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There is considerable role for judgment when modeling and developing data.  The applied modeler must make 

assumptions regarding the variables, constraints, and coefficients.  These assumptions determine model 

performance and usefulness.  

  In this chapter the identification of structural components and the development of data are discussed.  

The material presented here is reinforced by material in subsequent chapters.  References are made to this later 

material, and readers may wish to consult it for more detailed explanations. 

Before beginning this section, the authors must acknowledge their debt to Heady and Candler's "Setting Up 

Linear Programming Models" chapter and conversations with Wilfred Candler. 

6.1 Structural Component Identification 

The LP problem can be expressed as 

0X

bAXs.t.

CXMax



  

In order to formulate an applied LP problem, one must identify the constraints, variables and relevant 

numerical parameter values.   

6.1.1 Development of Model Constraints 

Heady and Candler categorize LP constraints as technical, institutional, and subjective.  Constraints also arise 

because of convenience or model formulation requirements.  Technical constraints depict limited resources, 

intermediate products, or contractual requirements.  Technical constraints also express complementary, 

supplementary, and competitive relationships among variables.  Collectively, the technical constraints define 

the production possibilities and provide links between variables.  Institutional constraints reflect external 

regulations imposed on the problem.  Examples include credit limits or farm program participation 

requirements.  Subjective constraints are imposed by the decision maker or modeler.  These might include a 

hired labor limitation based on the decision maker's willingness to supervise labor.   Convenience constraints 

facilitate model interpretation and may be included to sum items of interest.  Model formulation constraints aid 

in problem depiction.  These include constraints used in conjunction with approximations.  Within and across 

these groupings, constraints can take on a number of different forms.  A more extensive definition of these 

forms is presented in the LP Modeling Summary chapter.   
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Generally, the constraints included should meaningfully limit the decision variables.  The modeler should 

begin by defining constraint relations for those production resources and commitments which limit production 

or are likely to do so.  This involves consideration of the timing of resource availability.  Often, problems 

covering seasonal production or utilizing seasonally fluctuating resources will contain time desegregated 

constraints.  Heady and Candler argue that multiple constraints are needed to depict availability of a resource 

whenever the marginal rate of factor substitution between resource usage in different time periods does not 

equal one.  Constraints must be developed so that the resources available within a particular constraint are 

freely substitutable.  Cases of imperfect substitution will require multiple constraints.  

  Two other points should be made regarding constraint definition.  First, an LP solution will include no 

more variables at a nonzero level than the number of constraints (including the number of upper and lower 

bounds).  Thus, the number of constraints directly influences the number of nonzero variables in the optimal 

solution.  However, one should not simply define additional constraints as: 1) this usually results in additional 

nonzero slack variables without substantially altering the solution; and 2) one must not impose nonsensical 

constraints. 

   Second, subjective constraints should not be imposed before determining their necessity.  Often, 

subjective constraints "correct" model deficiencies.  But the cause of these deficiencies is frequently missing 

either technical constraints or omitted variables.  For example, models often yield excessively specialized 

solutions which force variables into the solution.  This is often combated by imposing "flexibility" constraints 

as suggested by Day (1963), or discussed in Sengupta and Sfeir.  Often, however, the real deficiency may be 

the depiction of the time availability of resources (Baker and McCarl).  In such a case, the subjective 

constraints give an inadequate model a "nominal" appearance of reality, but are actually causing the "right" 

solution to be observed for the wrong reason.  

6.1.2 Avoiding Improper Constraint Specifications 

LP model constraints have higher precedence than the objective function.  The first major effort by any LP 

solver is the discovery of a feasible solution.  The solver then optimizes within the feasible region. This has 

several implications for identification and specification of constraints.  

First, the modeler must question whether a constraint should be established so it always restricts the values of 

the decision variables.  Often, it may be desirable to relax a constraint allowing resource purchases if the value 

of a resource becomes excessively high.  
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Second, modelers should be careful in the usage of minimum requirement constraints (e.g.,X1+X2 10).  

Minimum requirements must be met before profit seeking production can proceed.  Often purchase variables 

should be entered to allow buying items to meet the requirements. 

Third, judicious use should be made of equality constraints.  Modelers should use the weakest form of a 

constraint possible.  Consider the following example: 

  

15Y

10X

0?YXs.t.

2Y3XMax









 

Where ? is the constraint type (either = or ≤), X depicts sales and Y production?  Further, suppose we have 

made a mistake and have specified the cost of production as a revenue item (i.e., the +2Y should be -2Y).  

Now, if the relation is an equality, then the optimal solution is X = Y = 10 (see file SIXEQ), and we do not 

discover the error (although the dual variable on the first constraint is -2).  On the other hand, if the relation is 

≤ then we would produce Y = 15 units while selling only X = 10 units (see file SIXLT).  Thus, the weaker 

inequality form of the constraint allows an unrealistic production pattern indicating that something is wrong 

with the model.  

 

6.1.3 Variable Identification 

LP variables are the unknowns of the problem.  Variables are included for either technical, 

 accounting or convenience reasons.  Technical variables change value in response to the objective function 

and constraints. Convenience variables may not always respond to the objective function.  Rather, they may be 

constrained at certain levels.  These might include variables representing the number of acres of land used for 

houses and buildings.  Accounting variables facilitate solution summarization and model use.    

It is critically important that the technical variables logically respond to the objective function within the range 

of values imposed by the constraints.  For example, one could setup a farm problem with variables responding 

to an objective of minimizing soil erosion.  However, farmers choosing acreage may not primarily try to 

minimize erosion; most farmers are also profit oriented.  

Many types of technical variables are possible.  A taxonomy is discussed in the LP Modeling Summary 
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chapter.  

Variables must be in consistent units.  Actually, there are no strict LP requirements on the variable units.  

However, the intersection of the variable and constraint units impose requirements on the aij's as discussed 

below.     Now, when can multiple variables be handled as one variable and when can't they?  There are 

several cases when multiple variables must be defined:  

(a) When more than one process can be used to produce the same output using different  

resource mixes;  e.g., the production of an item using either of two different machines.  

(b) When different processes produce different outputs using common resources; i.e., one can  use 

essentially the same resources to produce either 2 x 4 or 4 x 4 sawn lumber.  

(c) When products can be used in several ways; e.g., selling chickens that can be quartered or halved. 

Collectively, different variables should be used where their coefficients differ (i.e., the objective function or aij 

coefficients differ across production possibilities).  However, the coefficients should not be strictly 

proportional (i.e., one variable having twice the objective function value of another while using twice the 

resources). 

Criteria may also be developed where two variables may be treated as one.  The simplest case occurs when the 

coefficients of one variable are simple multiples of another (aij = Kaim and cj = Kcm). The second case occurs 

when one variable uniquely determines another; i.e., when n units of the first variable always implies exactly 

m units of the second. 

6.1.4 Objective Function 

Once the variables and constraints have been delineated, then the objective function must be specified.  The 

variables and constraints jointly define the feasible region.  However, the objective function identifies the 

"optimal" point.  Thus, even with the proper variables and constraints, the solution is only as good as the 

objective function.  Ordinarily, the first objective function specification is inadequate.  Most situations do not 

involve strict profit maximization, but also may involve such things as risk avoidance or labor/leisure 

tradeoffs.  Multiple objective models are discussed in the multi-objective and risk chapters.  Also, ranging 

analysis can be used to discover whether the solution will change with alterations in the objective function.  

6.1.5 Development of Model Structure 
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Model definition is an iterative process.  Consider a simple example where a profit maximizing firm produces 

four crops subject to land and labor limitations.  Suppose that the crops are grown at different times of the 

year.  Crop 1 is planted in the spring and harvested in the summer; crops 2 and 3 are planted in the spring and 

harvested in the fall; and crop 4 is planted following crop 1 and is harvested in the fall. 

The first step in developing a model is to lay out a table with potential variables across the top and 

constraints/objective function down the side.  In this case we start with the layout in Table 6.1 where the 

variables are crop acreages and the constraints are land and labor availability.  We then begin to define 

coefficients.  Suppose ci gives the gross profit margins for crop i.   Simultaneously, land use coefficients and 

the land endowment (L) are entered.  However, the land constraint only has entries for crops 1, 2 and 3, as 

crop 4 uses the same land as crop 1.  Thus, a single land constraint restricts land use on an annual basis. We 

also need a constraint which links land use by crop 4 to the land use by crop 1.  Thus, our formulation is 

altered as shown in Table 6.2, where the second constraint imposes this linkage.  

Now we turn our attention to labor.  In this problem, labor is not fully substitutable between all periods of the 

year, i.e., the elasticity of substitution criterion is not satisfied.  Thus, we must develop time-specific labor 

constraints for spring, summer and fall.  The resultant model is shown in Table 6.3.  Subsequently, we would 

fill in the exact labor coefficients; i.e.; the d's and right hand sides.    

This iterative process shows how one might go about defining the rows and columns.  In addition, one could 

further disaggregate the activities to allow for different timing possibilities. For example, if Crop 1 produced 

different yields in different spring planting periods, then additional variables and constraints would need to be 

defined.  

 

6.2  The Proper Usage of Variables and Constraints 

Students often have difficulties with the definition of variables and constraints.  This section is intended to pro-

vide insight by presenting a number of proper and improper examples.  

The applied LP modeler needs to recognize three concepts when forming constraints and variables.  First, the 

coefficients associated with a variable reflect a simultaneous set of commitments which must occur when a 

variable is nonzero.  All the resources used by a variable must be used to produce its output.  Thus, if a 
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variable depicts cattle and calf production using inputs of land, labor, and feed; then the model will simulta-

neously commit land, labor, and feed in order to get the simultaneous outputs - cattle and calves.  One cannot 

obtain calves without obtaining cattle nor can one obtain cattle and calves without using land, labor, and feed. 

Second, the choice is always modeled across variables, never within a variable.  For example, suppose there 

are two ways of producing cattle and calves.  These production alternatives would be depicted by two 

variables, each representing a simultaneous event. The model would reflect choice regarding cattle/calf 

production within the constraints.  These choices do not have to be mutually exclusive; the model may include 

complementary relationships between variables as well as substitution relationships (i.e. the constraint X-Y=0 

makes X and Y complementary).  

Third, resources within a constraint are assumed to be homogeneous commodities.  Suppose there is a single 

constraint for calves with the calves being produced by two variables.  In turn, suppose calves may be used in 

two feeding alternatives.  In such a case the calves are treated as perfect substitutes in the feeding processes 

regardless of how they were produced. 

While obvious, it is surprising the number of times there are difficulties with these topics (even with 

experienced modelers).  Thus, we will present cases wherein such difficulties could be encountered. 

6.2.1 Improper and Proper Handling of Joint Products 

Joint products are common in LP formulations.  For purposes of illustration, we adopt the following simplified 

example.1  Suppose a chicken is purchased and cut up into four component parts - breasts, legs, necks, and 

giblets - following the breakdown data in Table 6.4.  Also, assume that each chicken weighs three pounds and 

that there are 1,500 chickens available. 

Now suppose that we formulate a profit maximizing LP model.  Such a LP model would involve variables for 

cutting the chickens along with variables for parts sale.  Two alternative formulations will be presented: one 

proper and one improper.  These formulations are shown in Table 6.5 and are labeled Formulation 6.5(a) and 

Formulation 6.5(b). 

The models maximize the value of the chicken parts produced.  A constraint is needed which limits the 

                                                      

     1The example is a disassembly problem, which is discussed in the More LP Modeling chapter.  Readers 

having difficulty with its basic structure may wish to study that section. 
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number of chickens cut up to the number of chickens available.  In both formulations the coefficient 1/3 in the 

last constraint transforms the chickens disassembled into pounds of chicken rather than whole chickens, so the 

units of the first variable are in pounds of chicken cut up.  The next four variables are the quantities (pounds) 

of parts sold.  In formulation 6.5(a) the constraint labeled Balance restrains the amount sold to the quantity of 

chicken cut.  The formulation maximizes the value of chicken parts sold.  The decision is constrained by the 

quantity of chicken disassembled and chickens available.  In Formulation 6.5(b), the objective function and 

last constraint are the same.  However, there are balances for each part.  

Now which formulation is improper?  Suppose we examine what happens when Y equals one (i.e., that we 

have acquired one pound of chicken for cutting up). Formulation 6.5(a) implies that variable X1 could equal 

two if the other variables were set to zero.  Thus, from one pound of chicken two pounds of chicken breasts 

could be sold.  This is not possible.  Similarly, 3.43 pounds of legs (X2) could be sold per pound of chicken.  

10 pounds of necks (X3) or 20 pounds of giblets (X4) could be sold.  In formulation 6.5(b), the acquisition of 

one pound of chicken would allow only .5 pounds of breasts, .35 pounds of legs and thighs, .1 pounds of 

necks, and .05 pounds of giblets.  

Clearly, formulation 6.5(b) is the proper formulation.  Formulation 6.5(a) depicts improper representation of 

the joint products allowing an improper choice between the use of all the chicken meat among any of the four 

component parts.  In fact, its optimal solution indicates 90,000 lbs of Giblets can be sold from the 4,500 lbs of 

chicken (see the file SIX5A on the disk).  The component parts are a joint product that should simultaneously 

occur in the model. 

6.2.2 Alternatives for the Use of a Product 

Errors also occur when modeling different ways products can be used.  Suppose we introduce the option of 

selling chicken parts or deboning the parts then selling chicken meat.  Assume that there are no additional 

resources involved, and that the meat yields are those in Table 6.4.  Again, we will illustrate proper modeling 

with a right and a wrong formulation.  

The first model Table 6.6(a) has three new variables and constraints.  The three new variables sell meat at 

$1.20.  The three new constraints balance meat yields with sale.  Thus, the coefficient in the breast quarter 

meat row is the meat yielded when breast quarter is deboned (the breast quarter poundage per chicken times 

the percentage of meat in a breast quarter).   
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Formulation 6.6(b) adds four variables and one row.  The first three variables transform each of the products 

into meat with the fourth selling the resultant meat.  The new constant balances the amount of meat yielded 

with the amount of meat sold.           

Now which formulation is proper?  Let us examine the implications of setting the variable Y equal to 1 in 

Table 6.6(a).  As in our earlier discussion the solution would have, variables X1 through X4 at a nonzero level.  

However, in this formulation M1, M2, and M3 would also be nonzero.  Since both the X variables and the M 

variables are nonzero, the chicken is sold twice.  In Table 6.6(b), when Y is set to one, then either X1 or M1 

can be set to .5, but not both  (in fact, the sum of X1 + M1 can be no greater than 0.5).  Thus, the chicken parts 

can only be sold once.  

Formulation 6.6(b) is proper.  Formulation 6.6(a) contains an improper joint product specification, as it 

simultaneously allocates products to mutually exclusive  uses.  Formulation 6.6(b) restricts any single part to 

one use.   

6.2.3 Improper Specification of Multiple Factor Relationships 

 

Factor usage is often subject to misspecification in terms of multiple factor relationships.  This case is 

illustrated with yet another extension of the chicken example.  We now wish to allow sales of a mixed quarter 

pack which is composed of an arbitrary combination of breast and leg quarters.  Let us introduce two models.  

The first model has the same constraints as Formulation 6.6(b) but introduces new variables where the breast 

and leg quarters are put into the mixed quarter package (Formulation 6.7(a)).   

Formulation 6.7(b) involves three new variables and one new constraint.  The first two variables are the 

poundage of breast and leg quarters utilized in the mixed packs.  The third variable is total poundage of mixed 

quarter pack sold. The new constraint balances the total poundage of the mixed quarter packs sold with that 

produced.  

Now the question again becomes which is right?  Formulation 6.7(a) is improper; the formulation requires that 

in order to sell one pound of the mixed quarter pack, two pounds of quarters, one of each type, must be 

committed and leads to a solution where no packs are made (see the file SIX7A).  In Formulation 6.7(b) the 

two sources of quarters are used as perfect substitutes in the quarter pack, permitting any proportion that 

maximizes profits.  The optimal solution shows all leg quarters sold as mixed quarter packs.  Formulation 
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6.7(a) illustrates a common improper specification - requiring that the factors to be used simultaneously when 

multiple factors may be traded off.  One should not require simultaneous factor use unless it is always 

required.  Multiple variables are required to depict factor usage tradeoffs.  

6.2.4 Erroneous Imperfect Substitution 

Resource substitution may also be incorrectly prevented.  Consider a problem depicting regular and overtime 

labor.  Suppose the basic product is chairs where: a) a chair requires 10 hours of labor of which an average of 

3 hours comes from overtime labor; b) the firm has an endowment of 77 hours of regular labor at $10 per hour 

and up to 27 hours of overtime labor at $15 per hour.  We again introduce two formulations. 

In Formulation 6.8(a) the variables indicate the number of chairs to produce and sell, along with the amount of 

labor to acquire.  The constraints give a balance between the chairs produced and sold; balances between the 

labor/quantities hired versus used; and limits on labor time available. 

Model 6.8(b) is essentially the same, however, we have aggregated our labor use-hired balance so that there is 

no distinction made between the time when labor is used (regular or overtime). 

Which formulation is right?  This depends on the situation.  Suppose that labor works with equal efficiency in 

both time classes.  Thus, one would be technically indifferent to the source of labor although economically the 

timing has different implications. Now let us examine the formulations by setting X1 to one.  In 6.8(a) the 

model hires both classes of labor.  However, in 6.8(b) only regular time labor would be hired.  In fact, in 6.8(a) 

the overtime limit is the binding constraints and not all regular time labor can be used and only nine chairs are 

made; whereas in 6.8(b) eleven chairs could be produced and all the labor is used.  The second model is the 

correct one since it makes no technical differentiation between labor sources. 

6.3 Simple Structural Checking 

There are some simple yet powerful techniques for checking LP formulations.  Two are discussed here another 

in Chapter 17. 

6.3.1 Homogeneity of Units 

There are several general requirements for coefficient units.  Consider the LP problem: 

2222121

1212111

2211

bXaXa

bXaXas.t.

XcXcMax






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Suppose that the objective function unit is dollars.  Let the first row be a land constraint in acres.  Let the 

second row be a labor constraint in the unit hours. Further, suppose that X1 represents acres of wheat and X2 

number of beef animals. 

What implications do these specifications have for the units within the model? Parameter c1 must be the dollars 

earned per acre of wheat while c2 must be the dollars earned per beef animal.  Multiplying these two 

parameters by the solution values of X1 and X2 results in the unit dollars.  In turn, a11 represents the acres of 

land used per acre of wheat.  The parameter a12 would be the number of acres of land utilized per beef animal.  

The units of the right hand side (b1) must be acres.  The units of the parameters a21 and a22 would respectively 

be labor hours utilized per wheat acre and labor hours utilized per beef animal.  The units of the right hand side 

(b2) must be hours of labor. 

This example gives a hint of several general statements about units.  First, the numerator unit of each 

coefficient in an equation must be the same and must equal the right-hand side unit.  Thus, a11 is the acres of 

land used per acre of wheat, a12 is the acres of land used per beef animal and b1 the acres of land available. 

Similarly, the coefficients associated with any particular variable must have a common denominator unit, 

although the numerator will vary.  Thus, c1 is in the units dollars per acre of wheat, a11 is acres of land per acre 

of wheat, and a21 is the hours of labor per acre of wheat.  In addition, note that the units of the decision 

variable X1 are acres of wheat.  The denominator unit of all coefficients within a column must be the same as 

the unit of the associated decision variable.  

6.3.2 Numerical Model Analysis 

 Another possible type of model analysis involves numerical investigation of the model. Here, one 

simply mentally fixes variables at certain levels such as the level of 1, and then examines the relationship of 

this variable with other variables by examining the equations.  Examples of this procedure are given in the 

proper usage section above. 

 Numerical debugging can also be carried out by making sure that units are proper, and it is possible to 

utilize all resources and produce all products.  Finally, solvers such as OSL contain reduction procedures. 

6.4 Data Development 

Model specification requires data. The data need to be found, calculated, and checked for  

consistency.  Data development usually takes more time than either model formulation or solution.  However, 
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this time is essential.  Good solutions do not arise from bad data.  

Data development involves a number of key considerations. These include time frame, uncertainty, data 

sources, consistency, calculation methods, and component specification.   

6.4.1 Time Frame  

Models must be established with a time frame in mind.  The time frame defines the characteristics of the data 

used.  The objective function, technical coefficient (aij's) and right hand side data must be mutually consistent.  

When the model depicts resource availability on an annual basis, then the objective function coefficients 

should represent the costs and revenues accruing during that year. A common misspecification involves an 

annual model containing investment activities with the full investment cost in the objective function.  

Dynamic considerations may be relevant in the computation of objective function coefficients. It is crucial that 

the objective function coefficients be derived in a consistent manner.  Returns today and returns in ten years 

should not be added together on an equal basis.  Issues of dynamics and discounting must be considered as 

discussed in the Dynamic LP Chapter. 

6.4.2 Uncertainty 

The data developer must consider uncertainty.  Coefficients will virtually never be known with certainty.  For 

example, when variables involve transport of goods from one place to another, the transport costs are not 

entirely certain due to difficulties with pilferage, spoilage, adherence to shipping containers, and leakage. The 

modeler is forever facing decisions on how to incorporate data uncertainty.  The risk programming chapter 

presents formal methods for incorporating uncertainty.  However, many modelers use average values or 

conservative estimates. 

6.4.3 Data Sources 

Data may be developed through statistical estimation or deductive processes.  Data for coefficient estimation 

can be from either cross-sectional or time series sources.  Data may be developed using a case firm (or firms) 

approach where a deductive, economic engineering process is used to manufacture representative coefficient 

values.  Data sources will vary by problem, and the modeler must apply ingenuity as well as problem-specific 

knowledge to develop consistent, reliable data.   

6.4.4 Calculation Methods 

Data can be calculated via economic engineering or via statistical methods.  While these are only two extremes 
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of a continuum of possibilities, we will discuss only these two.  Economic engineering refers to coefficient 

construction through a deductive approach. For example, suppose we compute the profit contribution of a 

variable by calculating the per unit yield times sale price less the per acre input usage times input price (i.e., if 

wheat production yields 40 bushels of wheat which sells for $5 per bushel and 20 bales of straw each worth 

$.50 while input usage is $30 worth for seed and 6 sacks of fertilizer, which cost $4 each;  then, the objective 

function coefficient would be $156.)  

At the other extreme, one could develop multiple observations from time series, cross-sectional or subjective 

sources and use averages, regression or other data summarization techniques.  Such data might in turn be 

transformed using an economic engineering approach to generate relevant coefficients. For example, one 

might estimate a function statistically relating yield to fertilizer use and labor use.  Then one might set a level 

of fertilizer use, calculate the yield, and use an economic engineering approach to develop the objective 

function coefficients.  

6.4.5 Consistency 

Coefficients in a model must be mutually consistent.  The most common causes of inconsistency are dynamic 

inconsistencies and inconsistencies in coefficient units (e.g., a technical coefficient in hours and a right-hand 

side in thousands of hours).  The homogeneity of units rules above must be followed.  

6.4.6 Specification of Individual Components 

LP problems require right hand side, objective function, and technical coefficient specification.  There are 

comments that can be made pertinent to the specification of each.  

6.4.6.1 Objective Function Coefficients 

Ordinarily, the objective function coefficients should be the value that the decision maker expects.  This is 

particularly important when using time series data as the decision maker will not necessarily expect the series 

average.  Rather, some extrapolation of the trend may be appropriate.  Brink and McCarl encountered 

difficulties when attempting to validate a LP model because of differences in expectations between the time 

the model was developed and the time actual decisions were made.  

Several other comments are relevant regarding the objective function.  First, multiplication of a LP objective 

function by a positive constant always leads to the same solution in terms of the decision variables.  Thus, one 

does not need to be extremely concerned about the absolute magnitude of the objective function coefficients 
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but rather their relative magnitudes. 

Second, the coefficients must reflect the actual prices received or paid for the product.  If a product is being 

sold, one should not use prices from distant markets but rather prices adjusted to include marketing costs.  

Input prices often need to be adjusted to include acquisition costs.  

Finally, each objective function coefficient should be developed in harmony with the total model structure.  

Often, students try to insure that each and every objective function coefficient in a profit maximizing model is 

the per unit profit contribution arising from that particular variable.  This often leads to mistakes and great 

confusion.  Consider the model  

8X

10X

0XXs.t.

2X3XMax

2

1

21

21









 

Suppose X1 represents the sale of a commodity and X2 the purchase of inputs.  In order to sell X1 one must 

purchase X2 as reflected by the first constraint.  One could use the equality constraint to collapse X1 and X2 

into a single variable, but this may not be desirable.  The contribution of X1 is fully represented in the above 

model.  The objective function should collectively represent the net margin and one does not need to compute 

each variable's coefficient so that it is the per unit net contribution.  

6.4.6.2 Right hand Side Coefficients 

Right hand side coefficients are not always easily specified.  For example, consider the amount of labor 

available.  One could think that this is the number of employees times the hours they work a week.  However, 

the nominal and real availability of resources often differs.  In the labor context, there are leaves due to 

sickness, vacation, and alternative assignments diverting labor to other enterprises.  Weather can also reduce 

effective availability.  Finally, the right hand sides need to be developed on the same time frame as the rest of 

the model.  

6.4.6.3 Technical Coefficients 

The aij (technical) coefficients within the model give the resource use per unit of the variables.  In developing 

technical coefficients, one usually uses economic engineering.  For example, per unit labor use might be calcu-

lated by dividing the total hours of labor by the number of units produced.  Such a calculation procedure by its 
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nature includes overhead labor usages such as setup time, cleaning time, etc.  However, one needs to be careful 

in handling fixed usages of labor which do not vary with production. 

6.5 Purposeful Modeling 

The purpose of a modeling exercise influences how a model is implemented.  Some variables and constraints 

become relevant or irrelevant depending upon what exactly is to be done with the model.  For example, when 

studying short-run operating decisions one can omit investment variables and capital constraints.  On the other 

hand, if the focus of the study is investment one may be able to simplify the short-run operating model and 

come up with an approximation of how investments should be utilized if acquired.  Model purpose also has 

important implications for the specific way a model answer is given to a decision maker. 

6.5.1 Model Structure 

Any problem can be formulated in a number of different ways. Modelers almost always have the option of 

collapsing items into the objective function or entering them explicitly in the constraints.  Often the purpose of 

a modeling exercise influences model structure (although this is less true when using GAMS than with using 

conventional methods). 

Years ago when LP models were solved by hand or with early LP solvers, it was desirable to construct the 

smallest possible representation for a particular situation.  Today, model condensation is not as desirable 

because of increased computer and solver capability.  Rather, modelers often introduce size increasing features 

which reduce modeler/analyst interpretation and summarization time.  This section discusses ways which 

study purpose may change formulations (although the discussion is not entirely consistent with our GAMS 

focus).   

Consider a case in which products (Xj) are sold at an exogenously fixed price, pj.  Suppose production utilizes 

a number of inputs, Zm, purchased at an exogenously fixed price, rm.  Each unit of the production variable (Yk) 

incurs a direct objective function cost, qk, yields (ajk) units of the jth product and uses bmk units of the mth input.  

Also, there are constraints on unpriced inputs (i).  A formulation is:  
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This formulation contains a constraint for each product and each input. One could utilize the first two 

constraint equations to eliminate Xj and Zk from the model yielding the formulation 
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where the gk's are given by  

q  b r   a p  = g kmkm

m

jkj
j

k
  

Suppose the study involves examination of the implications of input and output prices.  In the second 

formulation,  these prices are compacted into the objective function coefficients.  In the first problem, 

however, these prices are explicitly included in the objective function. This difference gives a reason why one 

might prefer the first as opposed to the second formulation.  If the prices were to be repeatedly changed, then 

only one coefficient would have to be changed rather than many.  Further, one could easily use cost-ranging 

features within LP algorithms to study the effects of changes in  rm.  In addition, the solution would report the 

optimal production (Xj) and input usage (Zm) levels.  Post-solution summarization of total yield and input 

usage would require many calculations under the condensed model, but with Zm explicitly included in the 

formulation, only one number would need to be recorded.  

Usage of modeling systems like GAMS places a little different twist on the discussion above as one can easily 

use GAMS to do post solution report writing and since GAMS computes the whole model every time, 

changing one or many coefficients makes little difference. 

6.5.2 Report Writing 

A very important aspect of model use is properly summarizing the output so that understandable information is 
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generated for the decision makers involved with the modeling exercise.  This introduces the general topic of 

report writing.   

Linear programming solution reports are generally inadequate for conveying the essence of the solution to the 

decision maker.  It is highly desirable to develop reports which summarize the solution as part of the computer 

output, possibly an autonomous part.  Such reports can be designed to translate the model solution into 

decision maker language using both the solution results and the input parameters.  An example of such report 

writing is presented in Table 6.10 which gives summary reports on the transportation model from the last 

chapter.  These reports are broken into five tables.  The first Table entitled MOVEMENT gives the quantity 

moving between each pair of cities along with the total movement out of a particular plant and into a particular 

market.  The elements of this table are largely optimal levels of the decision variables in the solution.  The 

second table (COSTS) gives a summary of commodity movements cost by route telling the exact cost of 

moving between pairs and then the total costs of moving goods out of plants or into markets.  This set of 

outputs is not directly from the linear programming solution, but rather is the cost of movement between a 

particular city pair times the amount moved.  The only number in the table directly from the linear 

programming output is the objective function value.  The third gives a supply use report for each supply point 

giving the available supply, the amount shipped out, and the marginal value of that shipment (which is the 

shadow price).  The fourth table gives similar information for the demand markets.  Finally, there is the table 

CMOVEMENT which gives the cost of changing the commodity movement pattern which is a reformat of the 

reduced costs of the decision variables.  In general, the function of a report writer is to summarize the essence 

of the solution, making it more readable to decision makers.  In many applied studies it is valuable to develop 

a report format ahead of time, then structure the model and model experiments so that the report data are 

directly generated.  The use of computerized report writing instead of hand summaries is a great advantage and 

can save hours and hours of modeler time.  This is particularly facilitated when one uses a computerized 

modeling system such as GAMS.   

6.6 References 

Baker, T. and B.A. McCarl.  "Representing Farm Resource Availability over Time in Linear Programs:  A 

Case Study." North Central Journal of Agricultural Economics.  4(1982):59-68. 

Brink, L. and B. McCarl.  "The Tradeoff Between Expected Return and Risk Among Cornbelt Farmers."  

American Journal of Agricultural Economics.  60(1978):259-263. 



 

6-19 

copyright 2020  Bruce A. McCarl and Thomas H. Spreen 

Day, R.H.  Recursive Programming and Production Response.  Amsterdam:  North Holland Publishing Co., 

1963. 

Heady, E.O. and W.V. Candler.  Linear Programming Methods.  Ames, Iowa:  Iowa State University Press, 

1958. 

McCarl, B.A.  "GAMSCHECK USER DOCUMENTATION:  A System for Examining the Structure and 

Solution Properties of Linear Programming Problems Solved using GAMS."  Working Documentation, 

Department of Agricultural Economics, Texas A&M University, 1994. 

Sengupta, J. and R. Sfeir.  "Allocative Behavior Under Risk Aversion Through Quadratic Programming 

Experiments."  Applied Economics.  12(1980):367-75. 

 



 

6-20 

copyright 2020  Bruce A. McCarl and Thomas H. Spreen 

 

 

Table 6.1. Initial Schematic for Example Farm Planning Problem 

 

 

 

Crop 1 

 

Crop 2 

 

Crop 3 

 

Crop 4 

 

RHS 

Objective c1 c2 c3 c4  

Land 1 1 1  ≤  L 

Labor     

 

 

 

 

 

Table 6.2. Revised Schematic for Example Farm Planning Problem 

 

 

 

Crop 1 

 

Crop 2 

 

Crop 3 

 

Crop 4 

 

RHS 

Objective  c1 c2 c3 c4  

Land  1 1 1  ≤  L 

Land After Crop 1 -1   1 ≤  0 

Labor      

 

 

Table 6.3. Final Table for Example Farm Planning Problem 

 

 

 

Crop 1 

 

Crop 2 

 

Crop 3 

 

Crop 4 

 

RHS 

Objective  c1 c2 c3 c4  

Land  1 1 1  ≤ L 

Land After Crop 1 -1   1 ≤ 0 

Labor –Spring  d1 d3 d5  ≤ sp 

Labor – Summer  d2   d7 ≤ su 

Labor – Fall  d4 d6 d8 ≤ f 
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Table 6.4.  Composition of a Chicken and Sales Prices for the Component Parts  

 Percent of Chicken 

Body Weight 

Sale Price  

of Part 

Percentage Chicken 

Meat 

 

 

lbs. part/lbs. chicken $/lb. lbs. meat/lb. part 

Breast Quarter 50 1.00 75 

Leg Quarter 35 .80 60 

Neck 10 .20 20 

Giblets 5 .70 0 

 

 

Table 6.5.  Alternative Formulations of Chicken Processing Problem 

Formulation 6.5(a) 

 Chickens 

(lbs.) 

 Breast 

Quarter 

(lbs.) 

 Leg 

Quarter 

(lbs.) 

 

 

 

Neck 

(lbs.) 

 

 

 

Giblets 

(lbs.) 

 

 

 

Maximize 

Objective function ($)  + 1.00X1 + 0.80X2 + 0.20X3 + 0.70X4   

Balance (lbs.)    -Y + 0.50X1 + 0.35X2 + 0.1X3 + 0.05X4 ≤ 0 

Chickens Available 

(birds) 

1/3Y         ≤ 1500 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation 6.5(b) 

 Chickens (lbs.)  Breast 

Quarter 

(lbs.) 

 

 

Leg 

Quarter 

(lbs.) 

 

 

Neck (lbs.)  

 

Giblets 

(lbs.) 

Maximize 

Objective Function ($)  + 1.00X1 + 0.80X2 + 0.20X3 + 0.70X4   

Breast Quarter -0.50Y + X1       ≤ 0 

Leg Quarter -0.35Y   + X2     ≤ 0 

Neck -0.10Y     + X3   ≤  0 

Giblets -0.05Y       + X4 ≤ 0 

Chickens 1/3Y         ≤ 1500 
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Table 6.6.  Formulations for Processing Chickens with the Option of Deboning 

 

Formulation 6.6(a) 

 
 

 

 

 

 

Chicken 

 

 

 

 

Breast 

Qtr. 

 

 

 

 

 

Leg 

Qtr. 

 

 

 

 

 

Neck 

 

 

 

 

 

Giblet 

 

 

 

Breast 

Qtr. 

Meat 

 

 

 

Leg 

Qtr. 

Meat 

 

 

 

 

Neck 

Meat 

 

 

 

 

 

Objective 

 

 

 

 

 

1.0X1 

 

+ 

 

0.8X2 

 

+ 

 

0.2X3 

 

+ 

 

0.7X4 

 

+ 

 

1.2M1 

 

+ 

 

1.2M2 

 

+ 

 

1.2M3 

 

 

 

 

 

Breast Qtr. 

 

-0.5Y 

 

+ 

 

X1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

Leg Qtr. 

 

-0.35Y 

 

 

 

 

 

+ 

 

X2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

Neck 

 

-0.1Y 

 

 

 

 

 

 

 

 

 

+ 

 

X3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

Giblets 

 

-0.5Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

 

X4 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

Chickens 

 

1/3Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

≤ 

 

1500 

 

BQ Meat 

 

-(0.05)(0.75)Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

 

M1 

 

 

 

 

 

 

 

 

 

≤ 

 

0 

 

LQ Meat 

 

-(0.35)(0.6)Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

 

M2 

 

 

 

 

 

≤ 

 

0 

 

N Meat 

 

-(0.2)(0.1)Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 

 

M3 

 

≤ 

 

0 

 

Formulation 6.6(b) 

 

 

 

 

 

 

Chicken 

 

 

Breast 

Qtr. 

 

 

Leg 

Qtr. 

 

 

 

Neck 

 

 

 

Giblet 

 

Breast 

Qtr. 

Meat 

 

Leg 

Qtr. 

Meat 

 

 

Neck 

Meat 

 

Total 

Meat 

Sold 

 

 

 

 

 

Objective 

 

 

 

1.0X1 

 

+0.8X2 

 

+0.2X3 

 

+0.7X4 

 

 

 

 

 

 

 

+ 1.2M4 

 

 

 

 

 

Breast Qtr.  

 

-0.5Y 

 

+ X1 

   +M1   

 

 

 

≤ 0 

Leg Qtr. -0.35Y  + X2    +M2   ≤ 0 

Neck -0.1Y   + X3    +M3  ≤ 0 

Giblets -0.05Y     + X4     ≤ 0 

Chickens 1/3Y         ≤ 1500 

Meat      -0.75M1 -0.6M2 -0.2M3 +M4 ≤ 0 
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Table 6.7.  Formulations of the Chicken Assembly-Disassembly Problem 

Formulation 6.7(a) 

 Chicken BQ LQ Neck Giblet BQ Meat LQ Meat Neck Meat Total Meat 

Sold 

MQ Sold   

 

Objective   1.0X1 + 0.8X2 + 0.2X3 + 0.7X4        + 1.2M4 + 0.95Q   

BQ -0.5Y +     X1        + M1       +   0.5Q ≤ 0 

LQ -0.35Y   +     X2        + M2     +   0.5Q ≤ 0 

Neck -0.1Y     +     X3        + M3     ≤ 0 

Giblets -0.05Y       +     X4            ≤ 0 

Chickens 1/3Y                    ≤ 1500 

Meat           - 0.75M1 - 0.6M2 - 0.2M3 + M4   ≤ 0 

 

 

Formulation 6.7(b) 

 

 

Chicken BQ LQ Neck Giblet BQ Meat LQ Meat Neck 

Meat 

Total 

Meat Sold 

BQ 

included 

in MQ 

LQ 

included 

in MQ 

MQ 

Sold 

 

 

Objective   1.0X1 + 0.8X2 + 0.2X3 + 0.7X4       + 1.2M4      0.95Q3   

BQ -0.5Y +     X1       + M1       + Q1     ≤ 0 

LQ -0.35Y   + X2       + M2       + Q2   ≤ 0 

Neck -0.1Y     + X3       + M3         ≤ 0 

Giblets -0.5Y       + X4               ≤ 0 

Chickens 1/3Y                       ≤ 1500 

Meat          - 0.75M1 - 0.6M2 - 0.2M3 + M4       ≤ 0 

Qtr. Pack                  - Q1 - Q2 + Q3 ≤ 0 
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Table 6.8.  Alternative LP Formulations of Chair Production Example 

 

Formulation 6.8(a) 

 

 

Chair 

Production 

 Regular 

Labor 

 Overtim

e Labor 

 

 

Chair 

Sale 

 

 

 

 

Objective  - 10 - 15 + 220   

Chairs -1     + 1 ≤ 0 

Regular Labor 7 - 1     ≤ 0 

Overtime Labor 3   - 1   ≤ 0 

Regular Labor Constraint   1     ≤ 77 

Overtime Labor 

Constraint 

    1   ≤ 27 

 

Formulation 6.8(b) 

 

 

 

Chair 

Production 

 

 

 

Regular 

Labor 

 

 

 

Overtim

e Labor 

 

 

 

Chair 

Sale 

 

 

 

 

Objective  - 10 - 15 +    220   

Chairs -1     +        1 ≤ 0 

Regular Labor 10 - 1 - 1   ≤ 0 

Regular Labor Constraint   1     ≤ 77 

Overtime Labor Constraint    

 

 

 

1   ≤ 27 
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Table 6.9 Example of GAMS Report Writing 

 

----     53 PARAMETER MOVEMENT      COMMODITY MOVEMENT 

 

               MIAMI     HOUSTON    MINEPLIS    PORTLAND       TOTAL 

NEWYORK           30          35          15                      80 

CHICAGO                                   75                      75 

LOSANGLS                      40                      50          90 

TOTAL             30          75          90          50         245 

 

----     61 PARAMETER COSTS         COMMODITY MOVEMENT COSTS BY ROUTE 

 

               MIAMI     HOUSTON    MINEPLIS    PORTLAND       TOTAL 

NEWYORK          600        1400         525                    2525 

CHICAGO                                 1500                    1500 

LOSANGLS                    1400                    2000        3400 

TOTAL            600        2800        2025        2000        7425 

 

----     68 PARAMETER SUPPLYREP     SUPPLY REPORT 

 

           AVAILABLE        USED   MARGVALUE 

NEWYORK       100.00       80.00 

CHICAGO        75.00       75.00       15.00 

LOSANGLS       90.00       90.00        5.00 

 

----     75 PARAMETER DEMANDREP     DEMAND REPORT 

 

            REQUIRED    RECEIVED    MARGCOST 

MIAMI          30.00       30.00       20.00 

HOUSTON        75.00       75.00       40.00 

MINEPLIS       90.00       90.00       35.00 

PORTLAND       50.00       50.00       45.00 

 

----   80 PARAMETER CMOVEMENT  COSTS OF CHANGING COMMODITY MOVEMENT PATTERN 

 

               MIAMI     HOUSTON    MINEPLIS    PORTLAND 

NEWYORK                                            75.00 

CHICAGO        45.00       35.00                   40.00 

LOSANGLS       75.00                   40.00 

 


