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 CHAPTER XVI:  INTEGER PROGRAMMING FORMULATIONS 

  

IP is a powerful technique for the formulation of a wide variety of problems.  This section 

presents a number of common formulations. 

16.1 Knapsack - Capital Budgeting Problem  

The knapsack problem, also known as the capital budgeting or cargo loading problem, is a 

famous IP formulation.  The knapsack context refers to a hiker selecting the most valuable items 

to carry, subject to a weight or capacity limit.  Partial items are not allowed, thus choices are 

depicted by zero-one variables.  The capital budgeting context involves selection of the most 

valuable investments from a set of available, but indivisible, investments subject to limited 

capital availability.  The cargo loading context involves maximization of cargo value subject to 

hold capacity and indivisibility restrictions.  

The general problem formulation assuming only one of each item is available is 
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The decision variables indicate whether the jth alternative item is chosen (Xj=1) or not (Xj=0).  

Each item is worth vj.  The objective function gives the total value of all items chosen.  The 

capacity used by each Xj is dj.  The constraint requires total capacity use to be less than or equal 

to the capacity limit (W).  

16.1.1 Example 

Suppose an individual is preparing to move.  Assume a truck is available that can hold at most 

250 cubic feet of items.  Suppose there are 10 items which can be taken and that their names, 

volumes and values are as shown in Table 16.1.  The resultant formulation is  

jallfor1,or0x

25020x20x5x120x5x15x20x20x10x70xs.t.

20x5x21x15xx25x12x22x5x17xMax
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The GAMS formulation is called KNAPSACK.  The optimal objective function value equals 

128.  The values of the variables and their respective reduced costs are shown in Table 16.2.  

This solution indicates that all items except furniture, X7, should be taken.   

There are a couple of peculiarities in this solution which should be noted.  First, the constraint 

has 65 units in slack (250-185) and no shadow price.  However, for practical purposes the 

constraint does have a shadow price as the X7 variable would come into the solution if there were 

120 more units of capacity, but slack is only 65.  Further, note that each of the variables has a 

non-zero reduced cost.  This is because this particular problem was solved with the GAMS 

version of OSL, a branch and bound type algorithm and each of these variables was bounded at 
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one.  Thus, they have reduced costs reflecting bounds requiring the variables to equal either zero 

or one.  These data are misleading as indicated in the discussion in the previous chapter on IP 

shadow prices.  

16.1.2 Comments 

The knapsack problem has been the subject of considerable theoretical interest and several 

applications (see von Randow; Salkin, 1975a).  Armstrong, Sinha, and Zoltners provide a recent 

application.  The capital budgeting problem context has been extensively studied (Weingartner 

1963, 1966, von Randow).  Variants include the cutting stock problem, where one explores the 

best way to cut up items such as logs, sheets of veneer, and plywood, (Eisemann and Golden).  

Knapsack problems also commonly appear as subproblems in algorithmic approaches to 

problems as shown by Williams (1978a) and Geoffrion and McBride.  

The knapsack formulation contains a number of simplifying assumptions.  First, the formulation 

permits no more than one unit of any item.  This assumption could be relaxed by changing from 

zero-one to integer variables with constraints on item availability.  Second, the value and 

resource usage of the items are assumed independent of the mix of items chosen.  However, there 

may be interactions where the value of the one item is increased or decreased when certain other 

items are also chosen.  Thus, one might need to include formulation features involving 

multiplication of zero-one variables.  Third, capacity available is assumed independent of the 

value of the resource.  One could relax this assumption and put in a supply curve representation.  

 16.2 Warehouse Location 

Warehouse location problems are commonly formulated as integer programs.  They involve 

location of warehouses within a transportation system so as to minimize overall costs.  The basic 

decision involves tradeoffs between fixed warehouse construction costs and transportation costs.  

In agriculture, this formulation has been used in the location of high volume grain handling 

facilities (Hilger, McCarl and Uhrig) and agricultural processing facilities (Fuller, Randolph and 

Klingman; Faminow and Sarhan).  The plant, store and distribution center location problems are 

closely related (von Randow).  A general warehouse location problem formulation is as follows: 
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This is an extension of the basic transportation problem containing intermediate shipments 

(transshipments) into warehouses from supply points (Xik) and from warehouses to demand 

points (Ykj).  The formulation also contains fixed cost and new warehouse capacity 

considerations.  The variables in the formulation are:  

Vk -  a zero-one indicator variable indicating whether the kth warehouse is constructed; 

Xik   a continuous variable indicating the quantity shipped from supply point i to 

warehouse k; 

Ykj -  a continuous variable indicating the quantity shipped from warehouse k to 

demand point j; 

Zij -  a continuous variable indicating the quantity shipped from supply point i directly 

to demand point j.   

The problem is also characterized by a number of parameters.   

Fk -  the fixed cost associated with construction of the kth warehouse.  This cost should 

be developed so that it represents the cost incurred during the period of time 

represented by the supply and demand constraints;  

CAPk - the capacity of the kth warehouse during the time frame leading to the supply and 

demand quantities;  

Amk - the amount of the mth configuration constraint used when constructing the kth 

warehouse;  

Cik  - the cost of shipping from supply point i to warehouse k;  

Dkj  - the cost of shipping from warehouse k to demand point j;  

Eij  - the cost of shipping from supply point i to demand point j;  

Dj  - the amount of demand which must be filled at the jth demand point in the time period 

modeled;  

Si  - the amount of supply available at ith supply point in the time period modeled;  

bm  - the upper limit on the mth configuration constraint. 

The objective function depicts total cost minimization where total cost includes warehouse 

construction plus shipping costs for shipments a) to warehouses, b) from warehouses, and c) 

directly to final demand points.  The first constraint equation balances outgoing shipments with 

available supply for a supply point.  The second constraint gives the demand requirements by 

demand location and requires a minimum level of incoming shipments from warehouses and 

supply locations.  The third constraint requires outgoing shipments at a warehouse location not to 

exceed incoming shipments to that warehouse.  The next constraints both involve our zero-one 

warehouse variables imposing prospective warehouse capacity using the modeling approach in 

the fixed cost discussion in chapter 15.  Outgoing shipments are balanced with constructed 

warehouse capacity.  When the warehouse is not constructed then outgoing shipments must equal 
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zero.  Thus, warehouses can only be used when constructed.  The last constraint limits 

warehouse construction through configuration constraints.  Many different types of constraints 

could be included here, dependent on the problem setting.  An example is given below. 

16.2.1 Example 

Suppose a firm can construct a warehouse at one of three sites (A,B,C).  Currently, the firm has 

two supply points and ships to two demand points with annual demand requirements and supply 

capacity given in Table 16.3.  Further suppose that the potential warehouses have annual 

capacity and fixed cost as shown in Table 16.4.  If warehouse B were constructed its annual 

capacity would be 60, it would cost $720 for the 12 year life or, assuming straight line 

depreciation, $60 per year.  Suppose that the firm has developed a transport cost matrix as shown 

in Table 16.5.  Finally suppose only one warehouse can be built.   

This leads to the formulation shown in Table 16.6.  The objective function minimizes the annual 

fixed cost of warehouses plus the annual variable cost of shipping.  The constraints impose 

maximum supply constraints at two locations,  minimum demand constraints at two locations, 

supply/demand balances at three warehouses, balances between capacity and warehouse use at 

three warehouses, and a constraint that requires only one of the three warehouses be constructed 

(i.e., a configuration constraint).  Warehouse 1 capacity is set to 9999 which effectively makes 

its capacity unlimited if it is constructed.  The GAMS formulation is called WAREHOUS. 

In the solution to this model, the objective function value equals 623, and the variable and 

equation solutions are shown in Table 16.7.  This solution corresponds to the company 

constructing warehouse C.  The shipment pattern involves shipping 70 units from supply point 2 

to warehouse C, 20 units from warehouse C to demand point 1, and 50 units from C to demand 

point 2.  In addition, 5 units are shipped directly from supply point 2 to demand point 1 while 50 

units are shipped from supply point 1 to demand point 1.  The shadow prices reflect demand at 

point 1 costing 7 units on the margin and a cost of 5 units at demand point 2.  Additional supply 

is worth $3 a unit at the first supply point and $0 a unit at the second supply point. 

16.2.2 Comments 

This formulation is simplified.  One could have a number of complications such as cost-volume 

relationships, or multiple warehouse alternatives at a site.  Those interested in related work and 

extensions should see the papers by Geoffrion (1975); Francis and Goldstein; Francis, McGinnis, 

and White; McGinnis; Fuller, Randolph, and Klingman; Hilger, McCarl, and Uhrig; or Geoffrion 

and Graves.  

16.3 Traveling Salesman Problem 

Another common IP formulation is the "Traveling Salesman Problem" (Burkard; Bellmore and 

Nemhauser).  This problem involves developing a minimum cost route for a salesman visiting N 

cities then returning home.  The basic problem involves selection of a route visiting all cities 

which minimizes the total travel cost.  The machine shop scheduling may also be formulated as a 

travelling salesman problem (Pickard and Queyranne).  

The basic problem formulation is much like the assignment problem and is: 
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The decision variable (Xij) equals one if the salesman goes from city i to city j, and zero 

otherwise.  The possibility of moving from any city to itself is precluded.  There is a known cost 

of moving from city i to city j (dij).  The objective function gives the total cost of completing the 

route which will be minimized.  The first constraint states that the salesman must leave each city 

once.  The second constraint states that the salesman must enter each city once.  All decision 

variables are restricted to equal either zero or one. 

The above formulation is that of the classical assignment problem (Wagner); however, it is not 

yet a complete traveling salesman formulation.  There is a difficulty that often arises, known as a 

subtour. Consider a 5-city problem in which the optimum solution consists of X12=1, X23=1, 

X31=1, X45=1 and X54=1.  This solution is feasible in the above formulation and could be 

minimum distance.  However, it reflects a disjointed trip in which one salesman goes from city 1 

to city 2 to city 3 and back to city 1 without visiting cities 4 and 5, while another salesman goes 

from city 4 to city 5 and back to city 4.  This solution exhibits so-called subtours, disjoint loops 

of a size less than the number of cities.  Such subtours can be of any size involving two, three, 

four, or any number of cities up to the number in the problem minus two, although empirical 

evidence (cited in Garfinkel and Nemhauser; Bellmore and Nemhauser) indicates that subtours 

of more than four or five cities do not appear in practice.  The prohibition of subtours requires 

additional constraints.  The subtours could be eliminated by the imposition of the following 

constraints: 

LkjiwhereLandk,j,i,allfor3XXXX

CityFour

kjiwherekandj,i,allfor2XXX

CityThree
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The first set of constraints renders all two-city subtours infeasible enforcing mutual exclusivity 

between the variables representing travel from city i to city j and travel from city j to city i.  The 

next constraint set precludes three city subtours prohibiting travel from i to j then on to k, finally 

from k back to i.  Here only two of the three activities are allowed in the solution.  Similarly, the 

four-city subtour constraints prevent one from traveling from city i to city j, then j to k, and on 

from k to L, and from L back to i.  
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In a practical problem this way of dealing with subtours would produce a very large constraint 

set.  For example, with 30 cities there would be 870 constraints for the prevention of the two city 

subtours alone.  In general, constraints would be required precluding subtours from size 2 up 

through the greatest integer number not exceeding half the number of cities.  Other formulations 

exist which preclude subtours in a more compact fashion.  Miller, Tucker, and Zemlin show that 

the following constraints eliminate subtours in an N city problem,  

N...,2,i0U

jiN;...,2jN;...,2,i1NNXUU

i

ijji





 

where new continuous variables (U) are introduced.  Dantzig, Fulkerson, and Johnson (1954) 

give yet another method.  

16.3.1 Example 

Consider a salesman that has to visit six cities.  Suppose these cities are separated by the 

distances in Table 16.8 and the salesman wants to minimize total distance traveled.  The example 

formulation appears in Table 16.9.  The objective function minimizes the sum of the distance 

times zero-one variables indicating whether the salesman travels between cities i and j, Xij.  The 

first six constraints require that each city be left and the next six constraints require that each city 

be visited.  Subtours are prevented by the last 20 constraints following Miller, Tucker, and 

Zemlin (containing the 6s in the matrix and 5s on the right-hand sides).  The GAMS formulation 

is called TRAVEL.  The solution to this problem is shown in Table 16.10.  

This solution reflects the traveling salesman traveling 46 miles going from city 1 to city 2, to city 

3, to city 6, to city 5, to city 4 and back to city 1, completing a loop.  Subtours are not present.   

16.3.2 Comments 

This problem has been extensively studied (see reviews by Bellmore and Nemhauser; Golden 

and Assad; Laporte and Lawler et. al.).  Unfortunately, solving this problem is very difficult 

because of the number of possible feasible solutions (e.g., in the six-city problem there are five 

factorial possible solutions).   Several heuristics have been developed for this problem.  It is not 

recommended that it be directly solved with an IP algorithm, rather heuristics are usually used.  

A variant of this problem involves scheduling problems (Eilon).  

16.4 Decreasing Costs 

Models may need to depict situations where volume increases lead to either marginal cost 

decreases or marginal revenue increases.  For example such situations would occur when:  a) the 

purchase of transportation services involves volume discounts, or b) production exhibits positive 

economies of scale when cost drops as more units are produced.  LP cannot satisfactorily model 

these situations.  A separable LP formulation would use the cheapest cost activity first ignoring 

the volume  requirements necessary to incur such a cost (i.e., using the activity with lowest 

transportation cost at less than the required volume rather than using more expensive transport 

rate relevant at that lower volume).  Thus, another modeling approach is required.  One could use 

the nonlinear form of separable programming, but this would yield local optimal solutions. 

Alternatively, a mixed IP formulation can be used.  This will be explained herein. 



 

16-8 

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

The basic problem in matrix form is  
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where Z is the quantity of input used, f(Z) is the total cost of acquiring the input which exhibits 

diminishing marginal cost (i.e., the per unit cost of Z falls as more is purchased); e is the sale 

price for a unit of output (Y); Gm is the quantity of output produced per unit of production 

activity Xm; Am is the amount of the resource which is used per unit of Xm; and Him is the 

number of units of the ith fixed resource which is used per unit of Xm. 

In this problem the objective function maximizes total revenue from product sale (eY) less total 

costs (f(Z)).  The first constraint balances products sold (Y) with production (∑ GmXm).  The 

second constraint balances input usage (∑ AmXm) with supply (Z).  The third constraint balances 

resource  usage by production (∑ HimXm) with exogenous supply (bi). This problem may be 

reformulated as an IP problem by following an approximation point approach. 
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The variables are Y and Xm, as above, but the Z variable has been replaced with two sets of 

variables:  Rk and Dk.  The variables Rk which are the number of units purchased at cost f '(Zk*); 

Zk* are a set of approximation points for Z where Z0* = 0; where f '(Zk*) is the first derivative of 

the f(Z) function evaluated at the approximation point Zk
*.  While simultaneously the data for Dk 

is a zero-one indicator variable indicating whether the kth step has been fully used. 

The formulation insures that the proper total cost is incurred, and that the decreasing per unit 

costs are only used when the proper quantities are purchased.  The last two constraints enforce 

this restriction, requiring Rk to equal Zk - Zk-1 before Rk+1 can be non-zero (i.e., the kth increment 

must be paid for before the k+1st increment can be purchased).  The first three equations are as 

defined above.  Notice that the kth step variable can be no larger than Dk times the difference 

between Zk and Zk-1.  Thus, Rk is prevented from being non-zero unless the indicator variable Dk 



 

16-9 

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

is also non-zero.  However, the last constraint imposes a relationship between the kth step 

variable and the indicator variable for step k+1.  Consequently, Rk must equal its maximum 

value (Zk+1 - Zk) if the k+1st indicator is non-zero.  Similarly, R1 through Rk-1 must equal their 

upper limits in order that Rk can be non-zero.  Consequently, this only permits input purchases at 

the lower cost exhibited under the higher volumes, only if inputs have been purchased at all 

volumes previous to those.  

16.4.1 Example 

Consider a problem in which total cost of the input Z and the production relationships are given 

by  

0ZX,Y,
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02XY

Z.125Z)(34YMax











 

Suppose we approximate Z at 2, 4, 6, 8 and 10.  The formulation becomes  
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where the variables D1 through D5 are zero-one indicator variables and the variables X, Y, and R 

are continuous.  Note that before R2 can be nonzero, the variable D2 must be nonzero because of 

the equation relating R2 and D2.  However, if D2 is nonzero, R1 must be in the solution equaling 

2, because of the equation relating R1 and D2.  The other constraints also require that D1 be one.  

Consequently, in order to purchase inputs at the second cost step, the first cost step must be fully 

utilized.  In general for Rn to be non-zero then r1 through rn-1 must be in solution at their upper 

limits.  Thus, one must use the higher cost (lower revenue) activities before the lower cost 

(higher revenue) activities can be undertaken.  The GAMS formulation is called DECOST.  The 
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solution to this problem is given in Table 16.11 and shows that Y = 10, X = 5, and Z = 5 based 

on the r values (R1=R2=2 and R3=1).  Note that the first three indicator variables are in the basis 

at 1, and that the last two are in at zero. Thus, the values of the variables R1 and R2 must equal 

their upper limit, and R3 is between zero and its upper limit.  In this case, it is equal to 1 because 

of the constraint X ≥ 5.  

16.4.2 Comments 

This problem depicts minimization of a non-convex phenomena.  However, a global optimum 

solution will be found because of the enumerative nature of IP algorithms.  The objective 

function approximates total revenue minus total cost by accumulating the total cost 

approximation as the sums of derivatives at the approximating points times the associated 

quantities. 

16.5 Machinery Selection 

IP is often used to formulate investment problems (Weingartner [1963, 1966]).  The machinery 

selection problem is a common investment problem.  In this problem one maximizes profits, 

trading off the annual costs of machinery purchase with the extra profits obtained by having that 

machinery.  A general formulation of this problem is 

mandk,j,allfor0Xinteger,enonnegativaisY

rallforeYG

nallforbXD

kandiallfor0XAYCaps.t.

XCYFMax

jmk

r
k

krk

n
j m

jmnjm

J

j m
jmijkmkik

j m
jmjm

k
kk











 

The decision variables are Yk, the integer number of units of the kth type machinery purchased; 

Xjm, the quantity of the jth activity produced using the mth machinery alternative.  The parameters 

of the model are:  Fk, the annualized fixed cost of the kth machinery type; Capik, the annual 

capacity of the kth machinery type to supply the ith resource; Grk, the usage of the rth machinery 

restriction when purchasing the kth machinery type; Cjm, the per unit net profit of Xjm; Aijkm, the 

per unit use by Xjm of the ith capacity resource supplied by purchasing machine k; Dnjm, the per 

unit usage of fixed resources of the nth type by Xjm; bn, the endowment of the nth resource in the 

year being modeled; and er, the endowment of the rth machinery restriction. 

The objective function maximizes profits from machinery operation less the fixed costs of 

acquisition.  The first constraint balances the capacity of the machinery purchased with the use of 

that capacity.  These constraints preclude machinery from being used unless it is purchased.  The 

second constraint imposes constraints on resources other than machinery.  The third constraint 

imposes configuration constraints on machinery purchases.  

16.5.1 Example 

Assume that a farm is considering the purchase of equipment involving a choice of two tractors, 
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two plows, two discs, two planters and two harvesting units.  The working rates and costs are 

given in Table 16.12.  Time available by period is given in Table 16.13.  The farm has 600 acres.  

Machinery resource calculations are shown in Table 16.14.  Yields, prices, and costs are given in 

Table 16.15.  

Three operations are done on the farm: plowing, simultaneous discing and planting, and 

harvesting; plowing is done in time periods 1-2; disc-planting in period 2 and harvesting in 

period 3.  In addition, when buying the equipment, one must match the disc and the planter; disc 

number one an be purchased only with planter number one and disc number two only with 

planter number two.  The formulation is given in Table 16.16 and in file MACHSEL.  The 

solution to this IP problem yields an IP objective function of 116,100 when it is solved as an LP 

its objective function equals 124,301.  The values of the solution variables are given in Table 

16.17.    

16.5.2 Comments 

This formulation has been used in agricultural economics.  For example see the machinery 

selection work by Danok, McCarl, and White (1978, 1980); Clayton and McCarl; or Baker, 

Dixit, and McCarl.  

16.6 Other Formulations  

While several classes of formulations were addressed above, there are numerous other 

formulations which could have been included.  Here we mention networks, dynamic 

programming, scheduling, and combinational problems.   

The vast majority of network problems are integer by nature.  Many of them yield integer 

solutions because of the structure of the basis (Wagner, 1969).  These types of problems are the 

assignment, transportation, transshipment, shortest path, maximal flow, and minimum spanning 

tree.  A general presentation can be seen in Kennington and Helgeson; Bazaraa, Jarvis and 

Sherali; or Jensen and Barnes.  

A second related class of problems are dynamic programming problems.  Many dynamic 

programming algorithms involve integer valued variables.  Many common IP problems have 

been cast as dynamic programming problems; e.g., Nemhauser mentions network, traveling 

salesmen and scheduling problems as places where dynamic programming has been applied.  

There is also a large class of integer scheduling problems.  One such problem is the vehicle 

scheduling problem where buses, aircraft, or ships are routed to places where items need to be 

delivered.  Wagner (1969), and Markowitz and Manne give early developments and references to 

solve this class of  problems. While Assad and Golden give more recent references there have 

been a vast number of machine scheduling applications involving assembly line balancing, flow 

shop scheduling, batch sizing, etc.  Eilon reviews this topic, and von Randow gives 13 pages of 

references.  Project scheduling problems have also been formulated (Davis, Patterson).  

Another class of integer problems are the combinational problems, most of which can be 

formulated as IP problems.  These include network type problems such as maximum flow 

problems, set covering, matching problems, weighted matching problems, spanning trees, and 
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traveling salesmen problems.   Many of these problems are classed as very difficult to solve.  

The book by Papadimitriou and Steiglitz gives background and formulations.  

Finally, we should mention that new applications of IP are developed virtually every day.  For 

example, von Randow, in a bibliography of studies between 1978 and 1981, gives 130 pages of 

citations to IP relating mainly to that time period.  Thus, there are many classes of problems that 

we have not covered above.  
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Table 16.1.  Items for the Knapsack Example Problem 

 

Variable 

 

Item Name 

Item Volume 

(Cubic feet) 

Item Value 

($) 

X1 Bed and mattress 70 17 

X2 TV set 10 5 

X3 Turntable and records 20 22 

X4 Armchairs 20 12 

X5 Air conditioner 15 25 

X6 Garden tools and fencing 5 1 

X7 Furniture 120 15 

X8 Books 5 21 

X9 Cooking utensils 20 5 

X10 Appliances 20 20 

 

 

 

Table 16.2.  Solution to the Knapsack Example Problem 

 

Obj = 128 

 

 

 

 

Variable Value Reduced Cost 

X1 1 17 

X2 1 5 

X3 1 22 

X4 1 12 

X5 1 25 

X6 1 1 

X7 0 15 

X8 1 21 

X9 1 5 

X10 1 20 

 

Constraint 

 

Activity 

 

Shadow Price 

Space 185 0 
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Table 16.3.  Supply/Demand Information for Warehouse Location Example 

Total Supply Total Demand 

Point Units Point Units 

1 50 1 75 

2 75 2 50 

 

Table 16.4.  Warehouse Capacities and Costs for the Warehouse Location Example 

Warehouse Annual Capacity Fixed Cost/Life ($) 1 -Year Cost 

A Unlimited 500/10 years $50 

B 60 720/12 years $60 

C 70 680/10 years $68 

 

Table 16.5.  Transport Costs (in $/unit) for Warehouse Location Example 

  Shipping Point 

  Supply Warehouse 

  1 2 A B C 

Warehouse A 1 6 - -  

 B 2 3 - - - 

 C 8 1 - - - 

Demand 1 4 7 4 3 5 

 2 8 6 6 4 3 
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Table 16.6.  Formulation of the Warehouse Location Example Problem 
 

VA 

 

VB 

 

VC 

 

X1A 

 

X1B 

 

X1C 

 

X2A 

 

X2B  

 

X2C 

 

YA1 

 

YA2 

 

YB1 

 

YB2 

 

YC1 

 

YC2 

 

Z11 

 

Z12 

 

Z21 

 

Z22 

 

RHS 

 

50 

 

60 

 

68 

 

1 

 

2 

 

8 

 

6 

 

3 

 

1 

 

4 

 

6 

 

3 

 

4 

 

5 

 

3 

 

4 

 

8 

 

7 

 

6 

 

Min 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

 

 

1 

 

 

 

1 

 

 

 

1 

 

 

 

1 

 

 

 

≤ 

 

75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

 

 

1 

 

 

 

1 

 

 

 

1 

 

 

 

1 

 

≤ 

 

50 

 

 

 

 

 

 

 

1 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

≤ 

 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

≤ 

 

75 

 

 

 

 

 

 

 

-1 

 

 

 

 

 

-1 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

 

 

 

 

 

 

 

 

-1 

 

 

 

 

 

-1 

 

 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

 

 

 

 

 

 

 

 

 

 

-1 

 

 

 

 

 

-1 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

-9999 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

 

 

-60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

 

 

 

 

-70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

1 

 

1 

 

1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

1 

  VA, VB, VC ≤ (0,1)  xik,       Ykj,     Zij   ≤        0 

for all i, j, k 
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Table 16.7.  Solution Results for the Warehouse Location Example 

 

Obj = 623 

 

 

 

 

 

 

 

 

 

 

 

Variable 

 

Value 

 

Reduced 

Cost 

 

Equation 

 

Slack 

 

Shadow 

Price 

VA 0 0 1 0 -3.00 

VB 0 2 2 0 0 

VC 1 0 3 0 7.00 

X1A 0 0 4 0 5.00 

X1B 0 2.00 5 0 -4 

X1C 0 10.00 6 0 -3.00 

X2A 0 2 7 0 -1.00 

X2B 0 0 8 0 -0.05 

X2C 70 0 9 0 -1.00 

YA1 0 1.052 10 0 -1.00 

YA2 0 5.052 11 0 -2 

YB1 0 0    

YB2 0 3.00    

YC1 20 0    

YC2 50 0    

Z11 50 0    

Z12 0 6.00    

Z21 5 0    

Z22 0 1.00    
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Table 16.8.  Distances Between Cities for the Travelling Salesman Problem 

 

 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

1 

 

-- 

 

11 

 

7 

 

6 

 

8 

 

14 

 

2 

 

11 

 

-- 

 

7 

 

9 

 

12 

 

13 

 

3 

 

7 

 

7 

 

-- 

 

3 

 

7 

 

8 

 

4 

 

6 

 

9 

 

3 

 

-- 

 

4 

 

8 

 

5 

 

8 

 

12 

 

7 

 

4 

 

-- 

 

10 

 

6 

 

14 

 

13 

 

8 

 

8 

 

10 

 

-- 

 

 



 

16-20 

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

Table 16.9. Formulation of the Traveling Salesman Problem 
           X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X                
      1  1  1  1  1  2  2  2  2  2  3  3  3  3  3  4  4  4  4  4  5  5  5  5  5  6  6  6  6  6  U  U  U  U  U 

      2  3  4  5  6  1  3  4  5  6  1  2  4  5  6  1  2  3  5  6  1  2  3  4  6  1  2  3  4  5  2  3  4  5  6 

 Min 11  7  6  8 14 11  7  9 12 13  7  7  3  7  8  6  9  3  4  8  8 12  7  4 10 14 13  8  8 10                

      1  1  1  1  1                                                                                           = 1 

                     1  1  1  1  1                                                                            = 1 

                                    1  1  1  1  1                                                             = 1 

                                                   1  1  1  1  1                                              = 1 

                                                                  1  1  1  1  1                               = 1 

                                                                                 1  1  1  1  1                = 1 

                     1              1              1              1              1                            = 1 

      1                                1              1              1              1                         = 1 

         1              1                                1              1              1                      = 1 

            1              1              1                                1              1                   = 1 

               1              1              1              1                                1                = 1 

                  1              1              1              1              1                               = 1 

                        6                                                                       1 -1          < 5 

                           6                                                                    1    -1       < 5 

                              6                                                                 1       -1    < 5 

                                 6                                                              1          -1 < 5 

                                       6                                                       -1  1          < 5 

                                          6                                                        1 -1       < 5 

                                             6                                                     1    -1    < 5 

                                                6                                                  1       -1 < 5 

                                                      6                                        -1     1       < 5 

                                                         6                                        -1  1       < 5 

                                                            6                                         1 -1    < 5 

                                                               6                                      1    -1 < 5 

                                                                     6                         -1        1    < 5 

                                                                        6                         -1     1    < 5 

                                                                           6                         -1  1    < 5 

                                                                              6                          1 -1 < 5 

                                                                                    6          -1           1 < 5 

                                                                                       6          -1        1 < 5 

                                                                                          6          -1     1 < 5 

                                                                                             6          -1  1 < 5 

                                         Xij                           Ui >   0 
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Table 16.10.  Solution to the Travelling Salesman Example 
Obj = 46      

Variable Value Reduced Cost Equation Slack Shadow Price 
X12 1.00 11 Leave 1 0 0 

X13 0 7 Leave 2 0 0 

X14 0 6 Leave 3 0 0 

X15 0 8 Leave 4 0 0 

X16 0 14 Leave 5 0 0 

X21 0 11 Leave 6 0 0 

X23  

1.00 

7 Enter 1 0 0 

X24 0 9 Enter 2 0 0 

X25 0 12 Enter 3 0 0 

X26 0 13 Enter 4 0 0 

X31 0 7 Enter 5 0 0 

X32 0 7 Enter 6 0 0 

X34 0 3 Subtour 23 4 0 

X35 0 7 Subtour 24 8 0 

X36 1.00 8 Subtour 25 7 0 

X41 1.00 6 Subtour 26 0 0 

X42 0 9 Subtour 32 0 0 

X43 0 3 Subtour 34 9 0 

X45 0 4 Subtour 35 8 0 

X46 0 8 Subtour 36 7 0 

X51 0 8 Subtour 42 2 0 

X52 0 12 Subtour 43 1 0 

X53 0 7 Subtour 45 4 0 

X54 1.00 4 Subtour 46 3 0 

X56 0 10 Subtour 52 3 0 

X61 0 14 Subtour 53 2 0 

X62 0 13 Subtour 54 0 0 

X63 0 8 Subtour 56 4 0 

X64 0 8 Subtour 62 4 0 

X65 1.00 10 Subtour 63 3 0 

U3 1 0 Subtour 65 0 0 

U4 4 0 Subtour 64 7 0 

U5 3 0    

U2 0 0    
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Table 16.11.  Solution to the Decreasing Costs Example 

 

 

 

Objective function = 29.50 

 

 

 

 

 

 

 

Variable 

 

Value 

 

Reduced 

Cost 

 

Equation 

 

Slack 

 

Shadow 

Price 

 

Y 

 

10 

 

0 

 

Y balance 

 

0 

 

4.0 

 

X 

 

5 

 

6.5 

 

Z balance 

 

0 

 

1.5 

 

R1 

 

2 

 

0 

 

R1D1 

 

0 

 

0 

 

R2 

 

2 

 

0 

 

R2D2 

 

0 

 

0 

 

R3 

 

1 

 

0 

 

R3D3 

 

1 

 

0 

 

R4 

 

0 

 

0 

 

R4D4 

 

0 

 

0.5 

 

R5 

 

0 

 

0 

 

R5D5 

 

0 

 

1.0 

 

D1 

 

1 

 

0 

 

R1D2 

 

0 

 

1.0 

 

D2 

 

1 

 

-2 

 

R2D3 

 

0 

 

0.5 

 

D3 

 

1 

 

-1 

 

R3D4 

 

1 

 

0 

 

D4 

 

0 

 

1 

 

R4D5 

 

0 

 

0 

 

D5 

 

0 

 

2 
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Table 16.12.  Data for the Machinery Selection Problem 

 

 

 

Equipment 

 

 

Annualized  

Fixed Cost 

 

 

Cost/Hour 

of Operation 

 

Hrs. of Labor 

Used/Hr. of 

Operation 

 

 

Acres 

Treated/Hour 

Tractor 1 5,000 10.00 1.00 - 

Tractor 2 9,000 10.00 1.00 - 

Plow 1 1,000 2.00 0.20 5* 

Plow 2 1,200 2.00 0.20 10* 

Disc 1 1,000 1.20 0.10 10* 

Disc 2 1,200 1.20 0.10 12** 

Planter 1 2 ,000 3.40 0.10 --** 

Planter 2 2,100 3.40 0.22 --** 

Harvester 1 1,000 23.0 1.00 3*** 

Harvester 2 12,000 28.0 1.00 4*** 
* Requires a tractor.  Working rates are given for tractor 1; tractor 2 is twice as fast. 
** Has the same working rate as that of the disc that the planter is used with. 
*** Uses one hour of tractor time/hour of harvesting. 

 

Table 16.13.  Hours Available for the Machinery Selection Problem 

Time Period Hours of Labor Hours for Machinery 

1 200 160 

2 210 180 

3 250 200 
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Table 16.14.  Machinery Usage Computations 

 

 

 

Operation 

 

 

 

Tractor 

Used 

 

 

Cost/A

cre ($) 

 

 

Hrs. of 

Tractor/Ac

re 

 

 

 

Plow 

Used 

 

 

Hrs. Plow 

Use/Acre 

 

 

 

Planter 

Used 

 

 

Hrs. 

Planter 

Use/Acre 

 

 

 

Disc 

Used 

 

 

Hrs. Disc 

Used/Acre 

 

 

Harvester 

Used 

 

Hrs. 

Harvester 

Used/Acre 

 

Plow 

 

1 

 

2.40 

 

0.2 

 

1 

 

0.2 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

Plow 

 

1 

 

1.20 

 

0.1 

 

2 

 

0.1 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

Plow 

 

2 

 

1.20 

 

0.1 

 

1 

 

0.1 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

Plow 

 

2 

 

0.60 

 

0.05 

 

2 

 

0.05 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

Plant-disc 

 

1 

 

1.46 

 

0.1 

 

-- 

 

-- 

 

1 

 

0.1 

 

1 

 

0.1 

 

 -- 

 

-- 

 

Plant-disc 

 

1 

 

1.22 

 

0.0833 

 

-- 

 

-- 

 

2 

 

0.0833 

 

2 

 

0.0833 

 

-- 

 

-- 

 

Plant-disc 

 

2 

 

0.73 

 

0.05 

 

-- 

 

-- 

 

1 

 

0.05 

 

1 

 

0.05 

 

-- 

 

-- 

 

Plant-disc 

 

2 

 

0.61 

 

0.04167 

 

-- 

 

-- 

 

2 

 

0.04107 

 

1 

 

0.0417 

 

 -- 

 

-- 

 

Harvest 

 

1 

 

  11   

 

0.333 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

1 

 

0.333 

 

Harvest 

 

2 

 

11 

 

0.333 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

1 

 

0.333 

 

Harvest 

 

1 

 

9.5 

 

0.25 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

2 

 

0.25 

 

Harvest 

 

2 

 

9.5 

 

0.25 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

-- 

 

2 

 

0.25 
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Table 16.15.  Yields, Prices, and Costs 

 

Non-machinery cost per acre 

 

110 

 

 

 

Price per unit of yield 

 

2.5 

 

 

 

Yield per acre 

 

140 
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Table 16.16.  Formulation of the Machinery Selection Problem 

 

 

 

 

          Machinery Use Continuous Variables  

 

 

 

 

 

          Plow with Tractor 1 Plow with Tractor 2 Plant Disc 8 Harvest with Cro

p 

Sale

s 

Input 

Pur-

chas

es 

 

 

 

 

 

 

 

Machinery Acquisition Integer Variables 

and Plow 1 and Plow 2 and Plow 1 ans Plow 2 Tractor 1 Tractor 2 Tractor 1 Tractor 2  

 

 

 

 

Tractor 

 

Plow 

 

Planter 

 

Disc 

 

Harvester 

in Period in Period in Period in Period Planter Planter Harvester Harvester  

 

 

 

 

 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2  

 

Objective (max)  

-5000 

 

-9000 

 

-1000 

 

-1200 

 

-2000 

 

-2100 

 

-1000 

 

-1200 

 

-10000 

 

-12000 

 

-2.4 

 

-2.4 

 

-1.2 

 

-1.2 

 

-1.2 

 

-1.2 

 

-0.6 

 

-0.6 

 

-1.46 

 

-1.22 

 

-0.73 

 

-0.61 

 

-9.33 

 

-8.35 

 

-9.33 

 

-8.25 

 

2.5 

 

-110 
 

Trac 1 

Cap in 

Period 

1 -160          2  .1                <0 

2 -180           .2  .1  

 

 

 

 

 

 

 

 

.1 

 

.0833 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
<0 

3 -200                      .33 .25     <0 

Trac 2 

Cap in 

Period 

1  -160             .1  .05            <0 

2  -180              

 

.1  .05    

.05 

 

.04167 

      <0 

3  -200                       .33 .25   <0 

Plow 1 

Cap in 

Period 

1  

 

 -160  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.2 

 

 

 

 

 

 

 

.1 

 

 

 

 

 

 

          <0 

2  

 

 -180  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.2 

 

 

 

 

 

 

 

.1 

 

 

 

 

          <0 

Plow 2 

Cap in 

Period 

1    -160  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.1 

 

 

 

 

 

 

 

.05 

 

 

          <0 

2    -180  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.1 

 

 

 

 

 

 

 

.05 

          <0 

Cap  

Planter 

1     

 

-180  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.1  0.05        <0 

2     

 

 

 

-180  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 0.083  

 

.0417       <0 

Cap  

Disc 

1       -180     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.1 

  

0.05 

 

 

      <0 

2     

 

 

 

 

 

 

 

-180  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.083 

 

 

 

.0417 

      <0 

Cap 

Harves

ter 

1     

 

 

 

 

 

 

 

 

 

 

-200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.33 

 

 

 

.33 

 

 

  <0 

2     

 

 

 

 

 

 

 

 

 

 

 

 

-200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.25 

 

 

 

.25 

 

 

 

 
<0 

Labor 

Avai 

Period 

1           .24  .12  .12  .06            <200 

2            .24  .12  .12  .06 .12 .11 .06 .055       <210 

3                       .5 .375 .5 .375   <250 

Plow-Plant Seq           -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1       <0 

Plant-Harvt Seq                   -1 -1 -1 -1 1 1 1 1   <0 

Land Available           1 1 1 1 1 1 1 1           <60 

Mutual   Planters 

Exclu     Discs 

    1 1                        

<1 

      1 1                     <1 

Disc-   1-1 

Planter 2-2 

    -1  1                      <0 

     -1  1                     <0 

Yield Balance                       -140 -140 -140 -140 1  <0 

Input Balance                   1 1 1 1      -1 <0 

Table 16.17. Solution for the Machinery Selection Problem 

obj = 116,100 

 

 

 

 

 

 

 

 

Variable Value Reduced Cost  Equation Slack Shadow Price 

Buy Plow 1 0 0  Trac 1 capacity in Period 3 50 0 

Buy Trac 2 0 0  Trac 1 capacity in Period 2 130 0 
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Buy Trac 1 1 -5,000  Trac 1 capacity in Period 1 100 0 

Buy Plow 2 1 -1,200  Trac 2 capacity in Period 1 0 12 

Buy Planter 1 0 0  Trac 2 capactiy in Period 2 0 14.6 

Buy Planter 2 1 -3300  Trac 2 capacity in Period 3 0 22.26 

Buy Disc 1 0 0  Plow 1 capacity in Period 1 0 6.25 

Buy Disc 2 1 0  Plow 1 capacity in Period 2 0 0 

Buy Harvester 1 0 0  Plow 2 capacity in Period 1 100 0 

Plow with Trac 1 and Plow 1 in Period 2 0 -1.20  Planter 2 capacity 130 0 

Buy Harvestor 2 1 0  Plow 2 capacity in Period 2 180 0 

Plow with Trac 1 and Plow 1 in Period 1 0 -2.45  Planter 1 capacity 0 0 

Plow with Trac 1 and Plow 2 in Period 1 600 0  Disc 1 0 0 

Plow with Trac 1 and Plow 2 in Period 2 0 0  Disc 2 130 0 

Plow with Trac 2 and Plow 1 in Period 1 0 -1.825  Harvester 1 0 50 

Plow with Trac 2 and Plow 1 in Period 2 0 -1.46  Harvester 2 50 0 

Plow with Trac 2 and Plow 2 in Period 1 0 0  Labor available in Period 1 128 0 

Plow with Trac 2 and Plow 2 in Period 2 0 0.13  Labor available in Period 2 144 0 

Plant with Trac 1 and Planter 1 0 -1.91  Labor available in Period 3 25 0 

Plant with Trac 1 and Planter 2 0 0  Plow Plant 0 230.533 

Plant with Trac 2 and Planter 1 0 -1.077  Plant Harvester 0 341.75 

Plant with Trac 2 and Planter 2 0 0  Land 0 229.333 

Harvest with Trac 1 and Harvester 1 0 -17.75  One Planter 0 0 

Harvest with Trac 1 and Harvester 2  600 0  One Disc 0 0 

Harvest with Trac 2 and Harvester 1 0 -25.17  Planter 1 to Disc 1 0 0 

Harvest with Trac 2 and Harvester 2 0 -5.565  Planter 2 to Disc 2 0 0 

Sell Crop 84,000 0  Yield Balance 0 2.5 

Purchase Inputs 600 0  Input Balance 0 110 

 


