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 CHAPTER IX:  LINEAR PROGRAMMING MODELING: 

NONLINEARITIES AND APPROXIMATION 

 

 

 This chapter presents LP formulation techniques for representing nonlinear phenomena.  

The formulations fall into transformations and approximation classes.  Transformations deal with 

minimization of the sum of absolute values; minimization of the largest absolute value; and 

maximization of a fraction.  Approximations include grid point based formulations of problems 

with separable and multi-variable functions.   

9.1 Transformations  

9.1.1 Minimization of the Sum of Absolute Deviations  

 Suppose one wishes to minimize the sum of absolute deviations between a set of 

predictions and observations, where the predictions involve endogenously determined variables.  

Let the deviations be represented by:  

   
j

jjiii bXY  

where i identifies the ith observation, i  gives the deviation, Yi an exogenously observed value, 

Xji the exogenous data which go into forming the prediction of Yi, and bj the endogenous 

variable levels.  The term Yi minus the sum of Xji bj gives the difference between the observed 

level Yi and its prediction given by (Xji bj).   

A LP constraint set is formed by moving the  Xjibj term to the left side of the equation.  

    
j

ijjii YbX  

The basic problem of minimizing the summed absolute values of all i  is:  

jandiallforb

iallforYbXts

Min

ji

j

ijjii

i

i

00

..


















 

The variables in this formulation are i and bj. The i are unrestricted in sign as are the 

bj's. The variables in this formulation are i and bj. The i are unrestricted in sign as are the bj's. 

εi  Yi

j

Xji bj
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This problem is not a LP problem because of the nonlinear absolute value function.  However, it 

can be transformed into a LP problem.  First, we substitute for i , writing it as the difference of 

two non-negative variables: 

  iii  

i can take on negative values if i   i ;  conversely, if 
i  i  , positive values result. 

The resultant problem is 

jandiallforb

iallforYbX

Min

jii

j

ijjiii

ii

i

00,



















 

This problem is still nonlinear because of the absolute value term.  However the absolute value 

terms can be simplified whenever either i or i equals zero as the consequent absolute value 

reduces to zero plus the other term.  Algebraically, if the product of the deviation variables is 

zero, i.e., 

,0*  

ii  

then the absolute value term can be written as the sum of the two variables 

0* 







ii

iiiiii

whenever
 

Imposing the restriction that one or the other variable is zero, the formulation becomes 

 

 

jandiallforb

iallfor

iallforYbXts

Min

jii
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j

ijjiii

ii

i

00,
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..
























 

This is an LP formulation except for the constraint on the product of 
i and 

i .  However, this 

constraint can be dropped.  Consider a problem with only one observation Y without X and b.  

Under this case the formulation reduces to 

Min
i

ε
i

s.t. ε
i

j

X
ji

b
j

Y
i

for all i

εi

<

>
0 bj

<

>
0 for all i and j
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0, 











Y

Min

 

Rearranging the first constraint we obtain 

  Y  

In turn, tabling alternative values for Y (i.e., consider Y=4, Y=-6), including possible values of 
  ,   and the resultant objective function sum yields 

Y = 4 Y = -6 

       + 
         + 

  

4 0 4* 0 6 6* 

16 12 28 14 20 34 

Z + 4 Z 2Z + 4 Z Z + 6 2Z + 6 

* These cases are the only ones in which 
   * 

 equals zero. 

In the Y=4 case,  has to equal  +4.  The left most part of the table gives several alternatives 

for this.  The first is   =4 and  = 0, leading to a sum (   +  ) of 4.  The second alternative 

(16 and 12) gives an objective function sum of 28.  In general, for any choice for  = Z, the, 

value must equal Z+4, and the objective function value becomes 2Z+4.  Clearly, when 2Z+4 is 

minimized and Z is non-negative, the minimum occurs at Z=0, implying  = 0.  A similar 

conclusion can be reached for the negative Y case.  Thus, minimization will automatically cause 
i * 

i  to equal zero, and the nonlinear constraint is not necessary.  Consequently the final 

formulation becomes 

 

which is a linear program.  This problem solves the original problem.  The nonlinear problem has 

been transformed into an equivalent LP.  

9.1.1.1 Example  

j, and i allfor      0    b        0             ,               

i allfor    Y    b                      s.t.

)   (Min  

j

-

ii

ij

j

-

ii

i

-

ii





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






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 Suppose a linear equation is to be fit predicting raw orange price as a linear function of 

the quantity of juice and fresh oranges sold given the following data:  

Price of Raw Oranges Quantity of Oranges Sold  Quantity of Juice Sold 

10 8 5 

5 9 1 

4 10 9 

2 13 8 

6 15 2 

9 17 3 

Assume the prediction equation is Yi = b1 Xi1 + b1 Xi2, where b0 is the intercept, b1 and b2 are the 

prediction parameters on the quantity of oranges and juice sold, respectively.  Define Xi1 and Xi2 

as the observations on the quantity of oranges and juice sold, respectively; and Yi as the observed 

price.  Suppose the desired criteria for equation fit is that the fitted data exhibit minimum sum of 

the absolute deviations between the raw orange price and its prediction.  The formulation would 

be  

iallforbbb

iallforbXbXbYts

Min

i

iiilii

i

i

0,,0

..

210

220














 

The equivalent LP formulation is 

 

 

iallforbbb

bbb

bbb

bbb

bbb

bbb

bbbts

Min

ii

ii

i

0,,0,

3179

2156

8132

9104

195

5810..

210

21066

21055

21044

21033

21022

21011



































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Moving the endogenous variables (i.e., the  's and bj's) onto the left-hand side and substituting 

for the variables which are unrestricted in sign (b0,  b1, b2) yields the final formulation given in 

Table 9.1.  The GAMS formulation for this problem is called ABSOLUTE.  The objective 

function minimizes the sum of the deviation variables subject to constraints relating the deviation 

variables to the difference between the observed and forecast levels for each observation.  The 

coefficients on the intercept are plus ones; the coefficients on the other parameters (b1, b2) are the 

observed levels.  The right hand sides are the observed prices to be forecast.  

The resultant solution yields an objective function value of 11.277, and the solution is shown in 

Table 9.2.  The predictive equation yielded by this problem reveals that the price of oranges is 

predicted by the equation 3.426 + (0.191 * the quantity of raw oranges) - (0.149 * the quantity of 

juice).  This equation goes exactly through observations 2, 3, and 5 while nonzero deviations 

exist for observations 1, 4, and 6. The dual to this problem requires that the shadow prices be 

between -1 and +1.  The dual variables equal these extreme limits when the deviation variables 

are in the solution.  This is shown by the shadow prices on the observations 1, 4, and 6.  

9.1.1.2 Comments  

The minimization of total absolute deviations formulation has been used in three settings:  the 

solution of regression problems (Charnes, Cooper and Ferguson; Klein; Fisher (1961); Wagner 

(1959); Wilson); goal programming problems (as covered in the multiple objective chapter), and 

risk analysis (as in the risk modeling chapter).  The regression formulation is commonly used 

when non-normal errors are expected (see Wilson for discussion). 

9.1.2 Minimization of Largest Absolute Deviation  

Models can involve minimization of the largest absolute deviation rather than the sum (i.e., the 

maximum forecast error using the so-called Chebyschev criterion).  Such a formulation would be 

expressed as in the equations 

 

 

jandiallforb

iallforbXYts

MaxMin

ji

j

jjiii

i
i

0,

..










  

where the variable i  is the deviation under the ith observation and bj is the jth parameter in the 

forecast equation.  The other symbols are as defined in the previous section.  The problem 

formulation is straight forward.  Suppose that we define a variable  (with out a subscript) which 

will equal the largest deviation and introduce two equations for each observation (I):  
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




















jji

j

i

jji

j

i

bXY

bXY

 

These equations require to be greater than or equal to the deviation and the negative of the 

deviation for each observation.  Thus, will be greater than or equal to the absolute deviation 

from each equation.  Taking a simple example without b variables, with observations on Y 

equaling -3, 2, and 7, then these equations become  

 

Observed Constraints 

Yi    Yi     -Yi 

-3         -3           3 

2          2     -2 

7         7     -7 

 

Clearly,  cannot be less than 7 (the largest absolute deviation in the model).  Since the 

objective function minimizes  subject to these two constraints for each observation, the model 

collectively minimizes the maximum absolute value.  The composite linear program is:  

jallforb

iallforYbX

iallforYbXts

Min

j

ijji

j

ijji

j

00

..
















 

 

9.1.2.1 Example  

 Utilizing the data from the previous example with the restrictions that the intercept term 

b0 is unrestricted in sign but that the parameter on b1 be non-positive while the parameter b2 is 

non-negative.  The resultant formulation is  

 

Rows  b0 b1 b2  

Objective 1             Minimize 

1+ -1 -1 -8 -5  -10 

1- -1 1 8 5  10 

2+ -1 -1 -9 -1  -5 
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2-- -1 1 9 1  5 

3+ -1 -1 -10 -9  -4 

3- -1 1 10 9  4 

4+ -1 -1 -13 -8  -2 

4- -1 1 13 8  2 

5+ -1 -1 -15 -2  -6 

5- -1 1 15 2  6 

6+ -1 -1 -17 -3  -9 

6- -1 1 17 3  9 

   1   0 

    1  0 

where all variables are non-negative and the GAMS formulation is called LARGE.  This 

problem solution yields an objective function value of 3.722 with a variable and constraint 

solution as shown in Table 9.3.  

 The solution shows the regression line of the price of oranges is equal to 7.167 - 0.111 

times the quantity of oranges.  The maximum absolute deviation is present at the first, fourth and 

sixth observations equaling 3.722.  

9.1.2.2 Comments  

 The above formulation solves the Chebyshev criterion problem as discussed in Wagner.  

This model form results in shadow price sum equaling 1 due to the duality constraint imposed by 

the form of  

, as observed in the solution.  Such a criterion has not been applied widely, but Wilson and 

Wagner give references. 

9.1.3 Optimizing a Fraction  

 Charnes and Cooper (1962) present a LP formulation involving optimization of a 

fraction.  This formulation allows problems maximizing such things as the average rate of return.  

The problem is  

j allfor 0X

i allfor bXas.t.

Xdd

XCC

Max

j

i
j

jij

j
jj0

j
jj0









 

 

where the denominator is strictly positive 


j

jj0 0Xdd   
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Note there are constants in both the numerator and denominator accounting for exogenous terms 

which are not a function of the decision variables.   

 Transformation into a linear program requires several manipulations and substitutions, 

resulting in an exact transformation of the problem.  First, define a variable y0 which equals one 

over the denominator 

1

j
jj00 Xddy











  

or equivalently   


j

jj0

-1

0 Xddy  

Multiplying both sides of this relationship by y0 yields 

 
j

0jj00 1yXdyd  

The new variable y0 is substituted into the above formulation, with the above relationship 

imposed.  The net result is: 

.0X           ,y

1yXdyd

i allfor by/yXas.t.

yXCyCMax

j0

j
0jj00

i
j

00jij

j
0jj00









 

Note that each aijXj term has been multiplied by y0/y0 which is simply 1.  This will be convenient 

later.  Now we introduce a change of variables.  Let us define a new variable, yj equal to the old 

variable Xj times y0. 

yj  =  Xj y0  

Substituting this into the formulation above yields 

0.y,y

1ydyd

i allfor by/yas.t.

yCyCMax

j0

j
jj00

i
j

0jij

j
jj00









 

 

This formulation is not a LP problem; the term yj/y0 appears in the first constraint equation. 

However,given that y0 (i.e. the reciprocal of the denominator) is strictly positive we can multiply 

both sides of the equation through by it without altering the direction of inequality 
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ybya 0i
j

jij   

in turn, rewriting the second equation yields the LP formulation 

j allfor 0y,y

1ydyd

i allfor 0yayb-s.t.

yCyCMax

j0

j
jj00

j
jij00

j
jj00









 

which is an exact transformation of the original fractional program.  Once this problem has been 

solved, the levels of the original optimum decision variables are easily discovered by performing 

the reverse transformation that Xj equals yj divided by y0 

Xj  = yj / y0. 

 The LP form includes a new variable with coefficients in the matrix which are the 

negative of the right hand sides times a new variable ( -bi y0).  A constraint is also added 

requiring the constant term in the denominator times the new variable ( d0 y0) plus the 

denominator terms involving the transformed variables to equal 1.  The transformed model uses 

the same aij's as the original.  Its  right hand sides are all 0's except the one in the new constraint.  

The objective function does not have a denominator term and the objective function altered to 

include the numerator constant times the new variable y0.  Model selection yields the optimal y's 

(y0,y1,...,yn).  Subsequently, then we transform to obtain X. 

 

9.1.3.1 Example  

 Suppose that it is desirable to solve the following problem. 

0X,X    

204XX0.3

6XX5.1s.t.

4.1X

1.7X

4X

X8.1

10
Max

21

21

21

2

2

1

1













 

Then the transformed problem is 



copyright 1997 Bruce A. McCarl and Thomas H. Spreen 10 

0,y,yy

1y1.4y4.0y10

0y4y3.0y20-

0yy1.5y6-s.t.

y1.7y1.8Max

210

210

210

210

21











 

Once a solution to this problem is obtained, the values of the original variables are recovered 

using the formulas 

X1 = y1 / y0 

X2  = y2 / y0  

The GAMS model is set up in the file FRACTION and the solution is shown in Table 9.4. 

 The solution shows that the reciprocal of the denominator equals .031513 and that the 

decision variables are .042 and .126.  Transforming these variables to their original values by 

dividing them through by the denominator reciprocal yields X1=1.333 and X2=4. Plugging back 

into the original problem, the numerator equals 9.2; the denominator, 31.73, and their fraction 

0.29 (the objective function value reported).  One may also recover the shadow prices.  In this 

case since the rows are multiplied by one over the denominator, the original shadow prices may 

be recovered by multiplying through by the denominator as shown in the scaling discussion in 

Chapter 18 .  Thus the effective shadow price for constraint 1 is 10.85, and constraint 2 is 1.33.  

Constraint 3 has no analogue in the original problem, and thus, the shadow prices are not 

transformed.  

9.1.3.2 Comments  

 This is an exact transformation as long as the denominator remains strictly positive.  The 

formulation fails if y0 equals zero in the optimal solution.  

 Much research has been done on fractional programming.  The original development 

appears in Charnes and Cooper (1962).  A historical perspective and literature review can be 

found in Schaible and Ibaraki. 

9.2 Approximations  
 Approaches to nonlinear problems often utilize approximations.  Such approximations 

may be either one-time or iterative.  Discussion of the one-time approximations constitutes the 

majority of the material below.   

9.2.1 Grid Point Approximations  

 Virtually all one-time approximations use grid points, representing nonlinear phenomena 

as a discrete series of linearized steps.  Such approximations have been used where: a) costs 

increase with production; b) prices decrease as sales increase; and c) production yields decrease 

as input usage increases.  All these cases involve decreasing returns to scale (increasing returns 

to scale are covered in the integer programming chapters).  Approximations for decreasing 
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returns cases use a set of discrete grid points assuming that:  production cost, output prices, 

and/or quantities produced are constant between grid points, but change as we move along the 

grid. 

9.2.1.2 Functions with Separable Variables  

The most common grid point approximation is separable programming.  Separable programming 

deals with problems in which the functions may be of any nonlinear form, but must be separable 

into functions of a single variable.  For example in the two variable case the functions f(x,y) 

must be decomposable into h(x) + g(y).   

Separable programming is usually considered a nonlinear programming technique (Hadley, 

1964); but is commonly used in an LP setting.  The most commonly used form of separable 

programming arose originally with Charnes and Lemke, and was extended by Miller.  The 

formulation yields an LP whenever the objective function terms are concave and the feasible set 

is convex (Hadley, 1964, p. 124).  When these properties do not hold, more general separable 

programming needs to be used.   

Separable programming relies on a set of grid points and constructs an approximation between 

these points.  The approximation is setup so that the approximated value equals the value at the 

base point plus the slope divided by the difference from the base point.  Suppose we wish to 

approximate the function at point X which falls between approximating points  

This can be expressed algebraically by the formula 

     
 X̂ - X

X̂X̂

X̂fX̂f
X̂f  F(X)f(X)

k

k1k

k1k
k








  

In this case, if we write X as a convex combination of kX̂  and 1kX̂   

0,

1

X̂X̂X

1k

1k

1k1kk













k

k

k







 

where the new variables k and 1k are the amount of the kth and k+1st approximation points 

used.  

Substituting this relationship into the above equation for F(X) we get the equation 

     1k1k X̂fX̂fXF  kk   

where the function value is approximated by a convex combination of the function evaluated at 

the two adjacent grid points.  This can be represented by a LP problem.  Namely given the 

separable nonlinear problem 
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 

 

0X        

i allfor ,bXgs.t.

XfMax

j

i
j

jij

j
jj







 

we may form the approximating problem  

 

 
 




















 and j allfor 0

j allfor 1

i allfor ,bX̂gs.t.

X̂fMax

j

j

i
j

jijj

j
jjj









 

 

where jX̂ is the th  approximating point for Xj and   jjj X̂X   

This formulation involves a change of variables.  The variables jµ give the amount of the µth 

grid point used in the approximation of the jth variable.  The terms  jj X̂f and  jij X̂g give the 

values of the objective function and constraint terms evaluated at the various grid points.  The 

new constraints on the  variables cause a convex combination of the grid points to be chosen for 

each variable approximated.  The functions must be properly behaved, otherwise the nonzero 's 

in the solution will not necessarily be adjacent; and the approximation will not work properly 

(Hadley, 1964).  That is why users of the approximation should be careful to ensure that 

diminishing returns to production are present whenever this approach is being used. 

9.2.1.1.1 Example 1.  

 Suppose we approximate the problem. 

0ZY,X,

0Z-2Y

03Y-X

Z.25Z)  (1-X.25X) - (4Max









 

To set this problem up, suppose we use values of X equal to 1,2,3,4,5,6 and the same values for 

Z. The separable programming representation is in Table 12. 

Note that 2 stands for the amount of the gridpoint X=2 utilized having an objective value equal 

to the nonlinear function of X evaluated at X=2.  The GAMS formulation is called SEPARABL 

and the resultant solution is shown in Table 9.5.  The objective function value is 7.625.  The 

model sets 4 = 5 = 0.5 amounting to 50% of gridpoint X4 and 50% of X5 or X=4.5.  The value 

of Y = 1.5.  Simultaneously 1 = 1 implying Z = 3. Now, let us examine the adequacy of the 
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approximation.  The objective function approximation for X has 12(.5) + 13.75(.5) = 12.875, 

while the true f(X) = 12.9375.  The Z approximation has zero error in this case.  The modeler 

could either accept this as an adequate approximation or enter new grid points in the 

neighborhood of this solution. 

9.2.1.1.2 Example 2:  Separable Terms in the Constraints  

 The above example deals with the approximation of separable objective function terms 

which McCarl and Onal found computationally unattractive.  On the other hand, separable 

programming can also approximate constraint nonlinearities, which McCarl and Onal found 

attractive.   

 Suppose we wish to approximate the following problem 

0Y                X,

0).2Y-2Y(20-Xs.t.

3Y                -3XMax
2



  

Selecting a grid for Y of 0, 1, 2, 3, 4 and 5, the separable programming formulation becomes 

0,,,,,,

1

0258.242.242.238.2120..

151296303

654321

654321

654321

654321

















X

Xts

XMax

 

The resultant GAMS model is in the file CONSEPAR and the solution is given in Table 9.6.  We  

may plug this solution back into the original problem to evaluate the adequacy of the 

approximation.  The values of  imply that Y equals 3. However, optimization using calculus 

shows the optimum to be at Y equals 2.5, giving a yield of 23.75 and profits of 63.75.  Thus, this 

demonstrates a 0.235 percent error of approximation.  Again, one could go on to add more grid 

points, or accept the approximation error.  

9.2.1.2 Gridpoints and Gridpoint Refinements  

 The separable formulation uses gridpoints to approximate functions.  Readers may 

wonder how to define such points.  Gridpoints are always defined in the context of the applied 

problem.  The gridpoints should provide a reasonable approximation of the function in the 

domain of the answer, including points both close to the expected answer as well as points 

depicting functional extremes (Geoffrion (1977) discusses the importance of the extreme points).  

Even spacing of the gridpoints is not required.  Guder and Morris show minimum theoretical 

error occurs with equal spacing.  Thus, one could approximate a curve at the points 10, 2, 1, .95, 

.50, .10, .02 and .01.  The gridpoint also may be redefined given a solution where, for example, 

one might find a solution of X = 2.50, discover the approximation is inadequate at that point, and 

then enter more gridpoints in the neighborhood of 2.5.  Gridpoint refinement schemes are 

discussed in Bazaraa and Shetty.  Implementation of a gridpoint refinement scheme is discussed 

in Kochenberger, Woolsey and McCarl. 
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 9.2.1.3 Gridpoint Approximation of Functions of Multiple Variables  

Gridpoint approximation may also be applied to functions containing multiple variables.  In this 

case a multi dimensional grid is defined.  This approach generally only works when one is 

approximating functions that depict a concave objective function and a convex constraint set.1  

The method involves techniques similar to separable programming and was developed by 

Dantzig and Wolfe.  This method is discussed in Duloy and Norton; Shapiro (1979b); Bradley, 

Hax and Magnanti; and Lasdon.  One of the possible formulations on this scheme which can be 

used is  

 

0Y                      X,

j allfor bY                        

0Y,...,Y,Y,YH-Xs.t.

Yd                 CXMax

ij

n321

j
jj









 

where there are multiple inputs and one output (for simplicity).  The output X is a function of the 

levels of the multiple inputs (Yj).  Also the function H(Y1...Yn) has to be such that this problem 

has a convex constraint set.  

We will discuss two versions of this formulation.  The first version deals with cases where H is 

homogeneous of degree one and the second where H is homogeneous of degree less than one.  

 

9.2.1.3.1 Homogeneous of Degree 1  

 The function H being homogeneous of degree 1 implies that  

)()( YHYH    

Suppose we choose a set of rays juŶ which depict the way each Yj participates in each ray and 

define  the variable u  which is the amount of ray juŶ  which is used.  Then we know that  

)()(
^^

juuiuu YHYH    

i.e., the function  times the ray values equal  times the function evaluated at the base ray 

point.  The generalized programming formulation then becomes  

                                                 
1      Readers unfamiliar with concavity and convexity should look at the Non-

Linear Programming Theory chapter. 
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janduallforYX

jallforbY

jallforYY

YHXts

YdCXMax

ju

jj

jjuu
u

juu
u

jj
j

0,,

0

0)(..
^

















 

 The approximating model has the rays represented by a variable indicating how much of 

a particular ray Yju combination is used.  They should be defined with unique ratios of the 

variables within  

juŶ  

 (i.e., 1:1, 1:4, 4:1, etc., as below).  

Example 

 This formulation is probably best illustrated by example.  Consider the problem  

0,,

50

021..

100204

21

1

25.0

2

75.0

1

21









YYX

Y

YYXts

YYXMax

 

Suppose we select a set of combinations for Y1 and Y2, given in Table 9.7, showing that when 1 

unit  

of Y1 and 4 units of Y2 are used, X=29.7.  Similarly, when 8 units of Y1 and 8 units of Y2 are 

used, X=168.  The resultant formulation is  

 

0,,,,,

50

084

048

04.591687.29..

100204

21321

1

2321

1321

321

21













YYX

Y

Y

Y

Xts

YYXMax









 

An isoquant graph of this situation is portrayed in Figure 9.1.                        

 Note that the three lines in the graph stand for the combinations 4 to 1, 1 to 1 and 1 to 4.  

The connected line in the graph is the isoquant for output equals 168, and the linear segments 

show how the production process is represented.  
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 The GAMS formulation of the problem is called HOMOGEN and the solution is given in 

Table 9.8.  This solution implies input use in the ratio 4:1.  We may wish to put more rays in the 

neighborhood of 4:1 or we may be willing to accept the approximation error.  

9.2.1.3.2 Homogeneous of Degree Less Than One  

 Now we turn to the case where we do not have homogeneity of degree one.  In this case, 

the function evaluated at  times the vector of inputs Y, is less than  times that functional 

value evaluated at one unit at Y providing  is less than or equal to one.  

)()( YHYH    

Consider the multiplicative function 

. xb a    Yb ...Yba    X j
j

j

nn2211  Yb  

We may set up a vector representation 

Y juu     Yj
  

Under this substitution the function becomes 


 j

jj bb
ujuY )a(    X

j

 

But, the sum of the exponents on u is less than one 

.1
j

jb  

 Thus, as one moves  units along the ray the function only increases by a factor of  to the  bj 

which results in an increase less than  X.  This problem exhibits diminishing returns to scale 

because as u is increased, less and less output is produced per unit increase in u .  This 

particular problem, however, may be formulated as a linear problem.  This approach has been 

called the "column generation method" as discussed in Shapiro (1979b).  Specifically, suppose 

we choose grid points Yju and a set of a priori multipliers uL .  The problem then becomes  

0,,

1

0)(

0)(..





















juL

jj

uL

Lu

juLuLju

Lu

uLuLju

Lu

jj

j

YX

jallforbY

jallforYY

YHXts

YdCXMax








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The variables are uL where u identifies the input combination and L the length along that input 

combination.  The parameter uL gives how far along the uth ray we move.  The sum of the  

variables are then equal to one.  This is a combination of the separable programming and 

homogeneity of degree one formulations above. 

Example 

Consider the example problem  

 

0Y

10

0

2-

   

,

Y

Y21-X

2Y-0.5XMax

2

2

1

1

25.
2

.5
1

1







Y

Y

Y
 

 

where the exponents sum to 0.75 so the function is homogeneous of degree less than one.  If we 

then put in three different approximation rays 1 to 1, 1 to 2 and 2 to 1 in these cases, the resultant 

values of X are  

75.

3

75.

2

75.

1 25,7.29,21   XXX  

We obtain a function that along the lines X is equal to some constant times  0.75.  We then 

develop a table of approximations (Table 9.9).  The resultant formulation is in Table 9.10 and in 

the file NONHOMOG.  Note, here we have four combinations for each ratio of inputs, each 

representing different multiples of uL .  The convexity constraint is needed to insure that the 

model uses no more than one unit of the first step and rather is forced to go into the latter steps of 

the production process.  The solution of the problem is given in Table 9.11 and shows that the 4th 

step of the second ray is used resulting in the value for the variables of X=99.3, Y1= 10, Y2= 5 

with the objective function equal to 19.65. 

9.2.1.3.3 Comments  

 We get many classroom questions as to why we have presented the above generalized 

approximation formulations.  There are two reasons.  First, they constitute an approximation that 

can be used when representing a relationship between multiple inputs and outputs (i.e., see Onal 

et al.).  Such a case occurs in agricultural models when approximating fertilizer response 

functions containing two or more fertilizer inputs or when intercropping is modeled.  

Approximations have also involved more complex production functions, where the output is a 

function of multiple inputs.  Second, following Dorfman (1953), this can be used as a conceptual 

model.  Often modelers include a number of activities for the production of a good where the 

input combinations and outputs arise from experiments or observed behavior.  In this case, one is 

representing the underlying production process without ever estimating it.  Such a procedure is 

utilized in Erhabor and Job.  
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 A second question involves the manner in which grid points are chosen.  Again, as in the 

separable programming case, this is done in accordance with the problem.  For example, when 

one knows common levels of input use, one might construct several combinations of deviations 

from these numbers in small increments.  Thus, when fertilizer and herbicide are used commonly 

in the ratio 50 lbs. fertilizer to 1 gallon herbicide one might add 5 activities involving:    1) 1 gal. 

herbicide with 50 lbs. of fertilizer; 2) 1 gal. herbicide with 47.5 lbs. of fertilizer; 3) 1 gal. 

herbicide with 45 lbs. of fertilizer; 4) 1 gal. herbicide with 52.5 lbs. of fertilizer and 5) 1 gal. 

herbicide with 55 lbs. of fertilizer.  In turn, the user should examine the model solution and see if 

the solutions chosen use the most extreme ray for an input (e.g., the least amount of herbicide 

possible per unit of fertilizer).  In such a case one should consider entering alternatives 

expanding the space represented.  The representation is only satisfactory when the solution is 

interior to the cone of approximation points used and not on its boundary (Shapiro and Geoffrion 

provide theoretical explorations of related topics).   

9.2.2 Iterative Approximations  

 In addition to the step approximation formulations above, there are a number of iterative 

approximations which can be used.  We will not cover these in depth; they are largely numerical 

techniques.  Those interested in alternative approaches should examine Zangwill's convex 

simplex method, Dembo's geometric programming condensation method, or the methods 

reviewed in Himmelblau; Reklaitis et al; or Bazaraa and Shetty.   

 We will explain one technique for illustrative purposes.  The iterative approximation 

presented here was developed by Griffith and Stewart and is based on the concept of a Taylor 

series expansion.  This method solves the problem  

 

GXL

)(g

)(

jj 



j

bX

XfMax

 

using a first order Taylor series expansion.  A first order Taylor series expansion assumes that a 

functional value can be represented as a first order expansion of the function evaluated at a base 

point plus the derivative of that base point times the difference of X from the base point.  The 

approximating problem then is given by  

jjj

iiii

GXL

bXXXg
dX

d
XgXgts

XXXf
dX

d
XfMax







)()()()(..

)()()(

000

000

 

where given a base point X0 we approximate the value at any X using a LP formulation to find 

the difference from X0 that the solution will move where all of the terms involving X0 are 

constants.  This is done by substituting in a variable µj such that  



copyright 1997 Bruce A. McCarl and Thomas H. Spreen 19 

X   -   X      0jjj
  

to obtain the LP problem 

   

   

 





jjj

oiijo

j
j

jo

j
j

o

LimLim

XgbXg
dX

d

Xf
dX

d
XfMax







 

where the limits are developed relative to an exogenous parameter j 

 

 
 ojjjj

jojjj

XGLim

LXLim









,min

,min




  

Here the variables are given by 


*

0
1

0 j

k
j

k
j XX   

Then, given any initial choice of variables at the kth iteration, the variable at kth+1 iteration is 

equal to that variable at the kth iteration plus the optimal change variable value  

*

j  The change variables are artificially constrained to be limited by some quantity j.  It is 

desirable that this quantity becomes smaller as iterations proceed.  

9.2.3 Other Approximations  

 We have covered only a few of the approximations which are possible in the area of 

nonlinear programming.  There are also other approximations based on exotic transformations 

for various sorts of problems; e.g., see Dembo; or McCarl and Tice.  Many approximations may 

be used given special problem structures.  Their use depends on the ingenuity of the modeler.  

What we have attempted to do above is give some of the basic techniques and references.  
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Table 9.1. Minimization of Sum of Absolute Deviations Formulation 

 1  1  2  2  3  3  
4  4  5  5  6  6  b0 b1 b2  

Obj 1 1 1 1 1 1 1 1 1 1 1 1    Min 

1 1 -1           1 8 5 =10 

2   1 -1         1 9 1 =5 

3     1 -1       1 10 9 =4 

4       1 -1     1 13 8 =2 

5         1 -1   1 15 2 =6 

6           1 -1 1 17 3 =9 
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Table 9.2. Solution of Minimization of Absolute Deviation Sum Example 

Objective function = 11.277 

Variabl

e 

Value Reduced Cost Equation Slack Shadow Price 

1  5.787 0 Obs 1 0 1 

1  0 2.000 Obs 2 0 -0.660 

2  0 1.66 Obs 3 0 0.191 

2  0 0.340 Obs 4 0 -1 

3  0 0.809 Obs 5 0 -0.532 

3  0 1.191 Obs 6 0 1 

4  0 2.000    

4  2.723 0    

5  0 1.532    

5  0 0.468    

6  2.766 0    

6  0 2.000    

b0 3.426 0    

b1 0.191 0    

b2 -0.149 0    
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Table 9.3. Solution of Largest Absolute Deviation Example 

Variables Value Reduced 

Cost 

Equation Slack Shadow 

Price 

 3.722 0 1+ 0 -0.222 

b0 7.167 0 1- 7.44 0.0 

b1 -0.111 0 2+ 4.89 0.0 

b2 0.000 2.056 2- 2.56 0.0 

   3+ 5.78 0.0 

   3- 1.67 0.0 

   4+ 7.44 0.0 

   4- 0 -0.5 

   5+ 3.22 0.0 

   5- 4.22 0.0 

   6+ 0 -0.278 

   6- 7.44 0.0 

 

 

 

 

Table 9.4. Solution to the Example for Optimizing a Fraction 

Objective function = 0.2899  

Variable Value Reduced Cost Equation Slack Shadow 

Price 

y0 0.032 0 1 0 0.342 

y1 0.042 0 2 0 0.042 

y2 0.126 0 3 0 0.290 

 

 

 

 

 



copyright 1997 Bruce A. McCarl and Thomas H. Spreen 

Table 9.5. Solution to the Step Approximation Example 

Objective function = 7.625 

Variable Value Reduced Cost Equation Slack Shadow Price 

1 0 -3.000 1 0 1.750 

2 0 -1.500 2 0 2.625 

3 0 -0.500 3 0 5.000 

4 0.5 0 4 0 2.625 

5 0.5 0    

6 0 -0.500    

Y 1.5 0    

1 0 -1.250    

2 0 -0.375    

3 1 0    

4 0 -0.125    

5 0 -0.750    

6 0 -1.875    

 

Table 9.6. Solution to the Constraint Step Approximation Problem 

Objective function = 63.6 

Variable Value Reduced Cost Equation Slack Shadow Price 

X 23.2 0 1 0 3 

1 0 -3.6 2 0 63.6 

2 0 -1.2    

3 1 0    

4 0 0    

5 0 -1.2    

6 0 -3.6    
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Table 9.7. Set of Y1, Y2 Combinations for  

Homogeneous of Degree 1 Example 

X Y1 Y2 

29.7 1 4 

168 8 8 

59.4 4 1 

 

 

 

 

Table 9.8. Solution to Example Problem for Homogeneous of Degree 1  

Objective function = 719.8 

Variable Value Reduced Cost Equation  Slack Shadow Price 

X 742.5 0 1 0 4 

1 0 -315.6 2 0 34.4 

2 0 -403.2 3 0 100 

3 12.5 0    

Y1 50 14.4    

Y2 12.5 0    
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Table 9.9. Approximations for the Homogenous of Degree Less Than One 

Example 

X Y11 Y12 X Y12 Y22 X Y13 Y23 

21 1 1 29.7 2 1 25.0 1 2 

59.4 4 4 49.9 4 2 70.6 4 8 

80.5 6 6 67.7 6 3 95.7 6 12 

118.1 10 10 99.3 10 5 140.4 10 20 

 

 

 

 

 Table 9.10. Formulation of the Homogeneous Degree Less than One Example 

Rows X 11 12 13 14 21 22 23 24 31 32 33 34 Y1 Y2 RHS 

Obj 0.5             -2 -2 max 

x bal 1 -21 -59.4 -80.5 -

118.1 

-29.7 -49.9 -67.7 -99.3 -25.0 -70.6 -95.7 -

140.4 

  = 0 

Y bal  1 4 6 10 2 4 6 10 1 4 6 10 -1  = 0 

  1 4 6 10 1 2 3 5 2 8 12 20  -1 = 0 

conve

x 

 1 1 1 1 1 1 1 1 1 1 1 1     1 

Y lim              1   10 
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Table 9.11. Solution to the Homogenous of Degree Less Than One Example 

Objective function = 19.651 

Variable Value Reduced Cost Equation Slack Shadow Price 

X 99.3 0 1 0 0.500 

11 0 -5.506 2 0 2.850 

12 0 -0.856 3 0 2.000 

13 0 0.000 4 0 11.156 

14 0 -0.606    

21 0 -4.006    

22 0 -1.581    

23 0 -0.404    

24 1 0.000    

31 0 -5.519    

32 0 -3.237    

33 0 -4.384    

34 0 -9.434    

Y1 10 0.850    

Y2 5 0.000    
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Figure 9.1 Approximation of Homogeneous of Degree One Example 


