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CHAPTER X:  MODELING SUMMARY 
Now that LP theory and basic modeling have been covered, a number of  additional 

considerations involved with using models are covered, including variable and constraint types 

as well as LP assumptions.   

10.1 Types of Constraints and Variables in Linear Programming 
Models 
In most text books the LP problem is vastly oversimplified when first defined.  For example, 

consider the problem  

0X

bAXs.t.

CXMax



  

Where, the X's are defined as alternative production processes while the constraints (AX  b) are 

referred to as resource limitations.  However, the previous chapters show there may be many 

different types of variables and constraints within such a formulation.  This section develops a 

characterization of the various possible  types of variables and constraints which can be used.  

10.1.1 Types of Constraints 

Possible constraint types include resource limitations, minimum requirements, supply-demand 

balances, ratio controls, upper/lower bounds, accounting relations, deviation constraints, and 

approximation or convexity constraints. 

10.1.1.1 Resource Limitations 

Resource limitations depict relationships between endogenous resource usage and exogenous  

resource endowments.  A resource limitation restricts endogenous resource use to be less than or 

equal to an exogenous resource endowment.  An example of a resource limitation constraint is  

This constraint requires the sum of resources used in producing X1, which uses 3 resource units 

per unit, plus those used in producing X2, which uses 4 resource units per unit, to be no greater 

than an exogenous resource endowment of 7 units.  Resource usage depends on the values of X1 

and X2 determined by the model and thus is an endogenous quantity.  This type of constraint 

appears in many of the formulations in Chapter 5, including the resource allocation problem.  

10.1.1.2 Minimum Requirements 

Minimum requirement constraints require an endogenously determined quantity to be greater 

than or equal to an exogenously specified value.  A simple illustration is  

7  X4 + X3 21   
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In this case the endogenous sum of X1 plus two times X2 is constrained to be greater than or 

equal to the exogenously imposed requirement of four.  One may also express this constraint in 

less-than-or-equal-to form as 

4  X2  X 21   

The minimum requirement often specifies that the model must meet exogenous demand through 

the endogenous supply of goods.  This kind of constraint is present in many different types of 

programming models.  An example appears in the transportation model of Chapter 5.  

10.1.1.3 Supply and Demand Balance 

The supply-demand balance requires that endogenous supply be balanced with endogenous 

demand.  A typical example is  

X  X 21   

This equation requires the endogenous demand for a good (X1) to be less than or equal to the 

endogenous supply of that good (X2).  After moving all the variables to the left hand side, the 

constraint becomes  

More generally, supply demand balances may involve exogenous quantities.  Consider the 

inequality 

3.X2X 21   

Here, the difference between endogenous demand (2X1) and supply (X2) is less than or equal to 

an exogenous supply of 3 units.  This inequality can also be expressed in the following form:  

3 + X  X2 21   

which says that the endogenous demand (2X1) must be less than or equal to total supply, which consists 

of endogenous supply (X2) plus exogenous supply (3).  A related situation occurs under the constraint 

.24XX 21   

Here, the difference between endogenous supply and endogenous demand is less than or equal to minus 2.  

This can be rewritten as  

X4  2 + X 21   

which states that endogenous demand (X1) plus exogenous demand (2) is less than or equal to endogenous 

supply (4X2).  In general, supply-demand balances are used to relate endogenous supply and demand to 

4  X2 + X 21   

0.XX 21   



 

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 10-4 

exogenous supply and  demand.  The general case is given by  

  DemandEn + DemandEx  Supply En + SupplyEx  . 

Here, the sum of demand over endogenous and exogenous sources (respectively denoted by the subscripts 

En and Ex) must be less than or equal to the supply from endogenous and exogenous sources.  

Manipulating the endogenous variables to the left hand side and the exogenous items to the right hand 

side gives 

 DemandEn - SupplyEn  SupplyEx - DemandEx . 

Here endogenous demand minus endogenous supply is less than or equal to exogenous supply minus 

exogenous demand.   

This constraint contains the resource limitation and minimum requirement constraints as special cases.  

The resource limitation constraint exhibits zero endogenous supply and exogenous demand.  The 

minimum requirement constraint exhibits zero endogenous demand and exogenous supply.  

Supply demand balances are present in many of the examples of Chapter 7.  The assembly, disassembly, 

assembly - disassembly, and the sequencing problems all possess such constraints.  

10.1.1.4 Ratio Control 
Ratio control constraints require the ratio of certain endogenous variables to be no more than an 

endogenous sum, possibly influenced by exogenous factors.  Specifically suppose that a number of units 

of X1 have to be supplied with every unit of X2.  For example, a LP formulation of an automobile 

manufacturer might require a constraint to insure that there are four tires for every car sold.  Such a 

situation would be modeled by  

    0XX4 12   

where X1 is the number of tires and X2 the number of cars sold.  In order for one unit of X2 to be sold, 4 

units of X1 must be supplied.  

The general case is depicted by   

 ENrat  p (wEN ENrat + ENother + EXother). 

where the left hand side elements are denoted with the subscript "rat," and  the right hand side elements 

with "other."  EN denotes endogenous variables and EX denotes exogenous constants.  The parameter 

wEN is nonzero only when the endogenous variables (ENrat) are part of the right hand side.  The constraint 

requires that the endogenous "rat" expression be less than or equal to p times the sum of the "rat" term or 

variables plus the "other."  Manipulating this constraint so that all the endogenous variables are on the left 

hand side gives  

  (1 - pwEN)ENrat - p ENother  p EXother  

This expression is rather abstract and is perhaps best seen by the example.  Suppose we wish the variable 

X1 to be no more than 25 percent of X1 + X2. Thus  

)X + X( .25  X 211   

Placing all the endogenous variables on the left hand side yields             

0  X.25 X.75 21   



 

copyright 1997 Bruce A. McCarl and Thomas H. Spreen 10-5 

 

Consider another example which includes exogenous factors.  Suppose that  

10) + X3 + X(2 .25  3) + X( 211   

this can be written as 

.5  X.75  X.50 21   

Here we have a requirement between X1 and X2 and an exogenous constant appearing on the right hand 

side.   

Finally, if the endogenous variables do not appear on the right hand side (for example, where X1 is less 

than or equal to one-third the sum of X2 + 4X3) then the inequality would be manipulated to state: 

0  X3/4  X3/1  X 321   

This is an example where the w's in the ratio control constraint are zero. 

This particular constraint type is a special case of the supply/demand balances.  It is not used explicitly in 

any of the general formulations, but would also be used in a feed problem formulation where the quantity 

of feed to be produced was not exogenously given (i.e., on the right hand side) but rather was an 

endogenous variable. 

10.1.1.5 Bounds 
Upper and lower bounds have important implications for the performance of  the simplex algorithm.  

Upper bounds are resource limitation constraints; however, they only involve a single variable.  Similarly, 

lower bounds are minimum requirement constraints on a single variable.  Examples are 

. 2  X

4  X

1

1




 

Such constraints are usually exploited by LP solvers so that they do not enter the basis inverse. 

10.1.1.6 Accounting Relations 
Accounting relations are used to add endogenous sums for model solution summary purposes. These 

relations are used for modeler convenience in summarizing a solution (i.e., adding up total labor utilized 

by crop).  Accounting relations can be depicted as either  

0 = S 
 XA  

 or   0 
 XA  jij

n

1j=

jij

n

1j=




 

In the first case the surplus variable would equal the sum of AX (assuming AX is always non-negative).  

The second form of the equation simply introduces an accounting variable which takes on the value of the 

sum.  Accounting relations are discussed in the purposeful modeling section.  

10.1.1.7 Deviation Constraints 
Deviation constraints are used to develop the endogenous deviation of a particular sum from a target 

level.  The general format of these constraints is as follows:  

T =Dev+xg iijij

j

  
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Here Ti is a target level and Devi is a deviation variable indicating the amount the endogenous sum  

( gijxj) deviates (as measured by the deviation variable Devi) from the target level (Ti).  The deviation 

constraint concept is utilized in the nonlinear transformations involving absolute value, multi-objective 

programming, and risk modeling. 

10.1.1.8 Approximation or Convexity Constraints  

A convexity constraint requires the sum of a set of variables to be equal to or possibly less than or equal 

to one.  These are commonly used in approximations such as those under the separable programming 

section of the nonlinear approximations chapter.  

10.1.2 Types of Variables 
There are many different types of variables.  Production, sales, purchase, transformation, slack, surplus, 

artificial, step, deviation and accounting variables are discussed in this section. 

10.1.2.1 Production Variables 
Production variables depict the production of outputs from inputs.  Such a variable is represented by  

X2 in the LP problem 

0X

brX(9)

0XpX(8)

TXXkX(7)

0XjX(6)

0XhX(5)

fXeX(4)

0XXcX(3)

0bXXs.t.(2)

qXnXmXiXgXdXaXMax(1)

i

2

92

872

62

42

52

532

21

9875431





















Note that X2 produces items which are transferred into the equations (2) and (8).  The X2 variable also 

uses inputs from equations (3) and (5) and utilizes a fixed resource which is represented by (4).  Thus, X2 

depicts a multi-factor/multi-product production process.  Production coefficients do not always explicitly 

appear in the constraint equations; rather, production may simply yield revenue in the objective function 

as in the resource allocation and sequencing problems.  Production activities may also use inputs which 

have pre-specified costs, thus the objective function coefficients may involve revenue and/or cost terms.  

The purposeful modeling section provides such an example.  

10.1.2.2 Sales Variables 
Sales variables reflect the sale of an item at an exogenously determined price.  For example, variable X1 

in the above tableau depicts the sale of an item at price a, where the item is drawn from the 

supply-demand balance that relates X1 to the production activity X2 (equation  (2).  X9 is also a sales 

variable.  Sales variables appear in numerous examples above.  For example, see the 

assembly- disassembly and joint product formulations. 

10.1.2.3 Purchase Variables 
Purchase variables depict the purchase of items at exogenously specified prices with the items made 
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available for use within the model.  Examples of this type of variable are X3 and X4 above.  For example, 

one unit of X3 yields one unit of supply to the supply-demand balance equation (3) and enters the 

objective function with a coefficient of -d.  Purchase activities are illustrated in the assembly formulation. 

10.1.2.4 Transformation Variables 
Transformation variables transform the location, time availability, unit or form characteristics of an item 

(although other inputs may be required to do this).  Examples of such variables include transportation 

variables which alter location, storage variables which alter time availability, unit transformation 

variables that convert the units from, say tons to pounds, or variables which  transform a good from one 

form to another, possibly with the addition of other inputs.  An example of this type of variable includes 

beef slaughter, where pounds of beef on the hoof are converted into hanging carcass beef.  

The variable X5 in the LP example given by (1) - (9) is a transformation variable depicting transformation 

at per unit cost I of the resources in constraint (3) into the resources in constraint (4).  Transformation 

variables appear in the storage and transportation examples.  

10.1.2.5 Slack Variables 
Slack variables represent the amount of excess resources (i.e., resources which are unused in production).  

Ordinarily, they have a zero objective function coefficient and a plus one entry in a single constraint.  

Slack variables are defined in association with less than or equal to constraints representing the extent to 

which the endogenous quantity is less than the right hand side.  Slack variables do not play a large role in 

model formulations (although deviation and accounting variables are forms of slack variables).  However, 

slack variables can play an important role in solution interpretation.  Modelers should check which 

resources are left unused (with non-zero slack) and question whether such a situation is reasonable.  

10.1.2.6 Surplus Variables 
Surplus variables are analogous to slack variables; they have zero objective function coefficients and a 

coefficient only in one particular row.  They represent the amount that the left hand side of a constraint is 

greater than the right hand side.  Surplus variables do not ordinarily play a large role in applied modeling.  

However, they may be important in the interpretation of the solution of a model.  For example, the 

magnitude of a surplus variable may indicate the extent to which over-production occurs above a 

minimum requirement.  

10.1.2.7 Artificial Variables 
Artificial variables are most often utilized to make an infeasible problem feasible, allowing the violation 

of equality constraints or minimum requirements.  Artificial variables ordinarily have a large cost in the 

objective function and a coefficient in the particular row with which they are associated.  However, 

artificial variables can play a role in applied modeling.  For example, artificial variables can be used to 

prohibit an infeasible solution from arising in solvers.  Artificial variables also play an important role in 

discovering the causes of infeasibilities, as discussed in the chapter on debugging models. 

10.1.2.8 Step Variables 
Linear programs may involve the approximation of nonlinear phenomena.  Step variables are often used 

in such approximations.  One may, for example, utilize step variables to represent different portions of an 

increasing cost function.  Step variables receive their name from their portrayal of nonlinear functions as 

a series of piece-wise linear steps.  Step variables appear in the separable programming formulations. 
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10.1.2.9 Deviation Variables 
Deviation variables tell the amount by which an endogenous sum deviates from a target value.  Such 

variables are illustrated in the LP model given by (1)-(9) by X7 or X8.  For example, in equation (7), these 

variables indicate the amount kX2 deviates from the target value T.  The variable X7 gives the amount that 

the sum is over the target while the variable X8 gives the amount the sum is under the target.  These 

variables are analogous to surplus and slack variables; however, they may have an objective function 

coefficient which reflects costs or revenues associated from "missing" the target.  These variables will 

work properly as long as the objective function is properly structured as  explained in the multi-objective 

programming chapter.  Deviation variables are also an important part in the LP approaches to regression 

(as used in the absolute value formulation) and in the MOTAD formulation.  

10.1.2.10 Accounting Variables 
An accounting variable is typically used to indicate the value of endogenous sums so that the analyst need 

not manually summarize the solution.  The variable X6 in equation (6) is an example of this type of 

variable.  These variables are also prominently featured in the section on purposeful modeling. 

10.2 "Violations" of the Algorithmic Assumptions 
The algorithmic assumptions of LP hold for individual variables within a linear program but not 

necessarily for the total process represented.  Thus, modeling techniques can be used to generate 

formulations which, for practical purposes, invalidate the algorithmic assumptions.  Let us consider 

models which nominally appear to violate each of the algorithmic assumptions.  

10.2.1 Nonproportional Example 
It is possible to satisfy the algorithmic assumptions regarding proportionality while formulating 

nonproportional problems.  For example, suppose a production process exhibits diminishing returns to 

scale (i.e., doubling the level of inputs does not double the output).  This may be modeled as follows:  

0,Z,Z,X,XY,

4X

4X

0Z4X4X

0Z3X3X

01.2X6XYs.t.

8ZZ10YMax

2121

2

1

221

121

21

21















In this model, a single output Y is produced from two production processes depicted by X1 and X2 with 

X1 and X2 upper bounded at four.  The production processes utilize two inputs denoted by Z1 and Z2.  

Variable X1 uses three units of the first input and four units of the second input and produces six units of 

the output Y.  Variable X2 uses the same mix of inputs, but produces 1.2 units of output which is one-fifth 

the amount produced by X1.  When inputs are used in the combination 4 units of the second input to 3 of 

the first, then for any combination between zero and 12 units of the first input (along with 16 units of the 

second), six units of output are produced per 3Z1 and 4Z2 used in combination.  However, after using 12 

units of Z1 and 16Z2, the production process X2 must be used yielding a marginal product of 1.2 units of 

production for the inputs used in the same proportion.  In this example, doubling the level of input usage 

does not result in a doubling of output, but rather in only a 20 percent increase.  
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Are the algorithmic assumptions violated?  Yes and no.  They are not mathematically violated but they 

are conceptually violated.  The assumptions hold for the individual activities, for example, going from X1 

= .5 to X1 = 1 would involve the doubling of the inputs, and a doubling of outputs.  However, because of 

the upper bound constraint on X1, the solution X1 = 4 is feasible, the solution X1 = 8  is not.  

Consequently, the model must use X2 yielding less output per unit of input.    

In general, the proportionality assumption can be relaxed using multiple variables.  The joint product 

section of chapter 7, as well as the separable programming and nonhomogeneous of degree one sections 

of chapter 9 provide further examples.  Formal relaxation of this assumption is done through a number of 

techniques including integer, quadratic, and nonlinear programming.  A reconciliation of LP modeling 

with the concept of diminishing returns is presented in the separable programming sections.  

10.2.2 Non-Additive Example 
Models may also be constructed which appear to violate the additivity assumption.  Suppose a production 

process involves two inputs which can be substituted in production.  This may be modeled as  

follows:  

0.X,X,XY,

r4X2XX

rX2X4X

02X2X2XYs.t.

3YMax

321

2321

1321

321









 

Note this formulation depicts the production of Y using production processes X1, X2, or X3.  Each process 

produces 2 units of Y; however, inputs are used in different proportions.  X1 uses four units of input 1 and 

one unit of input 2; X2 utilizes equal combinations of the two inputs, while X3 uses one unit of input 1 

with four units of input 2.  The formulation is constrained by input availability where the quantity inputs 

available are designated as r1 and r2.  

Now let us illustrate the nonadditive nature of this formulation.  Suppose equal amounts of the inputs are 

available (r1 = r2), then it would be optimal to produce in a pattern utilizing the inputs in equal 

proportions.  Note that by producing X1 and X3 in equal amounts, the inputs would be used in equal 

proportion, i.e., setting both variables to one would produce 1.6 units of output while utilizing 2 units of  

inputs of r1 and r2.  Thus, 1.6 units of output are attained when using  0.4 units of each variable.  

However, when activity 2 is utilized at least two units of output are produced when using two units of 

each input.  Total input usage is the same in both cases, however, more production arises out of the 

second production process then by adding the output of the first and third process.  Thus, we get more out 

of using the inputs together, f(X + Y), than we do separately, f(X) + f(Y).  

Does this violate the algorithmic assumptions?  Within the model the production processes are  

strictly additive.  Combination of any group of X's leads to an additive output effect.  However, by 

utilizing different variables, a production process may be represented which is not strictly additive.   

Thus, one can usually handle nonadditive cases between variables by including "better" variables which 

are more productive (i.e., X2 above).  Nevertheless, the additivity assumption always holds for the 

individual variables.  It may not hold for the model through the combination of variables.  This 

assumption is formally relaxed by the models covered in the nonlinear, price endogenous and risk 

chapters.  

10.2.3 Uncertainty Examples 
The certainty assumption may also be relaxed.  Suppose we model a production process involving, a cost 
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of $3 in period 1 but that, in the second time period we are uncertain about how much of the product will 

be produced (e.g., harvested).  Suppose that one of two uncertain events can occur in the second time 

period:  no more than 2 units of the product may be sold for a price of $5.00 with a probability of .3 or no 

more than 3 units of product could be sold at a price of $4 with a probability of .7.  This problem may be 

formulated as a classical so-called two-stage optimization problem (Dantzig, 1955).  The formulation is  

0.X,XY,

3X

0XY

2X

0XYs.t.

).7(4X).3(5X3YMax

21

2

2

1

1

21













 

In this formulation a certain cost of $3 is incurred when using variable Y.  In turn, the production of Y 

permits sale under the two probabilistic events.  The amounts sold are denoted X1 or X2 depending upon 

the event.  Resources cannot be shifted between X1 and X2 (i.e., they are two mutually exclusive states of 

nature), thus, there are independent limits on the sale of X1 and X2.  However, Y precedes both.  The 

objective function reflects the maximization of expected profits which are the expected revenue from 

sales less the cost of Y.  

Thus, this formulation explicitly includes uncertainty.  But, is the certainty assumption violated?  Again, 

this formulation simultaneously satisfies and violates the algorithmic assumptions of LP.  We have 

incorporated uncertainty within the formulation, but each variable contains certain coefficients.  However, 

the overall model represents production under uncertainty.  The uncertainty problem has been expressed 

in a problem where the model is certain of the uncertainty.  Additional certainty assumption relaxations 

are discussed in the risk chapter.  The specific example above is a sequential uncertainty, discrete 

stochastic or two-stage stochastic programming with recourse problem.  

10.2.4 Noncontinuous Example 
The continuity assumption when violated involves decision variables which are integer valued by nature 

(i.e., the number of cows, for instance).  This maybe relaxed by rounding when in the optimal solution  

the integer variables have very large values.  A problem of this type is as follows:  

integerand0Y  ,X

4,000X 2X

10,000XXs.t.

2X3XMax

21

21

21

21









 

The solution without the requirement that X1 and X2 be integer is X1 = 4,666 2/3 and X2 = 5,333 1/3. The 

model user might be willing to round this solution interpreting the solution as producing 4,667 of the first 

product and 5,333 of the second.  This would clearly not be the optimal solution but might be practical 

and "close enough."  Note, however, that the answer 4,667 and 5,333 slightly violates the second 

constraint.  Nevertheless, decision makers might be willing to adopt this solution.  In a practical problem 

this answer might even be interpreted as 4,700 and 5,300.  

The continuity assumption is not practically relaxed other than by rounding large solution values or by 

solving an integer programming problem.  
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