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Economic theory indicates that scarce (limited) resources have value.  For example, prime 

agricultural land is limited and has value (a rental price).  On the other hand, air is effectively 

unlimited and therefore does not have a market value.  In LP models, limited resources are 

allocated, so they should be, valued.  Whenever we solve an LP problem, we implicitly solve two 

problems:  the primal resource allocation problem, and the dual resource valuation problem.  This 

chapter covers the resource valuation, or as it is commonly called, the Dual LP problem and its 

relationship to the original, primal, problem.  

4.1 Basic Duality 

The study of duality is very important in LP.  Knowledge of duality allows one to develop 

increased insight into LP solution interpretation.  Also, when solving the dual of any problem, one 

simultaneously solves the primal.  Thus, duality is an alternative way of solving LP problems.  

However, given today's computer capabilities, this is an infrequently used aspect of duality.  

Therefore, we concentrate on the study of duality as a means of gaining insight into the LP 

solution. We will also discuss the ways that primal decision variables place constraints upon the 

resource valuation information. The Primal problem can be written as: 
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Associated with this primal problem is a dual resource valuation problem.  The dual of the above 
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problem is 
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where Ui are the dual variables. 

If the primal problem has n variables and m resource constraints, the dual problem will have m 

variables and n constraints.  There is a one-to-one correspondence between the primal constraints 

and the dual variables; i.e., U1 is associated with the first primal constraint, U2 with the second 

primal constraint, etc.  As we demonstrate later, dual variables (Ui) can be interpreted as the 

marginal value of each constraint's resources.  These dual variables are usually called shadow 

prices and indicate the imputed value of each resource.  A one-to-one correspondence also exists 

between the primal variables and the dual constraints; X1 is associated with the first dual 

constraint ( c  a 11ii

i

U ), X2 is associated with the second dual constraint ( c  a 22ii

i

U ), etc. 

An example aids in explaining the dual.  Consider the primal model: 

The associated dual problem is 
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The dual problem economic interpretation is important.  The variable U1 gives the marginal 

value of the first resource, or van capacity.  Variable U2 gives the marginal value of the second 

resource, or labor in this case.  The first dual constraint restricts the value of the resources used 

in producing a unit of Xfancy to be greater than or equal to the marginal revenue contribution of 

Xfancy.  In the primal problem Xfancy uses one unit of van capacity and 25 units of labor, returning 

$2000, while the dual problem requires van capacity use times its marginal value (1U1) plus 

labor use times its marginal value (25U2) to be greater than or equal to the profit earned when 

one unit of Xfancy is produced (2000).  Similarly, constraint 2 requires the marginal value of van 

capacity plus 20 times the marginal value of labor to be greater than or equal to 1700, which is 

the amount of profit earned by producing Xfine and the third constraint does the same for Xnew.  

Thus, the dual variable values are constrained such that the marginal value of the resources used 

by each primal variable is no less than the marginal profit contribution of that variable.  

Now suppose we examine the objective function.  This function minimizes the total marginal 

value of the resources on hand.  In the example, this amounts to the van capacity endowment 



 

 

times the marginal value of van capacity (12U1) plus the labor endowment times the marginal 

value of labor (320U2). 

Thus, the dual variables arise from a problem minimizing the marginal value of the resource 

endowment subject to constraints requiring that the marginal value of the resources used in 

producing each product must be at least as great as the marginal value of the product.  This can 

be viewed as the problem of a resource purchaser in a perfectly competitive market.  Under such 

circumstances, the purchaser would have to pay at least as much for the resources as the value of 

the goods produced using those resources.  However, the purchaser would try to minimize the 

total cost of the resources acquired.  

The resultant dual variable values are measures of the marginal value of the resources.  The 

objective function is the minimum value of the resource endowment.  Any slack in the 

constraints is the amount that cost exceeds revenue.  

4.2 Primal-Dual Solution Inter-Relationships 

Several relationships exist between primal and dual solutions which are fundamental to 

understanding duality and interpreting LP solutions. 
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First, let us introduce some notation.  The primal dual pair of LP problems in matrix form is. 

Now let us examine how the problems are related.   

4.2.1 Objective Function Interrelationships 

Suppose we have any two feasible primal and dual solutions X*, U* and we want to determine 

the relationship between the objective functions CX*and U
* b.  We know the feasible solutions 

must satisfy  
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To determine the relationship, we take the above constraint inequalities (not the non-negativity 

conditions) and pre-multiply the left one by U
*  while post-multiplying the right one by X*. 
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Noting that the term U
* AX* is common to both inequalities we get 

       b*'U*AX*'U*CX   

         b*'U*CX   

This shows that the dual objective function value is always greater than or equal to the primal 

objective function value for any pair of feasible solutions.   

4.2.2 Constructing Dual Solutions 

We can construct an optimal dual solution from an optimal primal solution.  Suppose an optimal 

primal solution is given by XB
* = B-1b and XNB

* = 0.  This solution must be feasible; i.e., XB
* = 

B-1b > 0.  It also must have XNB > 0 and must satisfy nonnegative reduced cost for the nonbasic 

variables CBB-1ANB - CNB > 0.  Given this, suppose we try U
* = CBB-1 as a potential dual 

solution. 

First, let us investigate whether this is a feasible solution in the dual constraints.  To be feasible, 

we must have U
* A > C and U* > 0.  If we set U

*  = CBB-1, then we know U
* ANB - CNB > 0 

because at optimality this is exactly equivalent to the reduced cost criteria, i.e., CBB-1ANB - CNB > 

0.  Further, we know for the basic variables the reduced cost is CBB-1AB - CB = CBB-1B - CB = CB 

- CB = 0, so U
* B = CB.  By unifying these two statements, we know when U* = CBB-1 then the 

dual inequalities U
* A > C are satisfied.   

Now we need to know if the dual nonnegativity conditions U > 0 are satisfied.  We can look at 

this by looking at the slacks in the problem.  For the slacks, A contains an identity matrix and the 

associated entries in C are all 0's. Thus, for the part of the UA > C that covers the slacks and 

since we know that C  AU SS
*   where C and A SS  are the portions of A and C relevant to the 

slacks.  Substituting in the known structure of AS and CS, i.e., AS = I and CS = 0 yields U
*  > 0 or 

U > 0.  So the U's are non-negative.  Thus, BC = U
1

B
*  is a feasible dual solution.   

Now the question becomes, is this choice optimal?  In this case the primal objective function Z 

equals CX* = CBXB
* + CNBXNB

* and since XNB
* equals zero, then Z = CBB-1b + CNB0 = CBB-1b.  

Simultaneously, the dual objective equals U
* b = CBB-1b which equals the primal objective.  

Therefore, the primal and dual objectives are equal at optimality.  Furthermore, since the primal 

objective must be less than or equal to the dual objective for any feasible pair of solutions and 

since they are equal, then clearly CX* cannot get any larger nor can U
* b get any smaller, so they 

must both be optimal.  Therefore, CBB-1 is an optimal dual solution.  This demonstration shows 

that given the solution from the primal the dual solution can simply be computed without need to 

solve the dual problem. 

In addition given the derivation in the last chapter we can establish the interpretation of the dual 

variables.  In particular, since the optimal dual variables equal CB B-1 (which are called the 

primal shadow prices) then the dual variables are interpretable as the marginal value product of 

the resources since we showed   
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4.2.3 Complementary Slackness 

Yet another, interrelationship between the primal and dual solutions is the so called 

complementary slackness relation.  This states that given optimal values U* and X* then  
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This result coupled with the primal and dual feasibility restrictions (U > 0; UA > C; AX < b; X > 

0) implies that (in the absence of degeneracy and multiple optimal solutions) for each constraint, 

either the resource is fully used (bi - (AX)i = 0) with the associated dual variable (Ui
*) nonzero, 

or the dual variable is zero with associated unused resources (bi - (AXj)) being nonzero.  

Alternatively, for each variable (again ignoring degeneracy) at optimality, either the variable 

level (Xj) is non-zero with zero reduced cost ( U
* A)j - cj = 0) or the variable is set to zero with a 

non-zero reduced cost. 

This result may be proven using matrix algebra.  Given optimal primal (X*) and dual (U*) 

solutions 
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Now suppose we add together α + β and examine the result.  Name α + β, equals 

 U
* (b - AX*) + ( U

* A - C)X*  

which equals  

U
* b - U

* AX* + U
* AX* - CX* = U

* b - CX*.   

We know this equals zero at optimality.  Further, we know that both α and β will be nonnegative, 

since AX* < b, U* > 0, U
* A - C > 0 and X* > 0, thus α + β can be equal to zero if and only if α 

and β are both equal to zero.  Thus, complementary slackness must hold at optimality. 

The complementary slackness conditions are interpretable economically.  The U
* (AX* - b) = 0 

condition implies that the resource will: a) be valued at zero if it is not fully utilized (i.e., AX* < 

b means that U* = 0) or b) have a nonzero value only if it is fully utilized (i.e., AX = b must hold 

when U > 0 [note a zero value could occur]).  Thus, resources only take on value only when they 

have been exhausted.  The condition ( U
* A – C) X*=0   implies that a good will only be 

produced if its reduced cost is zero (i.e., X > 0 can only occur if U*A - C = 0) and that only zero 

X's can have a reduced cost (i.e., U
’ A - C > 0 can only occur if X = 0).  This last result also 

shows the returns (C) to every nonzero variable are fully allocated to the shadow prices (U) times 

the amount of resources (A) used in producing that activity (i.e., U
’ A=C). 



 

 

4.2.4 Zero Profits 

We have noted that Ui is the imputed marginal value of resource i and bi is its endowment.  Thus, 

Ui bi is sometimes called the "payment" to resource i. When we sum over all m resources, the 

dual objective function can be interpreted as the total imputed value of the resource endowment.  

If the total imputed value of the resources is viewed as a "cost", then it makes sense that firm 

should seek to find  U1, U2,..., Um, which minimizes ∑ 𝑈𝑖𝑖 𝑏𝑖 i.  However, at optimality the dual 

objective equals that of the primal 

.c =b jj
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Thus, total payments to the resources will equal the profit generated in the primal problem.  All 

profits are allocated to resource values, and the solution insures that the imputed rate of the 

resources allocated by the primal problem are such that their total value equals total profits.   

Thus, if the firm had to pay U for the resources, zero profits would result. 

4.2.5 Finding the Dual Solution Information 

When you have solved the dual, you have solved the primal.  Thus given the optimal B-1, the 

optimal dual variables are the primal shadow prices CBB-1 without any need for solution.  In 

general, one can show that the following correspondence holds (see Hadley (1962) or Bazaraa et 

al.). 

 

Primal Solution Item 

Primal Solution Information 

Dual Solution Item 

Corresponding Dual Solution 

Information 
Objective function Objective function 

Shadow prices Variable values 

Slacks Reduced costs 

Variable values Shadow prices 

Reduced costs Slacks 

 

For example, if one wants to know the optimal values of the dual slacks, those values are the 

primal reduced costs.  

4.3 Duality Under Other Model Forms 

In the preceding discussion, the primal problem has always taken on standard form. We have 

seen that given a LP problem 
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that its dual will always be 
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Note that if the primal problem contains n variables and m constraints, the dual problem has m 

variables and n constraints.  But not all problems have less than or equal to constraints and The 

dual for problems which are not in standard form can be written in two ways.  One may convert a 

problem in non-standard form to reformulate it into standard form then write the dual, or one can 

learn primal-dual relationships for alternative primal problem forms.  We discuss the second 

approach first.   

 

The form of the primal constraints determines the restrictions on the sign of the associated dual 

variable.  If the primal objective is to maximize, each < constraint has a corresponding non-

negative (>0) dual variable.  Each > constraint has a corresponding non-positive (<0) dual 

variable.  Why?  If a (>) constraint is binding in a maximize primal, it follows that reducing the 

RHS of the constraint would make the constraint less binding and could only improve or leave 

unaffected the optimal objective function value.  Thus, the objective function value is unchanged 

or decreases if the RHS of the constraint is increased and the associated dual variable is non-

positive.  An equality constraint in a primal problem gives a dual variable which is unrestricted 

in sign.  The optimal solution to the primal problem must lie on the equality constraint.  An 

outward shift in the constraint could either increase or decrease the objective function, thus the 

corresponding dual variable is unrestricted in sign.  These relationships are summarized in the 

first part of Table 4.1.  

In regards to the primal variables, if the primal objective is to maximize, then each non-negative 

primal variable gives rise to a > constraint in the dual.  If a primal variable is restricted to be non-

positive, the corresponding dual constraint is a < inequality.  Similarly, unrestricted primal 

variables lead to dual equalities.  These results are summarized in the lower part of Table 4.1. 

Table 4.1 may also be used to develop relationships for a minimization problem by reading the 

information from left to right.  Suppose the objective is to minimize and a < constraint is present.  

The corresponding dual variable in a maximization dual would be non-positive.   

http://agrinet.tamu.edu/mccarl/gms/ch04/DUAL2.GMS
http://agrinet.tamu.edu/mccarl/gms/ch04/DUAL2.GMS
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A second approach can also be followed; i.e., always transform the problem to standard form 

then write its dual.  To illustrate, consider the LP problem 
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Let us write the dual to this problem using the two approaches outlined above.  First, let's convert 

the problem to standard form.  To do this, the equality constraint must be replaced by two 

constraints: 

20x2+x+x

20 x2+x+x  

321

321




 

In addition the second primal constraint should be multiplied through by -1, the first variable is 

replaced by its negative ( X1 = - X1
-) and the third variable X3 is replaced by X3

+ - X3
-.  Making 

these substitutions and modifications gives 
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The dual to this problem is 
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Note that:  a) the last two constraints can be rewritten as an equality, b) variables w1 and w2 can 

be combined into variable w = w1 - w2 which is unrestricted in sign, and c) we may substitute w3
- 

= -w3 and we may revise the inequality of the first constraint yielding 
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which is the final dual. 

This result can also be obtained from the use of the primal-dual relationships in Table 4.1.  The 

primal objective is to maximize, so the dual objective is to minimize.  The primal problem has 3 

variables and 2 constraints, so the dual has 2 variables and 3 constraints.  The first primal 

constraint is an equality, so the first dual variable is unrestricted in sign.  The second primal 

constraint is a (>) inequality so the second dual variable should be non-positive.  The first primal 

variable is restricted to be non-positive, so the first dual constraint is a (<) inequality X2 is 

restricted to be non-negative, thus the second dual constraint is >; X3 is unrestricted in sign.  

Thus, the third dual constraint is an equality.  Then, the dual can be written as  
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which if one substitutes Ui= w0 and U2 = w3
- is identical to that above. 

4.4 The Character of Dual Solutions 

If the primal problem possesses a unique nondegenerate, optimal solution, then the optimal 

solution to the dual is unique.  However, dual solutions arise under a number of other conditions. 

Several cases which can arise are: 

1)  When the primal problem has a degenerate optimal solution, then the dual has multiple 

optimal solutions. 

2) When the primal problem has multiple optimal solutions, then the optimal dual solution is 

degenerate. 

3) When the primal problem is unbounded, then the dual is infeasible. 

4)  When the primal problem is infeasible, then the dual is unbounded or infeasible. 



 

 

4.5 Degeneracy and Shadow Prices 

The above interpretations for the dual variables depend upon whether the basis still exists after 

the change occurs.  As shown in the previous chapter, there is a right hand side range over which 

the basis remains optimal.  When a basic primal variable equals zero, the dual has alternative 

optimal solutions.  The cause of this situation is generally that the primal constraints are 

redundant at the solution point and the range of right hand sides is zero.  This redundancy means 

one does not need a full basic solution, so one of the basic variables is set to zero with the other 

basic variables likely to be nonzero.  The best way to explain the implications of this situation is 

through an example.  Consider the following problem 
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Notice that at the optimal solution, X1 = 50, X2 = 50, the constraints are redundant.  Namely, 

either the combination of the last two constraints or the first two constraints would yield the 

same optimal solution which is X1 = X2 = 50.  The simplex solution of this problem shows a tie 

for the entering variable in the second pivot where one has the choice of placing X2 into the 

solution replacing either the slack variable from the first or the third constraint.  If the first slack 

variable (S1) is chosen as basic then one gets X1 = 50, X2 = 50, S1 = 0 while S1 is basic.  The 

associated shadow prices are 0, 3, and 2.  On the other hand, if S3 were made basic one gets X1 = 

50, X2 = 50 S3 = 0 with the shadow prices 2, 1, 0.  Thus, there are two alternative sets of shadow 

prices, both of which are optimal.  (Note, the dual objective function value is the same as the 

optimal primal in each case.) 

The main difficulty with degeneracy is in interpreting the shadow price information.  The 

shadow prices are taking on a direction (i.e., see the arguments in McCarl (1977)).  Note that if 

one were to increase the first right hand side from 100 to 101 this would lead to a zero change in 

the objective function and X1 and X2 would remain at 50.  On the other hand if one were to 

decrease that right hand side from 100 to 99 then one would obtain an objective function which 

is two units smaller because X2 would need to be reduced from 50 to 49.  This shows that the 

two alternative shadow prices for the first constraint (i.e., 0 and 2) each hold in a direction.  

Similarly if the constraint on X1 was increased to 51, the objective function increases by one 

dollar as one unit of X2 would be removed from the solution in favor of X1; whereas, if the 

constraint was moved downward to 49, it would cost three dollars because of the reduction in X1.  

Meanwhile, reducing the constraint on X2 would cost two dollars, while increasing it would 

return to zero dollars.  Thus in all three cases shadow prices take on a direction and the value of 

that change is revealed in one of the two dual solutions.  This is quite common in degeneracy and 

may require one to do a study of the shadow prices or try to avoid degeneracy using a priori 

degeneracy resolution scheme as discussed in McCarl (1977); Paris (1991); Gal, and Gal et al., 

or as implemented automatically in OSL.   

http://agrinet.tamu.edu/mccarl/gms/ch04/Degen.GMS


 

 

4.6 Primal Columns are Dual Constraints 

One final comment relative to modeling is that the columns in the primal, form constraints on the 

dual shadow price information.  Thus, for example, when a column is entered into a model 

indicating as much of a resource can be purchased at a fixed price as one wants, then this column 

forms an upper bound on the shadow price of that resource.  Note that it would not be sensible to 

have a shadow price of that resource above the purchase price since one could purchase more of 

that resource.  Similarly, allowing goods to be sold at a particular price without restriction 

provides a lower bound on the shadow price.   

In general, the structure of the columns in a primal linear programming model should be 

examined to see what constraints they place upon the dual information.  The linear programming 

modeling chapter extends this discussion.   
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Table 4.1. Primal-Dual Correspondence for Problems not in standard form 
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