The reduced cost criteria for the scaled problem is

given by

jj

-1

Bjj

-1-1

B

*

j

*

j

1-**

B c - aBC c - Ra R BC c - a BC 

Thus, the optimality conditions are the same as before scaling and the solution remains optimal

with unchanged reduced costs. We now may investigate the variable solution values. For the

11

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

scaled problem, the solution values are

X*
B = B*-1 b* = B-1 R-1 R b = B-1 b

which shows that the values of the basic variables are unaffected. The objective function is also

unchanged.

Thus, the optimality and feasibility of the basis remain entirely unaffected. What then does

change? The shadow prices after scaling are

U = CB B-1 R-1.

Given the form of R-1 from above, the shadow prices are identical to the shadow prices before

scaling

 Ui = (CB B-1)i

for all rows but the particular row being scaled. For that row, the shadow price is multiplied by the

scaling factor

Ui = (CB B-1)i RS

Finally we should note that when a slack variable is in the basis, then constraint scaling simply

changes the magnitude of the optimal slack variable value by dividing it by the scaling factor.

17.2.3.2.3 Objective Function and Right Hand Side Scaling
If the objective function coefficients are uniformly divided by a constant, the values of the solution

variables (B-1 b) are unaffected. However, the magnitudes of the shadow prices (CB B-1), the

optimal objective function value (CB B-1b), and the reduced costs (CB B-1aj - cj) are affected. In all

of these cases, these items would be uniformly divided by the objective function scaling factor. A

similar observation can be made regarding scaling the right hand side. The right hand side

determines only the objective function value (CB B-1 b) and the solution value of the basic

variables (B-1 b). Dividing all right hand sides by a constant would divide the objective function

and all the optimal variable values by the same constant.

17.2.3.4 Summary
Scaling alters coefficient magnitudes within the matrix and the resultant magnitude of selected

items in the solution. Consider the LP problem

0X

bAXs.t.

CXMax





Suppose a set of positive (all scaling factors must be positive) scaling factors will be applied to the

LP model. The scaling factors are a) COLSCALj for the jth variable - a factor multiplying every

coefficient under that variable, b) ROWSCALi for the ith constraint - a factor dividing every

coefficient in that constraint, c) OBJSCAL for the objective function - a factor dividing every

coefficient in the objective row and d) RHSSCAL for the right hand side - a factor dividing every

right hand side value. The parameters of the model after scaling are:

12

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

RHSSCAL *ROWSCAL

1
*bb

ROWSCAL

COLSCAL
*aa

OBJSCAL

COLSAL
*cc

i

i

'

i

i

j

ij

'

ij

j

j

'

j







where the / denotes the new coefficients. The relationship between solution items before and after

scaling is given in Table 17.3. Thus, if a particular variable j is scaled by 1000 and constraint i is

scaled by a 1000, the aij value is numerically unchanged. However, if variable j is scaled by 1000

and constraint i was scaled by 100, then the value of the aij coefficient is multiplied by 10.

Thus, for example, if an optimal variable value before scaling was 6 and the right hand side is

multiplied by 100 while the coefficients of that variable are multiplied by .02 then the resultant

value after scaling would be 3.

Finally, we must emphasize that the only proper way of scaling is to operate on all coefficients for

each variable, right hand side and objective function in the same manner. One cannot selectively

scale selected coefficients. The interaction of the various scaling factors can make it look like one

is only scaling selected coefficients, as will be demonstrated in the empirical example below. But

this is not the case, consistency must be maintained.

17.2.3.5 Empirical Example of Scaling
 The previous discussion deals with the implications of changes in constraint, variable, right

hand side and objective function units. The reader, however, should note that gains in terms of

numerical stability may arise only when several items are simultaneously scaled. This is

illustrated in the example. Consider the following problem

0XXXX

3000045X50X

6000002000X1500X

050X -4X 5X

08000X-10000X- Xs.t.

500X-400X -X500 XMax

4321

32

32

432

321

4321













where:

X1 is the sale of nibbles in pounds. It returns $1 of profit per unit and removes one pound

from the nibble balance row.

X2 is the hours of nibble production via process 1. One hour's worth of production uses $500

worth of direct cost, 5 units of gribbles, 1500 hibbles and 50 hours of labor. As a result,

one gets 10,000 nibbles.

X3 is the hours of nibble production using process 2 . Here 8000 nibbles are produced at a

direct cost of $400 with four pounds of gribbles used, 2,000 hibbles, and 45 hours of labor

produced.

13

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

X4 is the number of 50 pound sacks of gribbles purchased, costing $5000 and providing 50

pounds of gribbles into the gribble balance row.

The right hand side shows an endowment of 600,000 hibbles and 30,000 hours of labor. The

objective function is in the units of dollars and represents profit. The first constraint balances the

units of nibbles produced with those sold. The second constraint balances the units of gribbles

used with those purchased. The third constraint limits the number of hibbles used to the fixed

endowment. The fourth constraint limits the hours of labor used to the fixed endowment.

Non-negativity of all variables is assumed.

This problem is not well-scaled and its scaling characteristics will be altered. (This will be done to

illustrate scaling - the problem is scaled satisfactorily for any solver). At solution, the objective

function equals 3,600,000 and the variables values (with their units) are shown in Table 17.4.

Now suppose we scale the first constraint by dividing through by 1000. Simultaneously, let us

scale the third constraint by dividing through by 100, and divide the fourth constraint by 10. This

changes the units of these constraints such that the first constraint is in thousands of nibbles, the

third constraint is

hundreds of hibbles, and the fourth constraint is in 10's of labor hours. The new model resulting

from the scaling is

0X,XXX

30004.5X5X

600020X15X

0X 4X 5X

08X -10X -X

100X-400X-500X-1000XMax

4321

32

32

432

321

4321











According to Table 17.3 the optimal shadow price on constraint 1 will be the corresponding

prescaled solution value multiplied by 1,000, the shadow price on constraint 3 is multiplied by 100

and the shadow price for constraint 4 is increased by a factor of 10. The primal solution variables

are unchanged as well as the value of the objective function. The solution to this model is shown in

Table 17.5. The impact of scaling on the optimal solution is as forecast.

The optimal objective function value equals 1.8 million. Note, we really have not gained anything

with scaling as there is the same disparity of orders of magnitudes within the matrix as before.

Further scaling will alter this. Suppose we choose to rescale X1 into 1000's of pounds and X4 to

pounds. This involves multiplying all coefficients in the X1 column by 1000 and all coefficients

associated with X4 by .02.

 The formulation subsequent to this scaling is

14

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

0X,X,X,X

30004.5X5X

600020X15X

0X-4X5X

08X-10X-Xs.t.

100X-400X-500X-1000XMax

4321

32

32

432

321

4321











The net effect of this scaling operation causes the optimal solution X1 value to be divided by 1000,

and X4 to be divided by .02. The resultant solution is shown in Table 17.6.

The solution again corresponds to predictions. The optimal value of the objective function equals

1.8 million. This particular problem is now fairly well scaled; however, for illustrative purposes

suppose that we scale the objective function and right hand side. First, suppose we divide the

objective function by 1000 and the right hand side coefficients by 100. The resulting LP problem

is

0X,X,X,X

304.5X5X

6020X15X

0X-4X5X

08X-10X-Xs.t.

0.1X-0.4X-0.5X-XMax

4321

32

32

432

321

4321











This should result in a solution with the shadow prices and reduced costs divided through by 1000,

the objective function by 100,000 and the variable solution values by 100. The optimal solution is

shown in Table 17.7. The optimal value of the objective function equals 18. This solution can

easily be shown to be equivalent to the solution of the unscaled problem, Table 17.4, through the

scaling relations in Table 17.3.

Summarizing, scaling allows one to narrow the discrepancies within the magnitudes of the

numbers within the matrix. One can, given the scaling factors, derive the original unscaled

solution from the scaled solution. Practitioners should use scaling to decrease disparities in order

of magnitude which will severally improve the performance of the solution algorithm.

17.2.4 The Use of Artificial Variables to Diagnose Infeasibility
Often the applied modeler finds the solver has stopped indicating that the model is infeasible. This

situation, particularly when dealing with large models, often marks the beginning of a difficult

exercise. There are several ways one can proceed. The first technique involves use of the above

simple structural checking procedures to insure that the rows with minimum requirements have

some way of satisfying those minimum requirements. Also, if available, a "picture" also can be

used to find misplaced coefficients, misspecified or duplicate coefficients. However, suppose that

all the simple mechanical checks are examined and the model is still infeasible or unbounded, then

what?

There is an empirical approach involving the use of artificial variables. As discussed in Chapter 2,

artificial variables permit infeasible solutions to appear feasible. Artificial variables have a large

15

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

negative objective function coefficient (when the objective is to maximize) and positive in a single

constraint. Artificial variables only remain in the solution when the restrictions with which they

are associated cannot be met, as occurs in misspecified LP models. For example, a model might

contain a minimum requirement of 10,000 units production whereas the labor resource availability

constraint permits fewer units. This problem may arise if: a) the 10,000 unit requirement is too

large and has been improperly entered, b) the labor endowment is erroneously too small, c) the

labor requirements for production have been overestimated, or d) the contribution to the minimum

requirement constraint is too small.

The last three cases arise when the minimum requirement level is correct, but the infeasibility is

caused by misspecifications in other coefficients. Thus, infeasibilities arise not only because of

improperly specified minimum requirement rows, but also because of errors in other coefficients.

The question is "how can one discover the cause of the infeasibility?" This can be done by adding

artificial variables to the model formulation. The inclusion of artificial variables permits all

models to have feasible optimal solutions regardless of whether the "real" constraints are satisfied.

Infeasible solutions exhibit nonzero artificial variables. Nonzero artificial variables will cause a

large negative objective function value and large shadow prices since some CB's in the CB B-1

computations are large. Specifically, constraints which exhibit large shadow prices are those

involved with the infeasibility. The constraints not causing the infeasibility will have unaffected

shadow prices. Thus, the imposition of artificial variables allows one to identify which constraints

are nominally causing the infeasibility. We do not argue that such information cannot be found in

an ordinary infeasible solution; however, it is more difficult to interpret. Ordinarily, infeasible

solver solutions are detected by phase 1 of the simplex algorithm wherein the shadow prices give

the marginal contribution of a change in the right hand side to the sum of the infeasibilities.

To illustrate the use of artificial variables in the context of an infeasible model consider the

following example:

0X,X

20X

65X50X

50XX s.t.

50X50XMax

21

1

21

21

21











This problem is infeasible due to the interaction of the second and third constraints. Suppose that

an error was made and the number 50 which is specified as the requirement of X1 for the second

resource should have been 0.50. The third constraint has a minimum requirement, thus an artificial

variable is included.

20A X

65X50X

50XX

10000A-50X50XMax

1

21

21

21









Here the artificial variable A is entered with a large negative number in the objective function and

a plus one in the third constraint, thus permitting a minimum requirement to be satisfied. The

16

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

solution to the augmented problem is shown in Table 17.8. The value of the objective function

is -186,935. In this solution, the artificial variable A is nonzero with the second and third con-

straints binding. The shadow prices on the second and third constraints reflect the influence of the

artificial variable. Thus, the modeler would receive signals that there was something wrong in the

interaction of the second and third constraints. Hopefully then the data error would be found.

In summary, artificial variables are useful in finding the source of infeasibility. Artificials are only

needed in constraints that are not satisfied when the decision variables are zero. Their use allows

the model user to find infeasibilities by narrowing attention to the constraints which are the under-

lying causes of the infeasible solution. We also feel they should be used where infeasibilities can

arise in models which: a) continually have their data altered; and b) are used by people other than

the modeler (see McCarl et al.).

17.2.5 Use Unrealistically Large Upper Bounds to Find Causes of Unboundedness

LP problems may also yield unbounded solutions. One can again use structural checking or a

picture to find the problem. However, if these checks fail, imposition of large upper bounds in an

unbounded model on all variables which exhibit desirable objective function coefficients will

prevent unboundedness, and will cause the variables causing unboundedness to take on large

solution values. Investigation of the variables which take on such large values will allow the

modeler to find the cause of the unboundedness. Consider a LP problem which has large upper

bounds imposed.

0X

MX

bAXs.t.

cXMax







Here the equations X ≤ M are upper bound constraints limiting the decision variables to a large

number (e.g., the constraint X1 ≤ 100,000 has been imposed on the model). Given decision

variables, M would be set so it was unrealistically large (i.e., 1,000 times larger than the largest

expected X value). Why would anyone want to impose such bounds? Consider the following

simple example.

0X,X,X

5X

0X-X

XX-3XMax

321

3

21

321









This problem is unbounded: the model can purchase X2, using it to produce X1 at a net operating

profit of $2 without limit. However, the imposition of the constraint X1 ≤ 100,000 yields the

solution X1 = X2 = 100,000, X3 = 50. Thus, if the model user saw this solution and felt that X1 =

100,000 was unrealistically large then this would show that there is something wrong within the

model. It also shows that X1 and X2 are the items involved with the unboundedness while X3 is not

a factor.

The use of large upper bounds precludes the possibility of an unbounded solution but causes the

objective function and some of the variables to take on unrealistically large values. Subsequently,

17

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

one can trace the cause of the unboundedness by examining the set of variables which are

unrealistically large. This is important since ordinarily LP solvers are implemented so that when

they discover an unbounded solution they automatically stop. This leaves the user without much

information as to the cause of the unboundedness.

Decision modelers may wish to upper bound the sum of a number of variables rather than each and

every variable. This could be done by using the following:

j allfor 0X

MX

i allfor bXas.t.

XcMax

j

j
j

i
j

jij

j
jj









Here one specifies that the sum of all variables is less than or equal to an unrealistically large

number.

17.2.6 Budgeting

Yet another model analysis technique, particularity when dealing with unrealistic optimal

solutions, involves Budgeting. Budgeting herein refers to the reconstruction and examination of

reduced cost and shadow price information. The procedure is best illustrated through example.

Consider the model shown in Table 17.9.

This model contains activities for buying miscellaneous inputs; selling corn, soybeans, and pork;

and producing corn, soybeans, and hogs. The model is maximized subject to a resource constraint

on land, along with supply-demand balances on pork, soybeans, corn, and miscellaneous inputs.

The miscellaneous input item is specified in dollars and therefore enters the objective function at a

per unit cost of $1 while supplying a dollar's worth of miscellaneous inputs. Corn is sold for $2.50

per unit, soybeans $6 per unit, and pork $.50 per unit. Corn production incurs $75 in direct

production costs and $125 in miscellaneous inputs while using one acre of land and yielding 120

bushels of corn. Soybean production costs $50 in direct production costs and another $50 in

miscellaneous inputs while using an acre of land and yielding 50 bushels of soybeans. Hog

production has no direct costs, uses $20 in miscellaneous inputs, and requires 20 bushels of corn.

An unrealistically large yield in the hog activity has been entered (1000 pounds per hog). This

example "error" will be sought by the budgeting technique.

The optimum solution to this model is shown in Table 17.10. The optimal value of the objective

function is $1,508,000. This solution includes several symptoms that there is something wrong.

For example, 3,600,000 pounds of pork are sold, the reduced cost on raising soybeans is $2,480 an

acre, the shadow price on land is $2,680 and the shadow price of corn is $24 a bushel. Budgeting

investigates the shadow prices and reduced costs in an effort to discover model misspecifications.

The matrix and summation formula for reduced costs is

  
i

jiji

1-*

Bjj

1-*

B 0, c - a BC c - aBC

which will be greater than or equal to zero for all nonbasic variables and exactly equal to zero for

basic variables. Utilizing the fact that the CB B-1 are the shadow prices, then the equation becomes

18

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

 
i

jiji 0 c - a U

where Ui is the shadow price associated with row i, the aij's are the technical coefficients of the

original model, and the cj is the original objective function coefficients associated with Xj.

Budgeting involves construction of an extensive version of the reduced cost calculations which in

turn are examined for plausibility. The variable budgeted first could be chosen because: a) it is

nonbasic when intuition suggests it should be basic; b) it has an unrealistically high reduced cost;

or c) it uses a resource which appears to be improperly valued. In the example, suppose we budget

soybean production because of its high reduced cost. To budget, write a row for each nonzero

coefficient (aij) under the chosen variable, with associated shadow prices (Ui) and aijUi the product,

then finally subtracting cost. The budget for soybean production is shown in Table 17.11.

Mechanically the budget examines the cost of resource usage in those rows for which the activity

uses resources and values (shadow price) of these resources. In turn the objective function value of

the variable is considered and the reduced costs reconstructed. The soybean production variable

has non-zero coefficients in the land, soybean production, and miscellaneous input constraints.

The shadow price for land is $2,680. Thus, one acre of soybeans uses $2,680 worth of land and

yields 50 bushels, each selling for $6. Also, 50 units of miscellaneous inputs are used which, when

valued at $1, cost $50. Summing these terms, the marginal contribution of soybean production,

ignoring its direct costs, is $2,430. Its direct cost (cj=50) is then subtracted yielding a $2,480

reduced cost. One may conclude that, the $2,480 reduced cost is caused by the $2,680 shadow

price on land. The question then becomes why is land this valuable.

Shadow prices are derived from setting the reduced costs of basic variables to zero. Thus, the high

land shadow price must arise from the reduced costs of some basic variable which utilizes land.

The only land using basic variable is corn production. We then budget the corn production

variable (Table 17.12). Note that while one acre of corn production uses $2,680 of land, it receives

$2,880 from the value of the corn sold. Here, the reason for the $2,680 cost of land is the $2,880

value of the corn. Institutional knowledge indicates the 120 bushels per acre corn yield is

reasonable, but the $24 corn shadow price per bushel is not. Thus, the question becomes, "Why is

the corn shadow price so high?" Again, this will be determined by a basic variable which utilizes

corn. The only basic cornusing variable is hog production. The budget for hog production is

shown in Table 17.13. These computations show that zero reduced cost for this activity requires

that 20 bushels of corn be valued at $24/unit. The cause of the $500/bushel value for corn is an

unrealistic value of pork produced ($500). The erroneous 1000 pound coefficient for pork

production per hog would then be discovered. A revised value of the pork yield per hog would

alter the model, making the solution more realistic.

The budgeting technique is useful in a number of settings. Through its use, one may discover why

variables are nonbasic when they should be basic. The soybean production variable budget

provides such an example. Budgeting, in such a case, may discover difficulties in the particular

variable being budgeted or in shadow prices.

Budgeting may also be used to discover why particular activities are basic when modeler intuition

suggests they should be nonbasic. For example, by tracing out the costs and returns to corn as

opposed to soybean production to see what the major differences that lead to corn being profitable

while soybeans are not.

19

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

The third use of budgeting involves discovering the causes of improper shadow prices. Shadow

prices arise from a residual accounting framework where, after the fixed revenues and costs are

considered, the residual income is attributed to the unpriced resources.

Budgeting can also be used to deal with infeasible solutions from Phase I of a Phase I/Phase II

simplex algorithm. Phase I of such algorithms minimizes the sum of infeasibilities. Thus, all of

the objective function coefficients of the decision variables in the model are set to zero. The phase

I shadow prices refer to the amount by which the sum of the infeasibilities will be reduced by a

change in the right hand sides. Budgeting then can be done to trace shadow price origins and to see

why certain variables do not come into solution. Solutions containing artificial variables may also

be budgeted.

17.2.7 Row Summing

Model solutions also may be analyzed by examination of the primal allocation results. In the

budgeting example problem, one could have examined the reasons for the sale of 3.6 million

pounds of pork. This can be done through a procedure we call row summing. This is illustrated

through a slightly different, but related, example Table 17.14.

Compared to the model shown in Table 17.9, the pork production coefficient has been altered

to -150, while the corn yield per unit has been changed to an incorrect value of -1200 -- the error.

We have also introduced a RHS of 20 on the corn balance equation. The solution to this model is

shown in Table 17.15. The optimal value of the objective function is $1,860,055. Here 5.4 million

pounds of pork are sold which one would probably judge to be unrealistically high. Further, there

are more than 36,000 hogs on the farm.

A row sum is simply a detailed breakdown of a constraint: each variable appearing in that

constraint, its corresponding coefficient (aij) and the product aijXj. The products are then summed,

and subtracted from the right hand side and the slack variable formed. The use of row summing in

our example begins with the pork sales constraint to see if 5.4 million lbs. is reasonable (Table

17.16.).

The pork constraint contains the variables sell pork and hog production. The sell pork variable

uses one pound of pork per unit, while the hog production variable yields 150 pounds of pork per

unit. The second column of Table 17.15 contains the optimal variable values. In the third column

we write the product of the variable value and its aij. The products are summed to give total

endogenous use which in this case equals zero. We then enter the right hand side and subtract it to

determine the value of the slack variable. All these items in this case are zero. Given institutional

knowledge, one would conclude the error has not yet been found as the 150 lbs. of pork per hog is

reasonable, and all pork produced is sold. However, one would wonder if a production level of

36,001 hogs is reasonable. The next step is to examine the resources used by hog production. For

illustrative purposes, we begin with the miscellaneous input supply-demand balance. The row

sum for this constraint is shown in Table 17.17.

There are four entries in the constraint involving both basic and nonbasic variables. The row sum

does not reveal anything terribly unrealistic except the large amount of activity from the hog

production variable. The basic question is yet to be resolved.

We next investigate the corn supply-demand balance. The row sum computations for this

constraint are shown in Table 17.18. In this case the constraint has a non-zero right hand side;

20

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

thus, the endogenous sum is 20 which equals the right hand side leaving the slack variable zero.

We find the 36,001 hogs require 720,020 bushels of corn, and the reason they are able to obtain all

this corn is because of the inaccurate yield on the corn production variable. The modeler would

then correct the yield on the corn production variable.

The above example illustrates the principles behind using the allocation results to debug a model.

One identifies a variable or slack with an unrealistically high solution value, and then row sums the

constraints in which that variable is involved with to discover the problem. Row summing can be

used to discover why particular variables have unrealistically large values by identifying incorrect

coefficient values or coefficient placement errors. For example, suppose that the corn yield was

inadvertently punched in the soybean row; then one might have discovered a solution in which

soybeans are sold but no soybeans are produced. A row sum would quickly determine the source

of the soybeans and indicate the error. Row summing can also be applied to discover the causes of

large values for slack or surplus variables.

References
Heady, E.O. and W.V. Candler. Linear Programming Methods. Iowa State University Press:

Ames, Iowa, 1958.

McCarl, B.A. "Degeneracy, Duality, and Shadow Prices in Linear Programming." Canadian

Journal of Agricultural Economics. 25(1977):70-73.

Murtaugh, B. and M. Saunders. "MINOS 5.0 Users Guide." Technical Report SOL 83-20

Stanford University, 1983.

Orchard, Hays W. Advanced Linear Programming Computing Techniques. McGraw-Hill: New

York, 1968.

21

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.1. Priorities of Techniques to Use to Diagnose Improper Model Solution Outcomes

 Type

of Solution Outcome

Structura

l Checka

Degen.

Resol.

Scalinga

Artificial

Variable

s

Upper

Bounds

Budget

Row

Sum

Solver Failure 1 3 2 5 4

Unbounded Solution 1 3 2 4

Infeasible Solutions 1 3 2 4 5

Unsat. Optimal Solutions 1 2 2

Notes: The entries in the table gives information on the order in which to try techniques with the technique numbered

1 being the item to try first.

a This technique could be employed before any solving occurs. The technique also can be used when problems

appear.

23

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.2. Solution Properties of Various Model Formulations

Cases Where the Model Must have an Infeasible Solution

 bi < 0 and aij ≥ 0 for all j Ψ row i will not allow a feasible solution

 dn < 0 and enj ≥ 0 for all j Ψ row n will not allow a feasible solution

 dn > 0 and enj ≤ 0 for all j Ψ row n will not allow a feasible solution

 gm > 0 and fmj ≤ 0 for all j Ψ row m will not allow a feasible solution

Cases where certain variables in the model must equal zero

 bi = 0 and aij ≥ 0 for all j Ψ all Xj's with aij ≠ 0 in row i will be zero

 dn = 0 and enj ≥ 0 for all j Ψ all Xj 's with enj ≠ 0 in row n will be zero

 dn = 0 and enj ≤ 0 for all j Ψ all Xj 's with enj ≠ 0 in row n will be zero

 gm = 0 and fmj ≤ 0 for all j Ψ all Xj 's with fmj ≠ 0 in row m will be zero

Cases where certain constraints are obviously redundant

 bi ≥ 0 and aij ≤ 0 for all j means row i is redundant

 gm ≤ 0 and fmj ≥ 0 for all j means row m is redundant

Cases where certain variables cause the model to be unbounded

cj > 0 and aij ≤ 0 or enj = 0 and fmj ≥ 0 for all i, m, and n means variable j is unbounded

Cases where certain variables will be zero at optimality

cj < 0 and aij ≥ 0 or enj = 0 and fmj ≤ 0 for all i, m, and n means variable j will always be zero

25

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.3. Relationships Between Items Before and After Scaling

Item

Symbol

Before

Scaling

Symbol

After

Scaling

Unscaled Value in Terms of Scaled Value

Scaled Value in Terms of Unscaled Value

Variables Xj Xj' Xj = X j'* (COLSCALj * RHSSCAL) Xj' = X j /(COLSCALj * RHSSCAL)

Slacks Si Si' Si= S i'*(ROWSCALi * RHSSCAL) Si' = S i / (ROWSCALi * RHSSCAL)

Reduced Cost zj - cj zj '- cj' zj - cj = (zj '- cj') * (OBJSCAL/COLSCALj) zj '- cj ' = (zj - cj) / (OBJSCAL/COLSCALj)

Shadow Price Ui Ui' Ui = Ui' * (OBJSCAL/ROWSCALi)) Ui '= Ui / (OBJSCAL/ROWSCALi))

Obj. Func. Value Z Z ' Z = Z' * OBJSCAL * RHSSCAL Z '= Z / (OBJSCAL * RHSSCAL)

26

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.4. Optimal Solution to Unscaled Nibble Production Problem

Obj = 3,600,000

Variable

Units

Value

Reduced

Cost

Equation

Unit

Slack

Shadow

Price

X1 Lbs. of Nibbles 4000000 0 1 Lbs. of Nibbles 0 1

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100

X3 Hrs. of Process 2 0 4800 3 # of Hibbles 0 6

X4 Sacks of Gribbles 40 0 4 Hrs of Labor 10000 0

Table 17.5. Optimal Solution to Nibble Production Problem After Row Scaling

Variable

Units

Value

Reduced

Cost

Equation

Unit

Slack

Shadow

Price

X1 Lbs. of Nibbles 4000000 0 1 1000's of Lbs. of Nibbles 0 1000

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100

X3 Hrs. of Process 2 0 4800 3 100's of Hibbles 0 600

X4 Sacks of Gribbles 40 0 4 10's of Hrs of Labor 10000 0

27

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.6. Optimal Solution to Nibble Production Problem After Row and Column Scaling

Variable

Units

Value

Reduced

Cost

Equation

Unit

Slack

Shadow

Price

X1 1000's of Lbs. of Nibbles 4000000 0 1 1000's of Lbs. of Nibbles 0 1000

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100

X3 Hrs. of Process 2 0 4800 3 100's of Hibbles 0 600

X4 Sacks of Gribbles 40 0 4 10's of Hrs of Labor 10000 0

Table 17.7. Optimal Solution to Nibble Production Problem After Row, Column, Objective Function and RHS Scaling

Variable

Units

 Value

Reduced

Cost

Equation

Unit

Slack

Shadow

Price

X1 100,000's Lbs. of Nibbles 40 0 1 100,000's of Lbs. of Nibbles 0 1

X2 100's of Hrs. of Process 1 4 0 2 100's Lbs. of Gribbles 0 0.1

X3 100's of Hrs. of Process 2 0 4.8 3 10,000's of Hibbles 0 0.6

X4 100's of Sacks of Gribbles 20 0 4 1000's of Hrs of Labor 100 0

28

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.8. Solution to Infeasible Example with Artificial Present

Objective Function = -186935

Variable Value Reduced Cost Equation Level Shadow Price

X1 1.3 0 1 48.7 0

X2 0 1940 2 0 1990

A 18.7 0 3 0 -10,000

Table 17.9. Tableau of Budgeting Example

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod Soyb. Prod Hogs RHS

Objective Func -1 2.5 6 0.5 -75 -50 MAX

Land Available 1 1 ≤ 600

Pork Balance 1 -1000 ≤ 0

Soybean Bal 1 -50 ≤ 0

Corn Balance 1 -120 20 ≤ 0

Misc. Inp. Bal. -1 125 50 20 ≤ 0

29

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.10. Optimal Solution to Budgeting Example

Variable

Value

Reduced

Cost

Equation

Level

Shadow

Price

Buy Misc. Input 147,000 0 Land Available 0 2680.00

Sell Corn 0 22.50 Pork Balance 0 0.5

Sell Soybeans 0 0 Soybean Balance 0 6.00

Sell Pork 3,600,000 0 Corn Balance 0 24.00

Produce Corn 600 0 Misc. Input Balance 0 1.00

Produce Soybeans 0 2,480.00

Produce Hogs 3,600 0

Table 17.11. Budget of Soybean Production Activity

Constraint aij Shadow Price (Ui) Product (Uiaij)

Land Available 1 2680 2680

Soybean Balance -50 6 -300

Misc. Input Balance 50 1 50

Indirect Cost Sum (∑Uiaij) 2430

Less Objective Function

(cj)

-50 -(-50)

Red. Cost (∑Uiaij -cj) 2480(nonbasic)

30

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.12. Corn Production Budget

Constraint aij Shadow Price (Ui) Product (Uiaij)

Land Available 1 2680 2680

Corn Balance -120 24 -2880

Misc. Input Balance 125 1 125

Indirect Cost Sum (∑ Ui aij) -75

Less Objective Function (cj) -75 -(-75)

Reduced Cost(∑Uiaij -cj) 0(basic)

Table 17.13. Hog Production Budget

Constraint aij Shadow Price (Ui) Product (Uiaij)

Pork Balance -1000 0.5 -500

Corn Balance 20 24 480

Misc. Input Balance 20 1 20

Indirect Cost Sum (∑Uiaij) 0

Less Objective Function

(cj)

0 -(0)

Reduced Cost (∑Uiaij -cj) 0(basic)

31

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.14. Row Summing Example

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod Soyb. Prod Hogs RHS

Objective Func -1 2.5 6 0.5 -75 -50 MAX

Land Available 1 1 ≤ 600

Pork Balance 1 -150 ≤ 0

Soybean Bal 1 -50 ≤ 0

Corn Balance 1 -1200 20 ≤ 20

Misc. Inp. Bal. -1 125 50 20 ≤ 0

Table 17.15. Optimal Solution to Row Summing Example

Variable

Value

Reduced

Cost

Equation

Level

Shadow

Price

Buy Misc. Input 795,020 0 Land Available 0 3,100

Sell Corn 0 0.25 Pork Balance 0 0.5

Sell Soybeans 0 0 Soybean Balance 0 6.00

Sell Pork 5,400,150 0 Corn Balance 0 2.75

Produce Corn 600 0 Misc. Input Bal 0 1.00

Produce Soybeans 0 2,480.00

Produce Hogs 36,001 0

32

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.16. Row Sum of Pork Constraint

Variable aij Optimal Value (Xj*) Product (aijXj*)

Sell Pork 1 5,400,150 5,400,150

Produce Hogs -150 36,001 -5,400,150

Endogenous Sum (∑aij Xj*) 0

 Right Hand Side(bi) 0 0

Slack (bi-∑aij Xj*) 0

Table 17.17. Row Sum of Miscellaneous Input Constraint

Variable aij Optimal Value (Xj*) Product (aijXj*)

Buy Miscellaneous Inputs -1 795,020 -795,020

Produce Corn 125 600 75,000

Produce Soybeans 50 0 0

Produce Hogs 20 36,001 720,020

Endogenous Sum (∑aij Xj*) 0

 Right Hand Side(bi) 0 0

Slack (bi-∑aij Xj*) 0

33

copyright 1997 Bruce A. McCarl and Thomas H. Spreen

Table 17.18. Row Sum of Corn Balance Constraint

Variable aij Optimal Value (Xj*) Product (aijXj*)

Sell Corn 1 0 0

Produce Corn -1,200 600 -720,000

Produce Hogs 20 36,001 720,020

Endogenous Sum (∑aij Xj*) 20

 Right Hand Side(bi) 20 20

Slack (bi-∑aij Xj*) 0

