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Linear programming solution has been the subject of many articles and books.  Complete 

coverage of LP solution approaches is beyond the scope of this book and is present in many 

other books.  However, an understanding of the basic LP solution approach and the resulting 

properties are of fundamental importance.  Thus, we cover LP solution principles from a matrix 

algebra perspective demonstrating the simplex algorithm and the properties of optimal solutions.  

In addition, we cover several practical matters. 



3.1 Matrix Formulation of the Linear Programming Problem  

The matrix version of the basic LP problem can be expressed as in the equations below. 

     Max     CX    

         s.t.      AX     <   b 

           X     >   0 

 Here the term CX is maximized where C is an 1xN vector of profit contributions and X is 

an Nx1 vector of decision variables.  This maximization is subject to inequality constraints 

involving M resources so that A is an MxN matrix giving resource use coefficients by the X's, 

and b is an Mx1 vector of right hand side or resource endowments.  We further constrain X to be 

non-negative in all elements. 

 It is common to convert the LP inequality system to equalities by adding slack variables.  

These variables account for the difference between the resource endowment (b) and the use of 

resources by the variables (AX) at no cost to the objective function.  Thus, define  

S = b - AX 

 

as the vector of slack variables.   Each slack variable is restricted to be nonnegative thereby 

insuring that resource use is always less than or equal to the resource endowment.  One slack 

variable is added for each constraint equation.  Rewriting the constraints gives 

AX + IS = b, 

where I is an MX M identity matrix and S is a Mx1 vector.  The slack variables appear in the 

objective function with zero coefficients.  Thus, we add an 1xM vector of zero's to the objective 

function and conditions constraining the slack variables to be nonnegative.  The resultant 

augmented LP is 

         MAX   CX  +  OS 

          s.t.      AX  +   IS   =   b 

                       X,        S   >  0.  

 Throughout the rest of this section we redefine the X vector to contain both the original 

X's and the slacks.  Similarly, the new C vector will contain the original C along with the zeros 

for the slacks, and the new A matrix will contain the original A matrix along with the identity 

matrix for the slacks.  The resultant problem is  

         MAX  CX 

         s.t.       AX   =   b 



           X    >   0  

3.2 Solving LP's by Matrix Algebra  

 LP theory (Dantzig(1963); Bazarra, et al.) reveals that a solution to the LP problem will 

have a set of potentially nonzero variables equal in number to the number of constraints.  Such a 

solution is called a Basic Solution and the associated variables are commonly called Basic 

Variables.  The other variables are set to zero and are called the nonbasic variables.  Once the 

basic variables have been chosen; the X vector may be partitioned into XB, denoting the vector of 

the basic variables, and XNB, denoting the vector of the nonbasic variables.  Subsequently, the 

problem is partitioned to become 

    MAX   CBXB   +   CNBXNB 

    s.t.    BXB     +  ANBXNB    =   b  

        XB ,                 XNB       0. 

 

 

The matrix B is called the Basis Matrix, containing the coefficients of the basic variables as they 

appear in the constraints.  ANB contains the coefficients of the nonbasic variables.  Similarly CB 

and CNB are the objective function coefficients of the basic and nonbasic variables. 

 Now suppose we address the solution of this problem via the simplex method.  The 

simplex solution approach relies on choosing an initial B matrix, and then interactively making 

improvements.  Thus, we need to identify how the solution changes when we change the B 

matrix.  First, let us look at how the basic solution variable values change.  If we rewrite the 

constraint equation as  

    BXB   =   b  -  ANBXNB. 

Setting the nonbasic variables (XNB) to zero gives 

    BXB  =  b. 

This equation may be solved by premultiplying both sides by the inverse of the basis matrix 

(assuming non-singularity) to obtain the solution for the basic variables, 

B-1BXB  =  IXB  =  B-1b    or    XB  =  B-1 b. 

We may also examine what happens when the nonbasic variables are changed from zero.  

Multiply both sides of the equation including the nonbasic variables by B-1 giving  

XB = B-1 b - B-1 ANB XNB. 



This expression gives the values of the basic variables in terms of the basic solution and the 

nonbasic variables.  This is one of the two fundamental equations of LP.  Writing the second 

term of the equation in summation form yields 

XB = B-1 b  -  
NBj

jj

-1 xaB  

where NB gives the set of nonbasic variables and aj the associated column vectors for the 

nonbasic variablesXj from the original A matrix.  This equation shows how the values of the 

basic variables are altered as the value of nonbasic variables change.  Namely, if all but one    

(X  ) of the nonbasic variables are left equal to zero then this equation becomes 

XB  =  B-1b  -   B-1a X 

This gives a simultaneous system of equations showing how all of the basic variables are 

affected by changes in the value of a nonbasic variable.  Furthermore, since the basic variables 

must remain non-negative the solution must satisfy 

XBi*  =  (B-1b)i*  -  (B
-1a)i* X  =  0 

 

 

This equation permits the derivation of a bound on the maximum amount the nonbasic variable 

X can be changed while the basic variables remain non-negative.  Namely, X may increase 

until one of the basic variables becomes zero.  Suppose that the first element of XB to become 

zero is XBi*.  Solving for XBi* gives 

 

XBi*  =  (B-1b)i*  -  (B
-1 a )i* X    =  0 

 

where ( )i denotes the ith element of the vector.  Solving for X yields 

 

X =    (B-1b)i*/(B
-1a)i*,  where  (b-1a)i* 

 

This shows the value of X which causes the i*th basic variable to become zero.  Now since  

X must be nonnegative then we need only consider cases in which a basic variable is decreased 

by increasing the nonbasic variable.  This restricts attention to cases where (B-1 a)i,  is positive.  

Thus, to preserve non-negativity of all variables, the maximum value of Xis  



X =  {(B-1b)i/(B
-1a )i } for all i where   (B-1a  )i   >  0 

 The procedure is called the minimum ratio rule of linear programming.  Given the 

identification of a nonbasic variable, this rule gives the maximum value the entering variable can 

take on.  We also know that if i* is the row where the minimum is attained then the basic 

variable in that row will become zero.  Consequently, that variable can leave the basis with X 

inserted in its place.  Note, if the minimum ratio rule reveals a tie, (i.e., the same minimum ratio 

occurs in more than one row), then more than one basic variable reaches zero at the same time.  

In turn, one of the rows where the tie exists is arbitrarily chosen as i* and the new solution has at 

least one zero basic variable and is degenerate .  Also, note that if all the coefficients of X  are 

zero or negative  (B-1 a)i -- for all i -- then this would indicate an unbounded solution, if 

increasing the value of the nonbasic variable increases the objective function, since the variable 

does not decrease the value of any basic variables. 

 Another question is which nonbasic variable should be increased?  Resolution of this 

question requires consideration of the objective function.  The objective function, partitioned 

between the basic and nonbasic variables, is given by  

Z  =  CBXB  +  CNBXNB 

Substituting the XB equation (3.1) yields 

Z  =  CB(B-1b – B-1ANBXNB)  + CNBXNB 

or 

Z   =   CBB-1b  -  CBB-1ANBXNB  +  CNBXNB 

or 

Z  =  CBB-1b  -  (CBB-1ANB  -  CNB)XNB 

This is the second fundamental equation of linear programming.  Expressing the second term in 

summation notation yields 

  jX



NBj

jj

-1

B

-1

B c - aBC - bBC    Z  

This expression gives both the current value of the objective function for the basic solution  

(CBB-1b since all nonbasic Xj equal zero) and how the objective function changes given a change 

in the value of nonbasic variables.  Namely, when changing X 

   Xc - aBC - bBC    Z -1

B

-1

B  

Since the first term of the equation is equal to the value of the current objective function (Z), 

then it can be rewritten as 



   Xc - aBC  -  Z    Z 1-

B  

For maximization problems, the objective value will increase for any entering nonbasic variable 

if its term, CBB-1  a - c , is negative.   Thus the criterion that is most commonly used to 

determine which variable to enter is:  select the nonbasic variable that increases the value of 

objective function the most per unit of the variable entered.  Namely, we choose the variable to 

enter as that variable X  such that the value of CBB-1a - c , is most negative.  This is the 

simplex criterion rule of linear programming and the term CBB-1a - c, is called the reduced 

cost.   

If there are no variables with negative values of CBB-1a - c, then the solution cannot be 

improved on and is optimal.  However, if a variable is identified by this rule then it should be 

entered into the basis.  Since the basis always has a number of variables equal to the number of 

constraints, then to put in a new variable one of the old basic variables must be removed.  The 

variable to remove is that basic variable which becomes zero first as determined by the minimum 

ratio rule.  This criteria guarantees the non-negativity condition is maintained providing the 

initial basis is non-negative.  These results give the fundamental equations behind the most 

popular method for solving LP problems which is the simplex algorithm.  (Karmarkar presents 

an alternative method) 

3.2.1 The Simplex Algorithm  

 Formally, the matrix algebra version of the simplex algorithm (assuming that an initial 

feasible invertible basis has been established) for a maximization problem follows the steps: 

 

 

1) Select an initial feasible basis B; commonly this is composed of all slack variables and is 

the identity matrix. 

2) Calculate the Basis inverse (B-1). 

3) Calculate CBB-1aj - cj for the nonbasic variables and identify the entering variable as the 

variable which yields the most negative value of that calculation; denote that variable as 

X if there are none, go to step 6. 

4) Calculate the minimum ratio rule. 

   
Denote the row where the minimum ratio occurs as row I*; if there are no rows with 

(B-1a)i > 0 then go to step 7. 

5) Remove the variable that is basic in row I* by replacing the variable in the *th column 

of the basis matrix with column aand recalculate the basis inverse.  Go to step 3. 

6) The solution is optimal.  The optimal variable values equal B-1b for the basic variables 

and zero for the nonbasic variables.  The optimal reduced costs are  

      0    aB re       wheaB / bB Min
i

-1

i

-1

i

-1

i




7) CBB-1aj - cj (also commonly called   Zj - cj).  The optimal value of the objective function 

is CBB-1b. Terminate. 

8) The problem is unbounded.  Terminate. 

 

3.2.2 Example  

Maximize Z =  2000  Xfancy  +  1700  Xfine  

s.t.        Xfancy  +       Xfine      12 

     25  Xfancy  +     20  Xfine    280 

Xfancy  ,      Xfine         0 

Now suppose we choose s1 and s2 to be in the initial basis.  Thus, initially 
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Now using criterion for selecting the entering variables (CB B-1 aNB - cNB): 

Taking the variable associated with the most negative value (-2000) from this calculation 

indicates the first nonbasic variable Xfancy, should enter.  Computation of the minimum ratio rule 

requires the associated B-1a1 and B-1b 
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Using the criterion for leaving variable 
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In this case, the minimum ratio occurs in row 2.  Thus, we replace the second basic variable, s2, 

with Xfancy.  At this point, the new basic and nonbasic items become 
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and the new basis inverse is 
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Recomputing the reduced costs for the nonbasic variables Xfine, and s2 gives 
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Observe that the procedure implies Xfine should enter this basis.  The coefficients for the 

minimum ratio rule are 
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The minimum ratio rule computation yields 

 

In the current basis, s1 is the basic variable associated with row 1.  Thus, replace s1 with Xfine.  

The new basis vector is  [Xfine Xfancy] and the basic matrix is now 
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In turn the basis inverse becomes 
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The resultant reduced costs are 
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Since all of these are greater than zero, this solution is optimal.  In this optimal solution 
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This method may be expanded to handle difficulties with finding the initial nonnegative basis 

using either the Phase I/Phase II or BIG M methods discussed below. 

3.3 Solutions and Their Interpretation  

 LP solutions arise and are composed of a number of elements.  In this section we discuss 

general solution interpretation, common solver solution format and contents, special solution 

cases and sensitivity analysis. 

3.3.1 General Solution Interpretation  

 The two fundamental equations developed in section 3.1 may be utilized to interpret the 

LP solution information.  The first (3.1) shows how the basic variables change as nonbasic 

variables are changed,  





NBj

jj

-1-1

B xaB - bB    X  

and the second (3.2) give the associated change in the objective function when a nonbasic 

variable is changed 

  ,xc - aBC - bBC    Z
NBj
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-1

B

-1
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Suppose we assume that an optimal basic solution has been found and that B and B-1 are the 

associated basis and basis inverse.  Now suppose we consider changing the constraint right hand 

sides.  The implications of such a change for the solution information may be explored using 

calculus.   Differentiating the above equations with respect to the right hand side b yields 

  NB j 6050000 
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These results indicate that CBB-1 is the expected rate of change in the objective function when the 

right hand sides are changed.  The values CBB-1 are called the shadow prices and give estimates 

of the marginal values of the resources (later they will also be called the Dual Variables or Dual 

Solution).  Similarly, B-1 gives the expected rate of change in the basic variables when resources 

are changed.  Thus when the first right hand side is changed, the basic variables change at the 

rate given by the first column within the basis inverse; i.e., the first variable changes at rate (B-

1)11, the second at (B-1)21 and so on. 

Other results may be derived regarding changes in nonbasic variables.  Partially differentiating 

the objective function equation with respect to a nonbasic variable yields 

 

This shows that the expected marginal cost of increasing a nonbasic variable equals the negative 

of CBB-1aj - cj , a consequence the  CBB-1aj - cj term is usually called reduced cost.  The marginal 

effect of changes in the nonbasic variables on the basic variables is obtained by differentiating.  

This yields 

 

which shows that the marginal effect of the nonbasic variables on the basic variable is minus B-

1aj.  The B-1 constitutes a translation from the original resource use space (i.e., aj) into the basic 

variables space and tells us how many units of each basic variable are removed with a marginal 

change in the nonbasic variable.  We can also use these results to further interpret the  

equation.  The marginal revenue due to increasing a non basic variable is equal to its direct 

revenue (cj the objective function coefficient) less the value of the basic variables (CB) times the 

amount of the basic variables diverted (B-1aj).  Thus, this equation takes into account both the 

direct effect from increasing Xj plus the substitution effect for the basic variables. 

3.3.2 Examples of Solution Interpretation  

This set of general interpretations may be applied to the Joe's Van example above.  The 

appropriate mathematical expressions for each of the four items are as follows. 
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The first expression, which gives the partial of Z with respect to b, tells how the objective 

function changes when the right hand sides change.  Thus, if the capacity limit were changed 

upward from 12, one would expect the objective function to increase $500 per unit.  Similarly if 

the second right hand side or the labor limit were increased upwards from 280 then one would 

expect a return of $60 per hour.   

 

The second expression indicates the anticipated change in the values of the basic variables when 

the right hand sides are changed; the basic variables in the model are arranged with Xfine being 

first and Xfancy being second.  The first column of the basis inverse corresponds to what happens 

if the van capacity right hand side is changed; whereas, the second column corresponds to what 

happens if the labor right hand side is changed.  Thus, if capacity were expanded to 13, one 

would expect to produce 5 more fine vans and 4 less fancy vans.  Similarly, if labor was 

expanded, the number of fine vans would decrease by 1/5 per unit and the number of fancy vans 

would increase by 1/5.  The particular signs of these tradeoffs are caused by the original data.  

Fancy vans use more labor then fine vans.  Thus, when capacity is expanded, more fine vans are 

made since they use labor more intensively while, if labor is increased, one makes more fancy 

vans.   

Now let us examine the effects of changes on the objective function when the nonbasic variables 

are altered.  In this problem we have two nonbasic variables which are the slack variables for the 

two resources.  The effect of increasing the nonbasics is a $500 decrease if we increase slack 

capacity, and a $60 decrease if we increase slack labor.  This is exactly the opposite of the 

resource values discussed above, since the consequence of increasing the slacks is the same as 

that of decreasing the resource endowments. 

The interpretation of the basis inverse also allows us to get further information about the 

interpretation of the change in the objective function when the right hand sides have changed.  

Namely, if changing capacity causes five more fine vans to be produced (each worth $1700, 
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leading to a $8500 increase but, four less fancy vans worth $8000) the net effect then is a $500 

increase  equaling the shadow price.  Similarly, the labor change causes $400 more worth of 

fancy vans to be produced but $340 less fine vans for a net value of $60.  Overall, this shows an 

important property of linear programming.  The optimal solution information contains 

information about how items substitute.  This substitution information is driven by the relative 

uses of the constraint resources by each of the alternative activities.  This is true in more complex 

linear programming solutions. 

3.3.3 Finding Limits of Interpretation  

The above interpretations only hold when the basis remains feasible and optimal.  Ranging 

analysis is the most widely utilized tool for analyzing how much a linear program can be altered 

without changing the interpretation of the solution.  Ranging analysis deals with the question:  

what is the range of values for a particular parameter for which the current solution remains 

optimal?   Ranging analysis of right-hand-side (bi) and objective function coefficients (cj) is 

common; many computer programs available to solve LP problems have options to conduct 

ranging analyses although GAMS does not easily support such features (See chapter 19 for 

details).       

3.3.3.1 Ranging Right Hand Sides  

Let us study what happens if we alter the right hand side (RHS).  To do this let us write the new 

RHS in terms of the old RHS, the size of the change and a direction of change,  

bnew = bold + r 

where bnew is the new RHS, bold is the old RHS,  is a scalar giving the magnitude of the change 

and r is the direction of change.  Given an r vector, the resultant values for the basic variables 

and objective function are  
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while CBB-1aj – cj is unchanged.  The net effect is that the new solution levels are equal to the old 

solution levels plus B-1r .  Similarly the new objective function is the old one plus CB B-1 r.  

For the basis to still hold the basic variables must remain nonnegative as must the reduced costs 

(CBB-1aj - cj).  However, since the reduced costs are unaltered we must only worry about the 

basic variables.  Thus the condition for XB can be written with non-negativity imposed 

0  r  B bB    bB    X -1

old

-1

new

-1

B    

and merits further examination in terms of the admissible value of  



The above expression gives a simultaneous set of conditions for each basic variable for which 

one can solve those conditions.  Two cases which arise across the set of conditions depending on 

the sign of individual elements in B-1r.  
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much as in the row minimum rule where positive values of B-1r limit how negative  can be and 

negative numbers limit how positive  can become.  This result shows the range over which   

can be altered with the basis remaining optimal. 

Example 

Suppose in the Joe's van factory example we wished to change the first right hand side.  

Ordinarily, if one wishes to change the ith RHS, then r will be a vector with all zeros except for a 

one in the ith position, as illustrated below 
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Thus when we change row 1 in our two row problem 
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The resultant values of XB becomes 
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which implies 
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Therefore the first right hand side can be changed up by 2 or down by 0.8 without the basis 

changing.  Note that during this alteration the solution (B-1 b) does change, but B-1 does not.  

Furthermore, this gives a range of values for b1 for which the marginal value of the resource 

(CBB-1) remains the same.   

This approach also encompasses a generalization of the RHS ranging problem.  Namely, suppose 

we wish to alter several RHS's at the same time.  In this case, the change vector (r) does not have 

one entry but rather several.  For example, suppose in Joe's van that Joe will add both capacity 

and an employee.  In that case the change vector would look like the following:  
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3.3.3.2 Ranging Objective Function Coefficients  

The analysis of ranging objective function coefficients is conceptually similar to RHS ranging.  

We seek to answer the question:  what is the range of values for a particular objective function 

coefficient for which the current basis is optimal?  

To examine this question, write the new objective function as the old objective function plus  

, which is a change magnitude, times T which is a direction of change vector. 

T   C     C oldnew   

Simultaneously, one has to write an expression for the objective function coefficients of the basic 

variables 

 

where TB gives the way the CB's are altered.  Subsequently, one can reexpress the restriction that 

the reduced cost values must be nonnegative as  
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In turn, we discover for nonbasic variables 
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while for basic variables 
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Example 

 Suppose in our example problem we want to alter the objective function on Xfancy so it 

equals 2,000 + .  The setup then is 
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which implies -300    125 or that the basis is optimal for any objective function value for 

Xfancy between 2125 and 1700.  This shows a range of prices for Xfancy for which its optimal level 

is constant.  

3.3.3.3 Changes in the Technical Coefficient Matrix  

The above analysis examined changes in the objective function coefficients and right hand sides.  

It is possible that the technical coefficients of several decision variables may be simultaneously 

varied.  This can be done simply if all the variables are nonbasic.  Here we examine incremental 

changes in the constraint matrix.  For example, a farmer might purchase a new piece of 

equipment which alters the labor requirements over several crop enterprises which use that 

equipment.  In this section, procedures which allow analysis of simultaneous incremental 

changes in the constraint matrix are presented.  

-AB C -1
Bnew



Consider the linear programming problem 

 

  

0X 

bXAs.t.

CX ZMax







 

where the matrix of the technical coefficients is to be altered as follows 

 MAA   

where , A, and M are assumed to be mxn matrices.  Suppose the matrix M indicates a set 

simultaneous changes to be made in A and that the problem solution is nondegenerate, 

possessing an unique optimal solution.  Then the expected change in the optimal value of the 

objective function given M is 

 ** MXUZZ oldnew   

where X* and U* are the optimal decision variable values (B-1 b) and shadow prices ( CBB-1) for 

the unaltered original problem.  

The equation is an approximation which is exact when the basis does not change.  See 

Freund(1985) for its derivation and further discussion.  Intuitively the equation can be explained 

as follows:  since M gives the per unit change in the resource use by the variables, then MX * 

gives the change in the resources used and U*MX* then gives an approximation of the value of 

this change.  Further, if M is positive, then more resources are used and the Z value should go 

down so a minus is used.  McCarl, et al.(1990) investigated the predictive power of this equation 

and conclude it is a good approximation for the case they examined. 

Illustrative Example 

To illustrate the procedure outlined in the preceding section, consider the Joe's van shop model 

and suppose we wish to consider the effect of an equal change in the labor coefficients.  For a 

change equal , the problem becomes 
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For no change (  =  0), the optimal solution to this problem is 

A



 

 60500  BC   U

8

4
    bB    X

1-

B

*

1-*













 

 

with the optimal value of the objective function equal to 22,800, our change matrix in this case is  
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Thus, the change in the value of the objective function is given by 
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Suppose the labor requirement is reduced by 1 hour for both vans so that  = -1, then the 

anticipated increase in the objective function that would result from using the new machine is 

 ΔZ = -U*MX* = 720 

Solution of the revised problem shows the objective function changes by 720. 

3.3.4 Finding the Solution  

As shown above, the linear programming solution contains a lot of information relative to the 

ways the objective function and basic variables change given changes in parameters.  However, 

not all this information is included in an optimal solution as reported by modeling systems such 

as GAMS.  Consider the following problem 
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The GAMS solution information for this problem appears in Table 3.1.  The optimal objective 

function value equals 26.5.  Then GAMS gives information on the equations.  For this problem, 

there are 3 equations as named in the parenthetical statements above.  For each equation 

information is given on the lower limit (labeled LOWER), value of AX* (labeled LEVEL), upper 

limit (labeled UPPER), and shadow price CBB-1 (labeled MARGINAL).  The objective function 

row (ZROW) does not contain interesting information.  The constraint equations show there is a) 

no lower bound on the first equation (there would be if it were ) b) the left hand side equals 10 
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(AX*) and c) the right hand side is 10 (UPPER) while the shadow price is 2.5 (MARGINAL).  

Similar information is present for the second equation. 

Turning to the variables, the solution table gives the variable name, lower bound (LOWER), 

optimal level (LEVEL), upper bound (UPPER) and reduced cost (MARGINAL).  The solution 

showsX1 = 6.5 andX2 = 3.5 while the cost of forcingX3 into the solution is estimated to be $2.00 

per unit.  We also see the objective function variable (Z) equals 26.5.  The solution information 

also indicates if an unbounded or infeasible solution arises. 

GAMS output does not provide access to the B-1 or B-1aj matrices.  This is a mixed blessing.  A 

1000 row model would have quite large B-1 and B-1aj matrices, but there are cases where it would 

be nice to have some of the information.  None of the GAMS solvers provide access to this data. 

3.3.5 Alternative Optimal and Degenerate Cases  

Linear programming does not always yield a unique primal solution or resource valuation.  Non-

unique solutions occur when the model solution exhibits degeneracy and/or an alternative 

optimal.   

Degeneracy occurs when one or more of the basic variables are equal to zero.  Degeneracy is a 

consequence of constraints which are redundant in terms of their coefficients for the basic 

variables.  Mathematically, given a problem with M rows and N original variables, and M slacks, 

degeneracy occurs when there are more than N original variables plus slacks that equal zero with 

less than M of the original variables and slacks being non-zero. 

Most of the discussion in LP texts regarding degeneracy involves whether or not degeneracy 

makes the problem harder to solve and most texts conclude it does not.  Degeneracy also has 

important implications for resource valuation.  Consider for example the following problem: 
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The solution to this problem is degenerate because the third constraint is redundant to the first 

two.  Upon application of the simplex algorithm, one finds in the second iteration that the 

variable X2 can be entered in place of the slack variable from either the second or third rows.  If 

X2 is brought into the basis in place of the second slack, the shadow prices determined are (u1, 

u2, u3) = (100, 75, 0).  If X2 is brought into the basis in place of the third slack, the value of the 

shadow prices are (u1, u2, u3) = (25, 0, 75).  These differ depending on whether the second or 

third slack variable is in the basis at a value of zero.  Thus, the solution is degenerate, since a 

variable in the basis (one of the slacks) is equal to zero (given three constraints there would be 
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three non-zero variables in a non-degenerate solution).  The alternative sets of resource values 

may cause difficulty in the solution interpretation process.   For example, under the first case, 

one would interpret the value of the resource in the second constraint as $75, whereas in the 

second case it would interpret nominally as $0.  Here the shadow prices have a direction and 

magnitude as elaborated in McCarl (1977) (this has been shown numerous times, see Drynan or 

Gal, Kruse, and Zornig.).  Note that decreasing the RHS of the first constraint from 100 to 99 

would result in a change in the objective function of 100 as predicted by the first shadow price 

set, whereas increasing it from 100 to 101 would result in a $25 increase as predicted by the first 

shadow price set.  Thus, both sets of shadow prices are valid.  The degenerate solutions imply 

multiple sets of resource valuation information with any one set potentially misleading.  Both 

McCarl (1977) and Paris discuss approaches which may be undertaken in such a case.  The 

underlying problem is that some of the right hand side ranges are zero, thus the basis will change 

for any right hand side alterations in one direction.  

Another possibility in the simplex algorithm is the case of alternate optimal.  An alternative 

optimal occurs when at least one of the nonbasic variables has a zero reduced cost; i.e., CBB-1aj - 

cj for some j  NB equal to zero.  Thus, one could pivot, or bring that particular variable in the 

solution replacing one of the basic variables without changing the optimal objective function 

value.  Alternative optimals also imply that the reduced cost of more than M variables in a 

problem with M constraints are equal to zero.  Consider the following problem: 
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In this problem the optimal solution may consist of either X1 = 100 or X2 = 50 with equal 

objective function values one or the other of these variables will have zero reduced cost at 

optimality.  Alternative optimals may cause difficulty to the applied modeler as there is more 

than one answer which is optimal for the problem.  Paris (1981, 1991); McCarl et al. (1977); 

McCarl and Nelson, and Burton et al., discuss this issue further. 

3.3.6 Finding Shadow Prices for Bounds on Variables  

 Linear programming codes impose upper and lower bounds on individual variables in a 

special way.  Many modelers do not understand where upper or lower bound related shadow 

prices appear.  An example of a problem with upper and lower bounds is given below. 
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The second constraint imposes an upper bound on X1, i.e., X1 < 10, while the third constraint, X2 

> 1, is a lower bound on X2.  Most LP algorithms allow one to specify these particular 

restrictions as either constraints or bounds.  Solutions from LP codes under both are shown in 

Table 3.2. 

In the first solution the model has three constraints, but in the second solution the model has only 

one constraint with the individual constraints on X1 and X2 imposed as bounds.  Note that in the 

first solution there are shadow prices associated with constraints two and three.  However, this 

information does not appear in the equation section of the second solution table.  A closer 

examination indicates that while X1 and X2 are non-zero in the optimal solution, they also have 

reduced costs.  Variables having both a non-zero value and a non-zero reduced cost are 

seemingly not in accordance with the basic/nonbasic variable distinction.  However, the bounds 

have been treated implicitly.  Variables are transformed so that inside the algorithm they are 

replaced by differences from their bounds and thus a nonbasic zero value can indicate the 

variable equals its bound.  Thus, in general, the shadow prices on the bounds are contained 

within the reduced cost section of the column solution.  In the example above the reduced costs 

show the shadow price on the lower bound of X2 is 1 and the shadow price on the upper bound of 

X1 is -3.  Notice these are equal to the negative of the shadow prices from the solution when the 

bounds are treated as constraints. 

One basic advantage of considering the upper and lower limits on variables as bounds rather than 

constraints is the smaller number of rows which are required. 

3.4 Further Details on the Simplex Method  

The simplex method as presented above is rather idealistic avoiding a number of difficulties.  

Here we present additional details regarding the basis in use, finding an initial nonnegative basis 

and some comments on the real LP solution method. 

3.4.1 Updating the Basis Inverse  

In step 5 of the matrix simplex method the basis inverse needs to be changed to reflect the 

replacement of one column in the basis with another.  This can be done interatively using the so-

called product form of the inverse (Hadley(1962)).  In using this procedure the revised basis 

inverse (B-1 ) is the old basis inverse (B-1) times an elementary pivot matrix (P), i.e.,  

 -1

old
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This pivot matrix is formed by replacing the I*th (where one is pivoting in row I*) column of an 

identity matrix with elements derived from the column associated with the entering variable.  

Namely, suppose the entering variable column updated by the current basis inverse has elements 
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Suppose we update the inverse in the Joe's van example problem using product form of the 

inverse.  In the first pivot, after Xfancy has been identified to enter the problem in row 2, then we 

replace the second column in an identity matrix with a column with one over the pivot element 

(the element in the second row of B-1a divided by the pivot element elsewhere.  Since B-1a 

equals 
25

1
 , the pivot matrix P1 is  
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that in forming P2, the first column of an identity matrix was replaced sinceX5 will enter as the 

first element of the basis vector.  Multiplication of B-1 by P2 gives  
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which equals the basis inverse computed above. 

3.4.2 Advanced Bases  

The process of solving a LP is a hunt for the optimal basis matrix.  Experience with LP reveals 

that the simplex method usually requires two or three times as many iterations as the number of 

constraints to find an optimal basis.  This implies that when solving a series of related problems 

(i.e., changing a price of an input), it may be worthwhile to try to save the basis from one 

problem and begin the next problem from that particular basis.  This is commonly supported in 



LP solution algorithms and is quite important in applied LP involving sizable models.  In a 

recent study, it took more than thirty-five hours of computer time to obtain an initial basis, but 

from an advanced basis, a series of related problems with a few changes in parameters could be 

solved in two hours.  Dillon (1970) discusses ways of suggesting a basis for problems that have 

not previously been solved. 

Modeling systems like GAMS do not readily take an advanced basis although one can be 

attempted by a choice of initial levels for variables (EXECUTE_LOADPOINT) permits this).  

However, once an initial model solution has been found, then any additional solutions are 

computed from an initial basis.  Furthermore, an advanced basis can be employed by restarting 

from a stored file. 

3.4.3 Finding an Initial Feasible Basis  

When an LP problem includes only less-than constraints with non-negative right hand sides, it is 

straightforward to obtain an initial feasible basis with all non-negative variable values.  In that 

case the slacks form the initial basis and all decision variables are nonbasic, equaling zero, with 

each slack variable set equal to the RHS (si = bi).  The initial basis matrix is an identity matrix.  

In turn, the simplex algorithm is initiated. 

 

However, if one or more: a) negative right hand sides, b) equality constraints, and/or c) greater 

than or equal to constraints are included, it is typically more difficult to identify an initial 

feasible basis.  Two procedures have evolved to deal with this situation: the Big M method and 

the Phase I/Phase II method.  Conceptually, these two procedures are similar, both imply an 

inclusion of new, artificial variables, which artificially enlarge the feasible region so an initial 

feasible basis is present.  The mechanics of artificial variables, of the Big M method and the 

Phase I/ Phase II problem are presented in this section. 

Models which contain negative right hand sides, equality and or greater than constraints do not 

yield an initial feasible solution when all X's are set to zero.  Suppose we have the following 

0X  

pHX

gFX

e-DX

bRXs.t.

CXMax











 

general problem where b, e, and p are positive. 



Conversion of this problem to the equality form requires the addition of slack, surplus and 

artificial variables. The slack variables (S1 and S2) are added to the first and second rows (note 

that while we cover this topic here, most solvers do this automatically).  Surplus variables are 

needed in the last constraint type and give the amount that left hand side (HX) exceeds the right 

hand side limit (p).  Thus, the surplus variables (W) equal p - HX and the constraint becomes HX 

- W = p. 

The resultant equality form becomes 
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Where the I's are appropriately sized identity matrices and the O's are appropriately sized vectors 

of zeros. 

  

Note that when X = 0, the slacks and surplus variables do not constitute an initial feasible basis.  

Namely, if S2 and W are put in the basis; then assuming e and p are positive, the initial solution 

for these variables are negative violating the non-negativity constraint  

  S2 = -e and W = -p.   

Furthermore, there is no apparent initial basis to specify for the third set of constraints (FX = g).  

This situation requires the use of artificial variables.  These are variables entered into the 

problem which permit an initial feasible basis, but need to be removed from the solution before 

the solution is finalized. 

Artificial variables are entered into each constraint which is not satisfied when X=0 and does not 

have an easily identified basic variable.  In this example, three sets of artificial variables are 

required. 

 

0A     ,A  ,A    W,,S,SX,  

pAIWIHX

gAIFX

e-AI-SIDX

bSIRX

WOSOSOCXMax

43221

444

33

2222

11

42211













 



 

Here A2, A3, and A4 are the artificial variables which permit an initial feasible nonnegative basis 

but which must be removed before a "true feasible solution" is present.  Note that S1, A2, A3, and 

A4 can be put into the initial basis.  However, if elements of A3 are nonzero in the final solution, 

then the original FX = g constraints are not satisfied.  Similar observations are appropriate for A2 

and A4.  Consequently, the formulation is not yet complete.  The objective function must be 

manipulated to cause the artificial variables to be removed from the solution.  The two 

alternative approaches reported in the literature are the BIG M method and the Phase I/Phase II 

method.   

3.4.3.1 BIG M Method  

 

 The BIG M method involves adding large penalty costs to the objective function for each  

artificial variable.  Namely, the objective function of the above problem is written as 

 

  Max  CX  +  O1S1  +  O2S2  +  O4W  -  M2A2  -  M3A3  -  M4A4 

 

where M2, M3, and M4 are conformable sized vectors of large numbers that will cause the model 

to drive A2, A3, and A4 out of the optimal solution. 

 

 An example of this procedure involves the problem 

 

  

0x,x

1xx

3xx

2xx

10x2x

2x3xMax

21

21

21

21

21

21













 

 

and the model as prepared for the Big M method is in Table 3.3.  The optimal solution to this 

problem is in Table 3.4. 
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 This solution is feasible since A2, A3, and A4 have been removed from the solution.  On 

the other hand, if the right hand side on the second constraint is changed to -4, then A2 cannot be 

forced from the solution and the problem is infeasible.  This, with the BIG M method one should 

note that the artificial variables must be driven from the solution for the problem to be feasible so 

M must be set large enough to insure this happens (if possible). 

3.4.3.2 Phase I/Phase II Method  

The Phase I/Phase II method is implemented in almost all computer codes.  The procedure 

involves the solution of two problems.  First, (Phase I) the problem is solved with the objective 

function replaced with an alternative objective function which minimizes the sum of the artificial 

variables, i.e., 

 Min  L2A2  +  L3A3  +L4A4 

where Li are conformably sized row vectors of ones. 

If the Phase I problem has a nonzero objective function (i.e., not all of the artificials are zero 

when their sum has been minimized), then the problem does not have a feasible solution.  Note 

this means the reduced cost information in an infeasible problem can correspond to this modified 

objective function.  Otherwise, drop the artificial variables from the problem and return to solve 

the real problem (Phase II) using the Phase I optimal basis as a starting basis and solve using the 

normal simplex procedure. 

The addition of the slack, surplus and artificial variables is performed automatically in almost all 

solvers including all that are associated with GAMS. 

3.4.4 The Real LP Solution Method  

The above material does not fully describe how a LP solution algorithm works.  However, the 

algorithm implemented in modern computer codes, while conceptually similar to that above is 

operationally quite different.  Today some codes use interior point algorithms combined with the 

simplex method (for instance, OSL, Singhal et al.).  Codes also deal with many other things such 

as compact data storage, basis reinversion, efficient pricing, and round-off error control (e.g., see 

Orchard-Hays or Murtagh). 

In terms of data storage, algorithms do not store the LP matrix as a complete MXN matrix.  

Rather, they exploit the fact that LP problems often be sparse, having a small number of non-

zero coefficients relative to the total possible number, by only storing non-zero coefficients along 

with their column and row addresses.  Further, some codes exploit packing of multiple addresses 

into a single word and economize on the storage of repeated numerical values (for in-depth 

discussion of data storage topics see Orchard-Hays or Murtagh). 



Perhaps the most complex part of most modern day LP solvers involves inversion.  As indicated 

above, the B-1 associated with the optimal solution is needed, but in forming B-1 the code usually 

performs more iterations than the number of constraints.  Thus, the codes periodically construct 

the basis inverse from the original data.  This is done using product form of the inverse; but this 

also involves such diverse topics as LU decomposition, reduction of a matrix into lower 

triangular form and matrix factorization.  For discussion in these topics see Murtagh. 

LP codes often call the formation of reduced costs the pricing pass and a number of different 

approaches have been developed for more efficient computation of pricing (see Murtagh for 

discussion). 

Finally, LP codes try to avoid numerical error.  In computational LP, one worries about whether 

numbers are really non-zero or whether rounding error has caused fractions to compound giving 

false non-zeros.  Solver implementations usually make extensive use of tolerances and basis 

reinversion schemes to control such errors.  Murtagh and Orchard-Hays discuss these. 

The purpose of the above discussion is not to communicate the intricacies of modern LP solvers, 

but rather to indicate that they are far more complicated than the standard implementation of the 

simplex algorithm as presented in the first part of the chapter. 
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Table 3.1. GAMS Solution of Example Model 

 
SOLVE SUMMARY 

 

MODEL PROBLEM OBJECTIVE Z          

TYPE  LP  DIRECTION MAXIMIZE 

SOLVER  MINOS5  FROM LINE  37 

 

**** SOLVER STATUS 1 NORMAL COMPLETION          

**** MODEL STATUS 1 OPTIMAL                    

**** OBJECTIVE VALUE 26.5000 

 

 EXIT -- OPTIMAL SOLUTION FOUND 

 

              LOWER    LEVEL    UPPER    MARGINAL 

---- EQU ZROW          .        .        .        1.000       

---- EQU CONSTRAIN1  -INF     10.000   10.000     2.500       

---- EQU CONSTRAIN2  -INF      3.000    3.000     0.500       

 

ZROW           OBJECTIVE FUNCTION 

CONSTRAIN1 FIRST CONSTRAINT 

CONSTRAIN2 SECOND CONSTRAINT 

 

             LOWER   LEVEL   UPPER   MARGINAL   

 

---- VAR X1 .     6.500    +INF      . 

---- VAR X2 .     3.500    +INF      . 

---- VAR X3 .      .       +INF    -2.000       

---- VAR Z   -INF   26.500    +INF      . 

 

X1 FIRST VARIABLE 

X2 SECOND VARIABLE 

X3 THIRD VARIABLE 

Z OBJECTIVE FUNCTION 

  



 

 

Table 3.2. Solution with Bounds Imposed as Constraints and as Bounds 

Solved with Constraints 

Variable Value Reduced Cost Status Equation Level Shadow Price Status 

X1 10 0 Basic 1 4 0 Basic 

X2 1 0 Basic 2 0 3  

    3 0 -1  

Solved with Bounds 

Variable Value Reduced Cost Status Equation Level Shadow Price Status 

X1 10 -3 (U) 1 4 0 Basic 

X2 1 1 (L)     

 

Table 3.3. The Model as Ready for the Big M Method 

Max 3x1 + 2x2 + 0S1 + 0S2 + 0W - 99A2 - 99A3 - 99a4   

 x1 + x2 + S1           = 10 

 x1 - x2   + S2   - A2     = -2 

 -x1 + x2         + A3   = 3 

 x1 + x2     - W     + A4 = 1 

 x1 , x2 , S1 , S2 , W , A2 , A3 , A4  0 

 

Table 3.4. Solution to the Big M Problem 

Variable Value Reduced Cost Equation Shadow Price 

x1 1.333 0 1 1.667 

x2 4.333 0 2 0 

S1 0 1.667 3 -1.333 

S2 1 0 4 0 

W 4.667    

A2 0 -99   

A3 0 -97.667   

A4 0 -99   

 


