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CHAPTER XVII: FIXING IMPROPERLY WORKING MODELS 

 

Empirical models do not always yield acceptable solutions.  This chapter contains discussion of  

unacceptable solution conditions and techniques for diagnosing the causes of such conditions.   

17.1 Unacceptable Solution Conditions  

Four cases of improper solutions can arise.  First, a solver could fail exhibiting: a) a time, iteration, 

or resource limit; b) a lack of meaningful progress; or c) a report of numerical difficulties.  Second, 

a solver may halt identifying that the problem is infeasible.  Third, a solver may halt identifying 

that the problem is unbounded.  Fourth, the solver may yield an "optimal," but unacceptable 

solution.  

17.1.1 Solver Failure -- Causes and Prevention  

When solvers fail because of numerical difficulties or use an unrealistically large amount of 

resources to make little progress, the modeler is often in an awkward position.  However, several 

actions may alleviate the situation.   

One should first examine whether the model specification is proper.  The section on structural 

checking below gives some techniques for examining model structure.  In addition traditional 

input (commonly called MPS input) based solvers frequently fail because of improper coefficient 

location (although GAMS prevents some of these errors).  In particular, errors can arise in MPS 

coefficient placement or item naming resulting in more than one (duplicate) coefficient being 

defined for a single matrix location.  Given our concentration on the GAMS modeling system, 

procedures for finding duplicate coefficients will not be discussed.  Nevertheless, this is probably 

the most common reason why MPS input based solvers run out of time.    

The second reason for solver failure involves degeneracy induced cycling. Apparently, even the 

best solvers can become stuck or iterate excessively in the presence of massive degeneracy.  Our 

experience with such cases indicates one should use an a priori degeneracy resolution scheme as 

discussed below.  We have always observed reduced solution times with this modification. 

Thirdly, a solver may fail citing numerical difficulties, an ill-conditioned basis or a lack of 

progress.  Such events can be caused by model specification errors or more commonly poor 

scaling.  Often one needs to rescale the model to narrow the disparity between the magnitudes of 

the coefficients.  Scaling techniques are discussed below.  

All of the preventative techniques for avoiding solver failures can be used before solving a model.  

Modelers should check structure and consider scaling before attempting model solutions.  

However, degeneracy resolution should not usually be employed until a problem is identified. 

17.1.2 Unbounded or Infeasible Solutions  

Often the applied modeler finds the solver has stopped, indicating that the model is infeasible or 

unbounded.  This situation, often marks the beginning of a difficult exercise directed toward 
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finding the cause of the infeasibility or unboundedness, particularly when dealing with large 

models.  There are several techniques one can use when this occurs.  The first involves structural 

checking to find obvious model formulation defects.  The second and third techniques involve the 

use of artificial variables and large upper bounds to find difficulties.  Finally one could use the 

techniques called budgeting and row summing.  

17.1.3 Unsatisfactory Optimal Solutions  

Unfortunately, optimal solutions can be unrealistic.  Discovering an optimal solution means the 

problem has a mathematically consistent optimum.  However, mathematical consistency does not 

necessarily imply real world consistency (Heady and Candler).  Usually, unrealistic solutions may 

be caused by improper problem specification or assumption violations.  Cases arise where the 

model solution is improper because of: a) omitted constraints or variables; b) errors in coefficient 

estimation; c) algebraic errors; or d) coefficient placement errors.  

Basically, a model may be judged improper because of incorrect valuation or allocation results.  

Valuation difficulties arise from the reduced cost or shadow price information, such items take on 

values when primal reduced costs are formed.  Allocation difficulties arise when the slack or 

decision variable values are unrealistic.  The values of these items are formed through the 

constraint interactions.  Thus, to diagnose the cause of the unrealistic solution, one investigates 

either the reduced costs associated with the nonbasic primal variables or the calculations inherent 

in the primal constraints.  Two techniques are presented below, one for the investigation of 

reduced costs, which we call "budgeting"; and another for the reconstruction of the constraint 

calculations, which we call "row summing."  

17.2 Techniques for Diagnosing Improper Models  
Now suppose we turn our attention to the techniques one might use to alleviate model solution 

difficulties.  Table 17.1 presents an array of the possible problems and an indication of the 

techniques one might use to diagnose such problems. 

17.2.1 Simple Structural Checking  

There are some simple yet powerful techniques for checking LP formulations, regardless of their 

presentation method.  These fall into two categories: one numerical and one analytical.  

17.2.1.1 Analytical Checking  
In the case of analytical techniques, consider the problem:  

j allfor 0X           

m allfor gXf

n allfor dXe

i allfor bXas.t.

XcMax
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Certain values of these parameters can cause the model to: 1) be infeasible, 2) contain a set of 

variables that must be zero, 3) contain redundant constraints, and 4) yield an unbounded solution, 

or 5) contain variables that are always unattractive.  Table 17.2 presents a set of cases where model 

structures will guarantee these properties.  Suppose we elaborate on one case which leads to each 

of the five properties. 

A model formulation can cause infeasibility.  Suppose in the first constraint, bi, is less than zero 

and all the aij's in that particular constraint are nonnegative.  Obviously this constraint causes the 

model to be infeasible, since it is impossible for the sum of nonnegative numbers to be less than or 

equal to a negative number.  

Second, it is possible that the constraints require that certain variables be zero.  Consider what 

happens if in the second constraint the right hand side (dn) equals to zero and all enj's are greater 

than or equal to zero, then every variable with a nonzero coefficient in that constraint must be zero.  

There are also cases where the model possesses redundant constraints.  Suppose bi is positive, but 

all aij's are negative or zero; then, clearly, this constraint will be redundant as the sum of negative 

numbers will always be less than or equal to a positive number.   

Checks can also be made for whether the problem is unbounded or contains variables which will 

never come into the solution.  Consider an activity with a positive objective function coefficient 

which has all nonzero aij's negative, all zero enj's and all nonzero fmj's positive.  Clearly, then, this 

variable contributes revenue but relaxes all constraints.  This will be unbounded regardless of the 

numerical values.  Further, variables may be specified which will never come into the solution.  

For example, this is true when cj is less than 0, all nonzero aij's are greater than 0, enj's zero, and 

nonzero fmj's negative. 

These particular structural checks allow one to examine the algebraic formulation or its numerical 

counterpart.  Unfortunately, it is not possible to make simple statements when the constraint 

coefficients are of mixed sign.  In such cases, one will have to resort to numerical checking.  All of 

the procedures above have been automated in GAMSCHCK although they can be programmed in 

GAMS (See McCarl, 1977).  

17.2.1.2 Numerical Model Analysis  
Another model analysis methodology involves numerical investigation of the equations and 

variables.  Here, one prints out the equations of a model (in GAMS by using the OPTION 

LIMROW and LIMCOL command) and mentally fixes variables at certain levels, and then 

examines the relationship of these variables with other variables by examining the equations.  

Examples of this are given in the joint products problem above.  Numerical model analysis can 

also be carried out by making sure that units are proper, using the homogeneity of units tests. 

Another numerical technique involves use of a "PICTURE" with which coefficient placement and 

signs can be checked.  GAMS does not contain PICTURE facilities, so we do not discuss the topic 

here, although one is contained in GAMSCHK (see McCarl, 1977).     
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17.2.2 A Priori Degeneracy Resolution  

Degeneracy can cause solvers to cycle endlessly making little or no progress.  Solvers like MINOS 

( Murtaugh and Saunders, 1983) on occasion give messages like "terminating since no progress 

made in last 1000 iterations" or "Sorry fellows we seem to be stuck."  Our experience with such 

cases indicates one should use an a priori degeneracy resolution scheme adding small numbers to 

the right hand sides, especially to those constraints which start out with zero or identical right hand 

sides. The magnitude of the small numbers should be specified so that they are not the same for all 

rows and so that they do not materially affect the solution.  Thus, they might be random or 

systematically chosen numbers of the order 10-3 or 10-4  (although they can be larger or smaller 

depending on the scaling and purpose of the constraints as in McCarl, 1977).  We have always 

observed reduced solution times with this modification.  OSL automatically invokes such a 

procedure. 

17.2.3 Altering Units of Constraints and Variables: Scaling  

Scaling is done automatically in a number of algorithms including MINOS which is used in 

GAMS.  However, automatic scaling is not always successful.  Modelers are virtually always more 

effective in scaling (Orchard-Hayes).  This section explores scaling procedures, discussing the 

effects on resulting optimal solutions.   

Altering the units of constraints and variables improves the numerical accuracy of computer 

algorithms and can reduce solution time.  Scaling is needed when the disparity of matrix 

coefficient magnitudes is large.  An appropriate rule of thumb is, one should scale when the matrix 

coefficient magnitudes differ in magnitude by more than 103 or 104.  In other words, scaling is 

needed if the aij coefficient with the largest absolute value divided by the coefficient with the 

smallest nonzero absolute value exceeds 10000.  One achieves scaling by altering the formulation 

so as to convert: a) the objective function to aggregate units (i.e., thousands of dollars rather than 

dollars), b) constraints to thousands of units rather than units (i.e., one might alter a row from 

pounds to tons), or c) variables into thousands of units (e.g., transport of tons rather than pounds).   

17.2.3.1 Scaling-The Basic Procedure  
 Given the LP problem 

0X     ,X    

bXaXa

bXaXas.t.

XcXcMax

21

2222121

1212111

2211









 

Suppose one wished to change the units of a variable (for example, from pounds to thousand 

pounds).  The homogeneity of units test requires like denominators in a column.  This implies 

every coefficient under that variable needs to be multiplied by a scaling factor which equals the 

number of old variable units in the new unit; i.e., if Xj is in old units and X'j is to be in a new unit, 

with aij and a'ij being the associated units. 
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Xj'   =  Xj/ SCj;   

where SCj  equals the scaling coefficient giving the new units over the old units 

aij'  =  aij  /   (SCj).  

 The scaling procedure can be demonstrated by multiplying and dividing each entry associated 

with the variable by the scaling factor.  Suppose we scale X1 using  SC1 

0    X      X    

b   XaSC / X a SC

b  XaSC / X a SCs.t.

XcSC / X c SCMax

21

222211211

121211111

221111









 

or substituting a new variable X1'  =  X1/SC1  we get 

0    X      X    

b   XaX a SC

b  XaX a SCs.t.

XcX c SCMax

21

2222

'

1211

1212

'

1111
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'
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
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



 

Variable scaling alters the magnitude of the solution values for the variables and their reduced cost 

as we will prove later. 

Scaling can also be done on the constraints.  When scaling constraints; e.g., transforming their 

units from hours to thousands of hours, every constraint coefficient is divided by the scaling factor 

(SR)  

as follows:  

0           X            ,X           

b          Xa        Xa        

SR / b   X SR / aX SR / a

Xc          Xc           Max

21

2222121

1212111

2211









 

where SR is the number of old units in a new unit and must be positive.  Constraint scaling affects 

:1) the slack variable solution value, which is divided by the scaling factor; 2) the reduced cost for 

that slack, which is multiplied by the scaling factor; and 3) the shadow price, which is multiplied 

by the scaling factor. 

The way scaling factors are utilized may be motivated by reference to the homogeneity of units 

section.  The coefficients associated with any variable are homogeneous in terms of their 

denominator units.  Thus, when a variable is scaled, one multiplies all coefficients by a scaling 

factor (the old unit over the new unit) changing the denominator of the associated coefficients.  

Constraints, however, possess homogeneity of numerator units so, in scaling, we divide through by 
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the new unit divided by the old unit. Thus, when changing a constraint from pounds to tons one 

divides through by 2000 (lbs/tons).   

Two other types of scaling are also relevant in LP problems.  Suppose that the right hand sides are 

scaled, i.e., scaled from single units of resources available to thousands of units of resources 

available.  Then one would modify the model as follows: 

 

0X     ,X     

SH / bXaXa

SH / bXaXas.t.

XcXcMax

21

2222121

1212111

2211









 

The net effects of this alteration will be that the optimal value of every decision variable and slack 

would be divided by the scaling factor, as would the optimal objective function value.  The shadow 

prices and reduced costs would be unchanged. 

One may also scale the objective function coefficients by dividing every objective function 

coefficient through by a uniform constant (SO).  

0X          ,X           

bXa      Xa      

bXa      X a      

X SO / cX SO / cMax

21

2222121

1212111

2211









 

 

Under these circumstances, the optimal decision variables and slack solutions will be unchanged; 

but both the shadow prices and reduced costs will be divided by the objective function scaling 

factor as will be the optimal objective function value.  

Scaling may be done in GAMS.  Namely putting in the statement variablename.scale = 1000  

would cause all variables in the named variable block to be scaled by 1000 with the solution 

automatically being readjusted.  Similarly equationname.scale = 1000 will scale all constraints in a 

block.  This must be coupled with the command Modelname.scaleopt=1. 

17.2.3.2 Mathematical Investigation of Scaling  
In this section an investigation will be carried out on the effects of scaling using the matrix algebra 

optimality conditions for a linear program.  Readers not interested in such rigor may wish to skip to 

the summary and empirical example.  

The optimality conditions for the LP problem are given by 

CB B-1 aj - cj ≤ 0  for all j 

B-1 b ≤ 0. 
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Given such a solution the optimal decision variables are given by  

XB = B-1 b, 

the shadow prices by 

U = CB B-1  

and the reduced costs by 

CB B-1 aj - cj, 

and the optimal Z value is  

Z = CB B-1 b 

 In our investigation, we examine the impact of scaling on each of these items. 

17.2.3.2.1 Variable Scaling  

When a variable is scaled, the problem becomes: 

0    X      X    

b   XaX a SC

b  XaX a SCs.t.

XcX c SCMax

21

2222
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1211
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'
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'
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
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
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where X1 equals SCX'
1 and SC is a positive scalar. 

The effect on the solution depends on whether the scaled variable is basic or nonbasic.  First, 

consider nonbasic variables.  If a nonbasic variable is scaled, then the scaling operation does not 

affect the basis inverse.  Thus, the only thing that needs to be investigated is whether or not scaling 

the nonbasic variable renders it attractive to bring into the basis.  This involves an investigation of 

the reduced cost after scaling.  Constructing the reduced cost for this particular variable  

CB B-1  SC  aj -  SC  cj = SC  (CB B-1 aj - cj)  

we find that the reduced cost after scaling (new) equals the reduced cost before scaling (old) times 

the scaling factor.  Thus, we have the old reduced cost multiplied by the scaling constant and under 

positive SC the before scaling solution remains optimal.  The only alteration introduced by scaling 

a nonbasic variable is that its reduced cost is multiplied by the scaling factor.  This can be 

motivated practically.  If it costs $50 to enter one acre of a crop not being grown into solution, it 

would logically cost $50,000 to bring in a thousand acres of that crop.  

Now suppose a basic variable is scaled.  In this case, the basis inverse is altered.  Suppose that the 

basis matrix before scaling is B, while the matrix of technical coefficients before scaling is A.   The 

new matrices (B*,A*) can be expressed as the old matrices (B,A) post-multiplied by matrices KA 

and KB which are modified identity matrices.  Assuming the nth column of B is being scaled, then 

the element on the diagonal in the nth column of the KB matrix will be the scaling factor.  Thus,  
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A* = AKA          B* = BKB 

where 































1...0...000

.....................

0...SC...000

.....................

0...0...100

0...0...010

0...0...001

K B

 

 

The KA matrix would be formed similarly with the column in the A matrix being scaled identifying 

the diagonal element where SC appears. 

We may derive a relationship between the basis inverses before and after scaling. Matrix algebra 

theory shows that  

(B*)-1 = (BKB)-1 = KB
-1 B-1  

We should also note that the scaled objective function coefficients of the basic variables are 

post-multiplied by KB, i.e.,            

CB = CB KB 

Now let us look at the optimality criteria for non-basic variables         

.c - a B C *

j

*

j

1-**

B  

The reduced cost after scaling becomes 

0  c - a BC

c - a KKCc - a BC

jj

1-

B

jj

-1

BBB

*

j

*

j

1-**

B





 

since KBK-1 = I.  Thus, the reduced costs after scaling equal the reduced costs before scaling.  Thus, 

we have proven that the solution will remain optimal.  

We now need to turn our attention to whether or not the basic variables remain nonnegative.  The 

values of the basic variables at optimality are given by B*-1b.  Substituting in our relationships, we 

obtain  

.X K    b B K  b B  X B

-1

B

-1-1

B

1-**

B   

The scaled solution equals KB
-1 times the unscaled solution.  The inverse of KB is an identity-like 

matrix with one over the scaling factor on the diagonal in the position where the scaled variable 
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enters the basis.   
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The KB 
-1 XB multiplication yields the vector        


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

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






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
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SC / X
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Thus, scaling reduces the magnitude of the particular basic variable being scaled, while all other 

variables are unaffected.   

 We may also investigate the objective function consequences.  The optimal objective 

function value of the scaled problem is  

 Z bBC    bBKK C  bBC  Z -1

B

1-*-1

BB

*

B

1-**

B

*   

Clearly, then, the objective function value after the change equals the objective function value 

before the change.  All in all, column scaling leaves the problem with the same qualitative answer.  

The solution value of the particular variable being scaled and its reduced cost are altered by the 

scaling factor.  

17.2.3.2.2 Effects of Constraint Scaling  

When one scales a constraint, the resultant problem appears as 

 

0X            ,X             

bXa        Xa         

SR / bX SR / aX SR / a

Xc         Xc         Max
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2222121
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
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or 

,

0X    0X   

bXAs.t.orRbRAXs.t.

CXMaxCXMax
**





 

where R is a scaling matrix of the form 
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Further, the new basis (B*) is related to the old basis as follows 

B* = RB 

and the basis inverse is the old basis inverse multiplied by the inverse of R.  

B*-1 = B-1 R-1  

Again, R-1 is an identity-like matrix quality. 


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
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





1...0...000
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.....................
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0...0...010

0...0...001

R 1-

 

Now let us turn our attention to the effects of scaling a constraint.  We will derive the results 

assuming the slack variable is not in the basis.  The reduced cost criteria for the scaled problem is 

given by 

jj

-1

Bjj

-1-1

B

*

j

*

j

1-**

B c - aBC    c - Ra R BC    c - a BC 
 

Thus, the optimality conditions are the same as before scaling and the solution remains optimal 

with unchanged reduced costs.  We now may investigate the variable solution values. For the 
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scaled problem, the solution values are  

X*
B = B*-1 b*  =  B-1 R-1 R b = B-1 b  

which shows that the values of the basic variables are unaffected.  The objective function is also 

unchanged.  

Thus, the optimality and feasibility of the basis remain entirely unaffected. What then does 

change?  The shadow prices after scaling are  

U = CB B-1 R-1. 

Given the form of R-1 from above, the shadow prices are identical to the shadow prices before 

scaling 

                                                          Ui = (CB B-1)i  

for all rows but the particular row being scaled.  For that row, the shadow price is multiplied by the  

scaling factor  

Ui = (CB B-1)i RS 

Finally we should note that when a slack variable is in the basis, then constraint scaling simply 

changes the magnitude of the optimal slack variable value by dividing it by the scaling factor. 

17.2.3.2.3 Objective Function and Right Hand Side Scaling  
If the objective function coefficients are uniformly divided by a constant, the values of the solution 

variables (B-1 b) are unaffected.  However,  the magnitudes of the shadow prices (CB B-1), the 

optimal objective function value (CB B-1b), and the reduced costs (CB B-1aj - cj) are affected.  In all 

of  these cases, these items would be uniformly divided by the objective function scaling factor.  A 

similar observation can be made regarding scaling the right hand side.  The right hand side 

determines only the objective function value  (CB B-1 b) and the solution value of the basic 

variables (B-1 b).  Dividing all right hand sides by a constant would divide the objective function 

and all the optimal variable values by the same constant.  

17.2.3.4 Summary  
Scaling alters coefficient magnitudes within the matrix and the resultant magnitude of selected 

items in the solution. Consider the LP problem  

0X 

bAXs.t.

CXMax





 

Suppose a set of positive (all scaling factors must be positive) scaling factors will be applied to the 

LP model.  The scaling factors are a) COLSCALj for the jth variable - a factor multiplying every 

coefficient under that variable,  b) ROWSCALi for the ith constraint - a factor dividing every 

coefficient in that constraint, c) OBJSCAL for the objective function - a factor dividing every 

coefficient in the objective row and d) RHSSCAL for the right hand side - a factor dividing every 

right hand side value. The parameters of the model after scaling are: 
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RHSSCAL *ROWSCAL

1
*bb

ROWSCAL

COLSCAL
*aa

OBJSCAL

COLSAL
*cc

i

i

'

i

i

j

ij

'

ij

j

j

'

j







 

where the / denotes the new coefficients. The relationship between solution items before and after 

scaling is given in Table 17.3.  Thus, if a particular variable j is scaled by 1000 and constraint i is 

scaled by a 1000, the aij value is numerically unchanged.  However, if variable j is scaled by 1000 

and constraint i was scaled by 100, then the value of the aij coefficient is multiplied by 10.  

Thus, for example, if an optimal variable value before scaling was 6 and the right hand side is 

multiplied by 100 while the coefficients of that variable are multiplied by .02 then the resultant 

value after scaling would be 3.  

Finally, we must emphasize that the only proper way of scaling is to operate on all coefficients for 

each variable, right hand side and objective function in the same manner.  One cannot selectively 

scale selected coefficients.  The interaction of the various scaling factors can make it look like one 

is only scaling selected coefficients, as will be demonstrated in the empirical example below.  But 

this is not the case, consistency must be maintained. 

17.2.3.5 Empirical Example of Scaling  
 The previous discussion deals with the implications of changes in constraint, variable, right 

hand side and objective function units. The reader, however, should note that gains in terms of 

numerical stability may arise only when several items are simultaneously scaled.  This is 

illustrated in the example.   Consider the following problem 

0XXXX

3000045X50X

6000002000X1500X

050X -4X     5X         

08000X-10000X- Xs.t.

500X-400X -X500    XMax

4321

32

32

432

321

4321













 

where: 

X1  is the sale of nibbles in pounds.  It returns $1 of profit per unit and removes one pound 

from the nibble balance row.  

X2 is the hours of nibble production via process 1. One hour's worth of production uses $500 

worth of direct cost, 5 units of gribbles, 1500 hibbles and 50 hours of labor.  As a result, 

one gets 10,000 nibbles.  

X3  is the hours of nibble production using process 2 . Here 8000 nibbles are produced at a 

direct cost of $400 with four pounds of gribbles used, 2,000 hibbles, and 45 hours of labor 

produced.  
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X4 is the number of 50 pound sacks of gribbles purchased, costing $5000 and providing 50 

pounds of gribbles into the gribble balance row.  

The right hand side shows an endowment of 600,000 hibbles and 30,000 hours of labor. The 

objective function is in the units of dollars and represents profit.  The first constraint balances the 

units of nibbles produced with those sold.  The second constraint balances the units of gribbles 

used with those purchased.  The third constraint limits the number of hibbles used to the fixed  

endowment.  The fourth constraint limits the hours of labor used to the fixed endowment. 

Non-negativity of all variables is assumed.  

This problem is not well-scaled and its scaling characteristics will be altered.  (This will be done to 

illustrate scaling - the problem is scaled satisfactorily for any solver).  At solution, the objective 

function equals 3,600,000 and the variables values (with their units) are shown in Table 17.4. 

Now suppose we scale the first constraint by dividing through by 1000.  Simultaneously, let us 

scale the third constraint by dividing through by 100, and divide the fourth constraint by 10.  This 

changes the units of these constraints such that the first constraint is in thousands of nibbles, the 

third constraint is  

hundreds of hibbles, and the fourth constraint is in 10's of labor hours.  The new model resulting 

from the scaling is 

0X,XXX

30004.5X5X

600020X15X  

0X   4X   5X     

08X    -10X   -X       

100X-400X-500X-1000XMax

4321

32

32

432

321

4321











 

According to Table 17.3 the optimal shadow price on constraint 1 will be the corresponding 

prescaled solution value multiplied by 1,000, the shadow price on constraint 3 is multiplied by 100 

and the shadow price for constraint 4 is increased by a factor of 10. The primal solution variables 

are unchanged as well as the value of the objective function.  The solution to this model is shown in 

Table 17.5.  The impact of scaling on the optimal solution is as forecast.    

The optimal objective function value equals 1.8 million.  Note, we really have not gained anything 

with scaling as there is the same disparity of orders of magnitudes within the matrix as before.  

Further scaling will alter this.  Suppose we choose to rescale X1 into 1000's of pounds and X4 to 

pounds.  This involves multiplying all coefficients in the X1 column by 1000 and all coefficients 

associated with X4 by .02. 

 The formulation subsequent to this scaling is  
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0X,X,X,X

30004.5X5X

600020X15X

0X-4X5X

08X-10X-Xs.t.

100X-400X-500X-1000XMax

4321

32

32

432

321

4321











 

The net effect of this scaling operation causes the optimal solution X1 value to be divided by 1000, 

and X4 to be divided by .02.  The resultant solution is shown in Table 17.6.   

The solution again corresponds to predictions.  The optimal value of the objective function equals 

1.8 million.  This particular problem is now fairly well scaled; however, for illustrative purposes 

suppose that we scale the objective function and right hand side.  First, suppose we divide the 

objective function by 1000 and the right hand side coefficients by 100.   The resulting LP problem 

is  

0X,X,X,X

304.5X5X

6020X15X

0X-4X5X

08X-10X-Xs.t.

0.1X-0.4X-0.5X-XMax

4321

32

32

432

321

4321











 

This should result in a solution with the shadow prices and reduced costs divided through by 1000, 

the objective function by 100,000 and the variable solution values by 100.  The optimal solution is 

shown in Table 17.7.  The optimal value of the objective function equals 18.  This solution can 

easily be shown to be equivalent to the solution of the unscaled problem, Table 17.4, through the 

scaling relations in Table 17.3.   

Summarizing, scaling allows one to narrow the discrepancies within the magnitudes of the 

numbers within the matrix.  One can, given the scaling factors, derive the original unscaled 

solution from the scaled solution. Practitioners should use scaling to decrease disparities in order 

of magnitude which will severally improve the performance of the solution algorithm.  

17.2.4 The Use of Artificial Variables to Diagnose Infeasibility  
Often the applied modeler finds the solver has stopped indicating that the model is infeasible.  This 

situation, particularly when dealing with large models, often marks the beginning of a difficult 

exercise.  There are several ways one can proceed.  The first technique involves use of the above 

simple structural checking procedures to insure that the rows with minimum requirements have 

some way of satisfying those minimum requirements.  Also, if available, a "picture" also can be 

used to find misplaced coefficients, misspecified or duplicate coefficients.  However, suppose that 

all the simple mechanical checks are examined and the model is still infeasible or unbounded, then 

what?  

There is an empirical approach involving the use of artificial variables.  As discussed in Chapter 2, 

artificial variables permit infeasible solutions to appear feasible. Artificial variables have a large 
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negative objective function coefficient (when the objective is to maximize) and positive in a single 

constraint. Artificial variables only remain in the solution when the restrictions with which they 

are associated cannot be met, as occurs in misspecified LP models.  For example, a model might 

contain a minimum requirement of 10,000 units production whereas the labor resource availability 

constraint permits fewer units. This problem may arise if: a) the 10,000 unit requirement is too 

large and has been improperly entered, b) the labor endowment is erroneously too small, c) the 

labor requirements for production have been overestimated, or d) the contribution to the minimum 

requirement constraint is too small.  

The last three cases arise when the minimum requirement level is correct, but the infeasibility is 

caused by misspecifications in other coefficients.  Thus, infeasibilities arise not only because of 

improperly specified minimum requirement rows, but also because of errors in other coefficients.  

The question is "how can one discover the cause of the infeasibility?"  This can be done by adding 

artificial variables to the model formulation.  The inclusion of artificial variables permits all 

models to have feasible optimal solutions regardless of whether the "real" constraints are satisfied.  

Infeasible solutions exhibit nonzero artificial variables.  Nonzero artificial variables will cause a 

large negative objective function value and large shadow prices since some CB's in the CB B-1 

computations are large.  Specifically, constraints which exhibit large shadow prices are those 

involved with the infeasibility.  The constraints not causing the infeasibility will have unaffected 

shadow prices.  Thus, the imposition of artificial variables allows one to identify which constraints 

are nominally causing the infeasibility.  We do not argue that such information cannot be found in 

an ordinary infeasible solution; however, it is more difficult to interpret.  Ordinarily, infeasible 

solver solutions are detected by phase 1 of the simplex algorithm wherein the shadow prices give 

the marginal contribution of a change in the right hand side to the sum of the infeasibilities. 

To illustrate the use of artificial variables in the context of an infeasible model consider the 

following example: 

0X,X  

20X  

65X50X

50XX  s.t.

50X50XMax

21

1

21

21

21











 

This problem is infeasible due to the interaction of the second and third constraints.  Suppose that 

an error was made and the number 50 which is specified as the requirement of X1 for the second 

resource should have been 0.50.  The third constraint has a minimum requirement, thus an artificial 

variable is included. 

20A          X

65X50X

50XX

10000A-50X50XMax

1

21

21

21









 

Here the artificial variable A is entered with a large negative number in the objective function and 

a plus one in the third constraint, thus permitting a minimum requirement to be satisfied.  The 
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solution to the augmented problem is shown in Table 17.8.  The value of the objective function 

is -186,935.  In this solution, the artificial variable A is nonzero with the second and third con-

straints binding.  The shadow prices on the second and third constraints reflect the influence of the 

artificial variable.  Thus, the modeler would receive signals that there was something wrong in the 

interaction of the second and third constraints.  Hopefully then the data error would be found.   

In summary, artificial variables are useful in finding the source of infeasibility.  Artificials are only 

needed in constraints that are not satisfied when the decision variables are zero.  Their use allows 

the model user to find infeasibilities by narrowing attention to the constraints which are the under-

lying causes of the infeasible solution.  We also feel they should be used where infeasibilities can 

arise in models which: a) continually have their data altered; and b) are used by people other than 

the modeler (see McCarl et al.). 

17.2.5 Use Unrealistically Large Upper Bounds to Find Causes of Unboundedness  

LP problems may also yield unbounded solutions.  One can again use structural checking or a 

picture to find the problem.  However, if these checks fail, imposition of large upper bounds in an 

unbounded model on all variables which exhibit desirable objective function coefficients will 

prevent unboundedness, and will cause the variables causing unboundedness to take on large 

solution values.  Investigation of the variables which take on such large values will allow the 

modeler to find the cause of the unboundedness.  Consider a LP problem which has large upper 

bounds imposed.  

0X

MX 

bAXs.t.

cXMax







 

Here the equations X ≤ M are upper bound constraints limiting the decision variables to a large 

number (e.g., the constraint X1 ≤ 100,000 has been imposed on the model).  Given decision 

variables, M would be set so it was unrealistically large (i.e., 1,000 times larger than the largest 

expected X value). Why would anyone want to impose such bounds?  Consider the following 

simple example. 

0X,X,X

5X

0X-X  

XX-3XMax

321

3

21

321









 

This problem is unbounded: the model can purchase X2, using it to produce X1 at a net operating 

profit of $2 without limit.  However, the imposition of the constraint X1 ≤ 100,000 yields the 

solution X1 = X2 = 100,000, X3 = 50.  Thus, if the model user saw this solution and felt that X1 = 

100,000 was unrealistically large then this would show that there is something wrong within the 

model.  It also shows that X1 and X2 are the items involved with the unboundedness while X3 is not 

a factor. 

The use of large upper bounds precludes the possibility of an unbounded solution but causes the 

objective function and some of the variables to take on unrealistically large values. Subsequently, 
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one can trace the cause of the unboundedness by examining the set of variables which are 

unrealistically large.  This is important since ordinarily LP solvers are implemented so that when 

they discover an unbounded solution they automatically stop.  This leaves the user without much 

information as to the cause of the unboundedness.   

Decision modelers may wish to upper bound the sum of a number of variables rather than each and 

every variable.  This could be done by using the following:        

j allfor 0X   

MX

i allfor bXas.t.

XcMax

j

j
j

i
j

jij

j
jj









 

Here one specifies that the sum of all variables is less than or equal to an unrealistically large 

number. 

17.2.6 Budgeting  

Yet another model analysis technique, particularity when dealing with unrealistic optimal 

solutions, involves Budgeting.  Budgeting herein refers to the reconstruction and examination of 

reduced cost and shadow price information.  The procedure is best illustrated through example.  

Consider the model shown in Table 17.9.  

This model contains activities for buying miscellaneous inputs; selling corn, soybeans, and pork; 

and producing corn, soybeans, and hogs.  The model is maximized subject to a resource constraint 

on land, along with supply-demand balances on pork, soybeans, corn, and miscellaneous inputs.  

The miscellaneous input item is specified in dollars and therefore enters the objective function at a 

per unit cost of $1 while supplying a dollar's worth of miscellaneous inputs.  Corn is sold for $2.50 

per unit, soybeans $6 per unit, and pork $.50 per unit.  Corn production incurs $75 in direct 

production costs and $125 in miscellaneous inputs while using one acre of land and yielding 120 

bushels of corn.  Soybean production costs $50 in direct production costs and another $50 in 

miscellaneous inputs while using an acre of land and yielding 50 bushels of soybeans.  Hog 

production has no direct costs, uses $20 in miscellaneous inputs, and requires 20 bushels of corn.  

An unrealistically large yield in the hog activity has been entered (1000 pounds per hog).  This 

example "error" will be sought by the budgeting technique.  

The optimum solution to this model is shown in Table 17.10.  The optimal value of the objective 

function is $1,508,000.  This solution includes several symptoms that there is something wrong.  

For example, 3,600,000 pounds of pork are sold, the reduced cost on raising soybeans is $2,480 an 

acre, the shadow price on land is $2,680 and the shadow price of corn is $24 a bushel.  Budgeting 

investigates the shadow prices and reduced costs in an effort to discover model misspecifications.  

The matrix and summation formula for reduced costs is      

  
i

jiji

1-*

Bjj

1-*

B 0,  c - a BC    c - aBC
 

which will be greater than or equal to zero for all nonbasic variables and exactly equal to zero for 

basic variables.  Utilizing the fact that the CB B-1 are the shadow prices, then the equation becomes  
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 
i

jiji 0  c - a U
 

where Ui is the shadow price associated with row i, the aij's are the technical coefficients of the 

original model, and the cj is the original objective function coefficients associated with Xj.  

Budgeting involves construction of an extensive version of the reduced cost calculations which in 

turn are examined for plausibility.  The variable budgeted first could be chosen because:  a) it is 

nonbasic when intuition suggests it should be basic; b) it has an unrealistically high reduced cost; 

or  c) it uses a resource which appears to be improperly valued. In the example, suppose we budget 

soybean production because of its high reduced cost.  To budget, write a row for each nonzero 

coefficient (aij) under the chosen variable, with associated shadow prices (Ui) and aijUi the product, 

then finally subtracting cost.  The budget for soybean production is shown in Table 17.11.  

Mechanically the budget examines the cost of resource usage in those rows for which the activity 

uses resources and values (shadow price) of these resources.  In turn the objective function value of 

the variable is considered and the reduced costs reconstructed.  The soybean production variable 

has non-zero coefficients in the land, soybean production, and miscellaneous input constraints.  

The shadow price for land is $2,680.  Thus, one acre of soybeans uses $2,680 worth of land and 

yields 50 bushels, each selling for $6. Also, 50 units of miscellaneous inputs are used which, when 

valued at $1, cost $50.  Summing these terms, the marginal contribution of soybean production, 

ignoring its direct costs, is $2,430.  Its direct cost (cj=50) is then subtracted yielding a $2,480 

reduced cost.  One may conclude that, the $2,480 reduced cost is caused by the $2,680 shadow 

price on land.  The question then becomes why is land this valuable. 

Shadow prices are derived from setting the reduced costs of basic variables to zero.  Thus, the high 

land shadow price must arise from the reduced costs of some basic variable which utilizes land.  

The only land using basic variable is corn production.  We then budget the corn production 

variable (Table 17.12).  Note that while one acre of corn production uses $2,680 of land, it receives 

$2,880 from the value of the corn sold.  Here, the reason for the $2,680 cost of land is the $2,880 

value of the corn.  Institutional knowledge indicates the 120 bushels per acre corn yield is 

reasonable, but the $24 corn shadow price per bushel is not.  Thus, the question becomes, "Why is 

the corn shadow price so high?" Again, this will be determined by a basic variable which utilizes 

corn.  The only basic cornusing variable is hog production.  The budget for hog production is 

shown in Table 17.13.  These computations show that zero reduced cost for this activity requires 

that 20 bushels of corn be valued at $24/unit.  The cause of the $500/bushel value for corn is an 

unrealistic value of pork produced ($500). The erroneous 1000 pound coefficient for pork 

production per hog would then be discovered.  A revised value of the pork yield per hog would 

alter the model, making the solution more realistic.  

The budgeting technique is useful in a number of settings.  Through its use, one may discover why 

variables are nonbasic when they should be basic.  The soybean production variable budget 

provides such an example.  Budgeting, in such a case, may discover difficulties in the particular 

variable being budgeted or in shadow prices.  

Budgeting may also be used to discover why particular activities are basic when modeler intuition 

suggests they should be nonbasic.  For example, by tracing out the costs and returns to corn as 

opposed to soybean production to see what the major differences that lead to corn being profitable 

while soybeans are not.  
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The third use of budgeting involves discovering the causes of improper shadow prices.  Shadow 

prices arise from a residual accounting framework where, after the fixed revenues and costs are 

considered, the residual income is attributed to the unpriced resources.  

Budgeting can also be used to deal with infeasible solutions from Phase I of a Phase I/Phase II 

simplex algorithm.  Phase I of such algorithms minimizes the sum of infeasibilities.  Thus, all of 

the objective function coefficients of the decision variables in the model are set to zero.  The phase 

I shadow prices refer to the amount by which the sum of the infeasibilities will be reduced by a 

change in the right hand sides.  Budgeting then can be done to trace shadow price origins and to see 

why certain variables do not come into solution.  Solutions containing artificial variables may also 

be budgeted.  

17.2.7 Row Summing  

Model solutions also may be analyzed by examination of the primal allocation results.  In the 

budgeting example problem, one could have examined the reasons for the sale of 3.6 million 

pounds of pork.  This can be done through a procedure we call row summing.  This is illustrated 

through a slightly different, but related, example Table 17.14.  

Compared to the model shown in Table 17.9, the pork production coefficient has been altered 

to -150, while the corn yield per unit has been changed to an incorrect value of -1200 -- the error.  

We have also introduced a RHS of 20 on the corn balance equation.  The solution to this model is 

shown in Table 17.15.  The optimal value of the objective function is $1,860,055.  Here 5.4 million 

pounds of pork are sold which one would probably judge to be unrealistically high.  Further, there 

are more than 36,000 hogs on the farm.  

A row sum is simply a detailed breakdown of a constraint: each variable appearing in that 

constraint, its corresponding coefficient (aij) and the product aijXj.  The products are then summed, 

and subtracted from the right hand side and the slack variable formed.  The use of row summing in 

our example begins with the pork sales constraint to see if 5.4 million lbs. is reasonable (Table 

17.16.).  

The pork constraint contains the variables sell pork and hog production.  The sell pork variable 

uses one pound of pork per unit, while the hog production variable yields 150 pounds of pork per 

unit.  The second column of Table 17.15 contains the optimal variable values.  In the third column 

we write the product of the variable value and its aij.  The products are summed to give total 

endogenous use which in this case equals zero.  We then enter the right hand side and subtract it to 

determine the value of the slack variable.  All these items in this case are zero.  Given institutional 

knowledge, one would conclude the error has not yet been found as the 150 lbs. of pork per hog is 

reasonable, and all pork produced is sold.  However, one would wonder if a production level of 

36,001 hogs is reasonable. The next step is to examine the resources used by hog production.  For 

illustrative purposes, we begin with the miscellaneous input supply-demand balance.  The row 

sum for this constraint is shown in Table 17.17.  

There are four entries in the constraint involving both basic and nonbasic variables.  The row sum 

does not reveal anything terribly unrealistic except the large amount of activity from the hog 

production variable. The basic question is yet to be resolved.  

We next investigate the corn supply-demand balance.  The row sum computations for this 

constraint are shown in Table 17.18.  In this case the constraint has a non-zero right hand side; 
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thus, the endogenous sum is 20 which equals the right hand side leaving the slack variable zero.  

We find the 36,001 hogs require 720,020 bushels of corn, and the reason they are able to obtain all 

this corn is because of the inaccurate yield on the corn production variable.  The modeler would 

then correct the yield on the corn production variable.  

The above example illustrates the principles behind using the allocation results to debug a model.  

One identifies a variable or slack with an unrealistically high solution value, and then row sums the 

constraints in which that variable is involved with to discover the problem.  Row summing can be 

used to discover why particular variables have unrealistically large values by identifying incorrect 

coefficient values or coefficient placement errors.  For example, suppose that the corn yield was 

inadvertently punched in the soybean row; then one might have discovered a solution in which 

soybeans are sold but no soybeans are produced.  A row sum would quickly determine the source 

of the soybeans and indicate the error.  Row summing can also be applied to discover the causes of 

large values for slack or surplus variables.  
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Table 17.1. Priorities of Techniques to Use to Diagnose Improper Model Solution Outcomes 

                                           Type 

of Solution Outcome 

Structura

l Checka 

Degen. 

Resol. 

   

Scalinga 

Artificial 

Variable

s 

Upper 

Bounds 

      

Budget 

 

Row 

Sum 

Solver Failure 1 3 2 5 4   

Unbounded Solution 1  3  2 4  

Infeasible Solutions 1  3 2  4 5 

Unsat. Optimal Solutions 1     2 2 

Notes: The entries in the table gives information on the order in which to try techniques with the technique numbered 

1 being the item to try first. 

 

a This technique could be employed before any solving occurs.  The technique also can be used when problems 

appear. 
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Table 17.2. Solution Properties of Various Model Formulations 

 

Cases Where the Model Must have an Infeasible Solution  

             bi < 0   and   aij ≥ 0  for all j Ψ row i will not allow a feasible solution 

             dn < 0   and   enj ≥ 0  for all j Ψ row n will not allow a feasible solution 

             dn > 0   and   enj ≤ 0  for all j Ψ row n will not allow a feasible solution 

             gm > 0   and   fmj ≤ 0  for all j Ψ row m will not allow a feasible solution 

Cases where certain variables in the model must equal zero 

             bi = 0   and   aij ≥ 0  for all j Ψ all Xj's with aij ≠ 0 in row i will be zero 

             dn = 0   and   enj ≥ 0  for all j Ψ all Xj 's with enj ≠ 0 in row n will be zero 

             dn = 0   and   enj ≤ 0  for all j Ψ all Xj 's with enj ≠ 0 in row n will be zero 

             gm = 0   and   fmj ≤ 0  for all j Ψ all Xj 's with fmj ≠ 0 in row m will be zero 

Cases where certain constraints are obviously redundant 

             bi ≥ 0   and   aij ≤ 0  for all j means row i is redundant 

             gm ≤ 0   and   fmj ≥ 0  for all j means row m is redundant   

Cases where certain variables cause the model to be unbounded  

cj > 0 and aij ≤ 0 or enj = 0 and fmj ≥ 0 for all i, m, and n means variable j is unbounded  

Cases where certain variables will be zero at optimality  

cj < 0 and aij ≥ 0 or enj = 0 and fmj ≤ 0 for all i, m, and n means variable j will always be zero 
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Table 17.3. Relationships Between Items Before and After Scaling 

 

 

Item 

Symbol 

Before 

Scaling 

Symbol 

After 

Scaling 

 

 

Unscaled Value in Terms of Scaled Value 

 

 

Scaled Value in Terms of Unscaled Value 

Variables Xj Xj' Xj = X j'* (COLSCALj * RHSSCAL) Xj' = X j /(COLSCALj * RHSSCAL) 

Slacks Si Si' Si= S i'*(ROWSCALi * RHSSCAL) Si' = S i / (ROWSCALi * RHSSCAL) 

Reduced Cost zj - cj zj '- cj' zj - cj = (zj '- cj') * (OBJSCAL/COLSCALj) zj '- cj ' = (zj - cj) /  (OBJSCAL/COLSCALj) 

Shadow Price Ui Ui' Ui = Ui' * (OBJSCAL/ROWSCALi) ) Ui '= Ui /  (OBJSCAL/ROWSCALi) ) 

Obj. Func. Value Z Z ' Z = Z' * OBJSCAL * RHSSCAL Z '= Z / ( OBJSCAL * RHSSCAL) 
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Table 17.4. Optimal Solution to Unscaled Nibble Production Problem  

Obj = 3,600,000 

 

Variable 

 

Units 

 

Value 

Reduced 

Cost  

 

Equation 

 

Unit 

 

Slack 

Shadow 

Price 

X1 Lbs. of  Nibbles 4000000 0 1 Lbs. of  Nibbles 0 1 

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100 

X3 Hrs. of Process 2 0 4800 3 # of Hibbles 0 6 

X4 Sacks of Gribbles 40 0 4 Hrs of Labor 10000 0 

 

Table 17.5. Optimal Solution to Nibble Production Problem After Row Scaling 

 

Variable 

 

Units 

 

Value 

Reduced 

Cost  

 

Equation 

 

Unit 

 

Slack 

Shadow 

Price 

X1 Lbs. of  Nibbles 4000000 0 1 1000's of Lbs. of  Nibbles 0 1000 

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100 

X3 Hrs. of Process 2 0 4800 3 100's of Hibbles 0 600 

X4 Sacks of Gribbles 40 0 4 10's of Hrs of Labor 10000 0 
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Table 17.6. Optimal Solution to Nibble Production Problem After Row and Column Scaling 

 

Variable 

 

Units 

 

Value 

Reduced 

Cost  

 

Equation 

 

Unit 

 

Slack 

Shadow 

Price 

X1 1000's of Lbs. of Nibbles 4000000 0 1 1000's of Lbs. of  Nibbles 0 1000 

X2 Hrs. of Process 1 400 0 2 Lbs. of Gribbles 0 100 

X3 Hrs. of Process 2 0 4800 3 100's of Hibbles 0 600 

X4 Sacks of Gribbles 40 0 4 10's of Hrs of Labor 10000 0 

 

Table 17.7. Optimal Solution to Nibble Production Problem After Row, Column, Objective Function and RHS Scaling 

 

Variable 

 

Units 

 

 Value 

Reduced 

Cost  

 

Equation 

 

Unit 

 

Slack 

Shadow 

Price 

X1 100,000's Lbs. of  Nibbles 40 0 1 100,000's of Lbs. of  Nibbles 0 1 

X2 100's of Hrs. of Process 1 4 0 2 100's Lbs. of Gribbles 0 0.1 

X3 100's of Hrs. of Process 2 0 4.8 3 10,000's of Hibbles 0 0.6 

X4 100's of Sacks of Gribbles 20 0 4 1000's of Hrs of Labor 100 0 
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Table 17.8. Solution to Infeasible Example with Artificial Present 

Objective Function = -186935 

Variable Value Reduced Cost Equation Level Shadow Price 

X1 1.3 0 1 48.7 0 

X2 0 1940 2 0 1990 

A  18.7 0 3 0 -10,000 

      

Table 17.9. Tableau of Budgeting Example 

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod Soyb. Prod Hogs RHS 

Objective Func -1 2.5 6 0.5 -75 -50  MAX 

Land Available     1 1  ≤ 600 

Pork Balance    1   -1000 ≤ 0 

Soybean Bal   1   -50  ≤ 0 

Corn Balance  1   -120  20 ≤ 0 

Misc. Inp. Bal. -1    125 50 20 ≤ 0 

  



29 

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

Table 17.10. Optimal Solution to Budgeting Example 

      

Variable 

 

Value 

Reduced 

Cost 

 

Equation 

 

Level 

Shadow 

Price 

Buy Misc. Input 147,000 0 Land Available 0 2680.00 

Sell Corn 0 22.50 Pork Balance 0 0.5 

Sell Soybeans 0 0 Soybean Balance 0 6.00 

Sell Pork 3,600,000 0 Corn Balance 0 24.00 

Produce Corn 600 0 Misc. Input  Balance 0 1.00 

Produce Soybeans 0 2,480.00    

Produce Hogs 3,600 0    

 

Table 17.11.   Budget of Soybean Production Activity 

Constraint aij Shadow Price (Ui) Product (Uiaij) 

Land Available 1 2680 2680 

Soybean Balance -50 6 -300 

Misc. Input  Balance 50 1 50 

Indirect Cost Sum   (∑Uiaij)   2430 

Less Objective Function 

(cj) 

-50  -(-50) 

Red. Cost (∑Uiaij -cj)   2480(nonbasic) 
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Table 17.12. Corn Production Budget 

Constraint aij Shadow Price (Ui) Product (Uiaij) 

Land Available 1 2680 2680 

Corn Balance -120 24 -2880 

Misc. Input  Balance 125 1 125 

Indirect Cost Sum ( ∑ Ui aij  )   -75 

Less Objective Function (cj) -75  -(-75) 

Reduced Cost(∑Uiaij -cj)   0(basic) 

 

Table 17.13. Hog Production Budget 

Constraint aij Shadow Price (Ui) Product (Uiaij) 

Pork Balance -1000 0.5 -500 

Corn Balance 20 24 480 

Misc. Input  Balance 20 1 20 

Indirect Cost Sum   (∑Uiaij)   0 

Less Objective Function 

(cj) 

0  -(0) 

Reduced Cost (∑Uiaij -cj)   0(basic) 
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Table 17.14. Row Summing Example 

Row Buy Misc. Sell Corn Sell Soyb. Sell Pork Prod Corn Prod Soyb. Prod Hogs RHS 

Objective Func -1 2.5 6 0.5 -75 -50  MAX 

Land Available     1 1  ≤ 600 

Pork Balance    1   -150 ≤ 0 

Soybean Bal   1   -50  ≤ 0 

Corn Balance  1   -1200  20 ≤ 20 

Misc. Inp. Bal. -1    125 50 20 ≤ 0 

Table 17.15. Optimal Solution to Row Summing Example 

 

Variable 

 

Value 

Reduced 

Cost 

 

Equation 

 

Level 

Shadow 

Price 

Buy Misc. Input 795,020 0 Land Available 0 3,100 

Sell Corn 0 0.25 Pork Balance 0 0.5 

Sell Soybeans 0 0 Soybean Balance 0 6.00 

Sell Pork 5,400,150 0 Corn Balance 0 2.75 

Produce Corn 600 0 Misc. Input  Bal 0 1.00 

Produce Soybeans 0 2,480.00    

Produce Hogs 36,001 0    
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Table 17.16. Row Sum of Pork Constraint 

Variable aij Optimal Value (Xj*) Product (aijXj*) 

Sell Pork 1 5,400,150 5,400,150 

Produce Hogs -150 36,001 -5,400,150 

Endogenous Sum   (∑aij Xj*)   0 

 Right Hand Side(bi) 0  0 

Slack (bi-∑aij Xj*)   0 

 

 

Table 17.17. Row Sum of Miscellaneous Input Constraint 

Variable aij Optimal Value (Xj*) Product (aijXj*) 

Buy Miscellaneous Inputs -1 795,020 -795,020 

Produce Corn 125 600 75,000 

Produce Soybeans 50 0 0 

Produce Hogs 20 36,001 720,020 

Endogenous Sum   (∑aij Xj*)   0 

 Right Hand Side(bi) 0  0 

Slack (bi-∑aij Xj*)   0 
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Table 17.18. Row Sum of Corn Balance Constraint 

Variable aij Optimal Value (Xj*) Product (aijXj*) 

Sell Corn 1 0 0 

Produce Corn -1,200 600 -720,000 

Produce Hogs 20 36,001 720,020 

Endogenous Sum   (∑aij Xj*)   20 

 Right Hand Side(bi) 20  20 

Slack (bi-∑aij Xj*)   0 

 


