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 CHAPTER I:  INTRODUCTION 

 

 

This book is intended to both serve as a reference guide and a text for a course on 

Applied Mathematical Programming.  The material presented will concentrate upon conceptual 

issues, problem formulation, computerized problem solution, and results interpretation.  Solution 

algorithms will be treated only to the extent necessary to interpret solutions and overview events 

that may occur during the solution process.  

 1.1 Mathematical Programming Approach 

Mathematical programming refers to a set of procedures dealing with the analysis of 

optimization problems.  Optimization problems are generally those in which a decision maker 

wishes to optimize some measure(s) of satisfaction by selecting values for a set of variables.  We 

will discuss the set of mathematical programs where the variable values are constrained by 

conditions external to the problem at hand (for example, constraints on the maximum amount of 

resources available and/or the minimum amount of certain items which need to be on hand) and 

sign restrictions on the variables.  The general mathematical programming problem we will treat 

is: 

Optimize  F(X)  

Subject to  (s.t.)        G(X)       S1 

         X      S2 
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Here X is a vector of decision variables.  The level of X is chosen so that an objective is 

optimized.  The objective is expressed algebraically as F(X).  The function F(X) is commonly 

called the objective function  and tells how alternative choices of X effect the decision maker 

satisfaction in terms of the objective.  This objective function will be maximized or minimized.  

However, in setting X, a set of constraints must be obeyed requiring that the X's behave in some 

manner.  These constraints are reflected in the above formulation by the requirements that: a) 

G(X) must belong to S1 and b) the variables individually must fall into S2. 

 A number of applications have been cast into mathematical programming terms.  Some 

examples of practical applications are  

1. A firm wishes to minimize the cost of feeding cattle so sets up an LP problem.  In this 

problem the objective is to minimize the cost of feeding expressed as the cost per lb 

of each ingredient times the amount of feed used summed over all feed stuff 

possibilities.  The variables are the amount of each feedstuff used.  However, in 

choosing the quantity of feedstuffs the diet must be structured so it meets the 

nutritional requirements of the animals.  Thus for example constraints are needed 

insuring the calorie and protein content summed across all the feedstuffs used is 

greater than or equal to the animal requirement. 

2. A firm wishes to learn how to manage its production facilities given that it may 

choose to either produce a good or buy it from another manufacturer and resell it.  

Specifically suppose as firm is in the business of electricity sale and can either 

generate it or buy it from a distant plant to meet customer needs.  In such a case the 
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model built would minimize the cost of generating or purchasing plus delivering 

energy given constraints on productive capacity, cost volume relationships, 

transmission capacity, demand and other factors.  The variables would be quantity 

generated by facility, quantity purchased by supplier and quantity moved across the 

transmission lines. 

3. A firm may wish to determine how to cut up a set of incoming logs to maximize 

profits.  In such case the firm would introduce variables for the way to process the 

logs and the sale of final products.  Constraints would be imposed on the quantity of 

logs by type, log handing facilities and product demand. 

As the examples above illustrate, the mathematical programming problem encompasses 

many different types of problems some of which will be discussed in this book.  In particular, if 

F(X) and G(X) are linear and the X's are individually non-negative, then the problem becomes a 

linear programming problem.  If the X  S2 restriction requires some X's to take on integer 

values, then this is an integer programming problem.  If G(X) is linear, F(X) quadratic, and the 

S2 restrictions are simply non-negativity restrictions, then we have a quadratic programming 

problem.  Finally, if F(X) and G(X) are general nonlinear functions with S2 being nonnegativity 

conditions, the problem is a nonlinear programming problem. 

 

 1.2 Practical Problem Analysis 

Problem analysis is by nature an interactive process in which an analyst perceives (or is 

told about) a problem; conceptualizes an approach; tries out the approach; revises the approach 
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to better fit the problem (alternatively terminates the investigation or tries a new approach) 

implements the approach; interprets the results; and terminates the inquiry, or transfers the 

approach to operational personnel.  This book will explicitly or implicitly deal with these topics 

under the assumptions that the problem analysis technique is mathematical programming. 

Mathematical programming problem analysts generally have comparative advantage in 

knowledge of the problem, not in algorithm development procedures.  Consequently, the 

problem analyst should be thoroughly informed on the topics of problem formulation, results 

interpretation, and model use but in large part can treat the solution processes as a "black box."  

Here we will concentrate more on use issues and algorithmic treatment will be left to other texts.   

 1.3 Mathematical Programming in Use 

Mathematical programming is most often thought of as a technique which decision 

makers can use to develop optimal values of the decision variables.  However, there are a 

considerable number of other potential usages of mathematical programming.  Furthermore, as 

we will argue below, numerical usage for identification of specific decisions is probably the least 

common usage in terms of relative frequency.   

Three sets of usages of mathematical programming that we regard as common are:  1) 

problem insight construction; 2) numerical usages which involve finding model solutions; and 3) 

solution algorithm development and investigation.  We will discuss each of these in turn. 

1.3.1 Generating Problem Insight 

Mathematical programming forces one to state a problem carefully.  One must define:  a) 

decision variables; b) constraints; c) the objective function; d) linkages between variables and 
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constraints that reflects complementary, supplementary and competitive relationships among 

variables; and e) consistent data.  The decision maker is forced to understand the problem 

interacting with the situation thoroughly, discovering relevant decision variables and 

constraining factors.  Frequently, the resultant knowledge outweighs the value of any solutions 

and is probably the number one benefit of most mathematical programming exercises.  

A second insight generating usage of mathematical programming involves analytical 

investigation of problems.  While it is not generally acknowledged that mathematical 

programming is used, it provides the underlying basis for a large body of microeconomic theory.  

Often one sets up, for example, a utility function to be maximized subject to a budget constraint, 

then uses mathematical programming results for the characterization of optimal values.  In turn, 

it is common to derive theoretical conclusions and state the assumptions under which those 

conclusions are valid.  This is probably the second most common usage of mathematical 

programming and again is a nonnumerical use. 

1.3.2 Numerical Mathematical Programming 

Numerical usages fall into four subclasses: 1) prescription of solutions; 2) prediction of 

consequences; 3) demonstration of sensitivity; and 4) solution of systems of equations.   

The most commonly thought of application of mathematical programming involves the 

prescriptive or normative question:  Exactly what decision should be made given a particular 

specification of objectives, variables, and constraints?  This is most often perceived as the usage 

of mathematical programming, but is probably the least common usage over the universe of 

models.  In order to understand this assertion, one simply has to address the question:  "Do you 
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think that many decision makers yield decision making power to a model?"  Very few 

circumstances entail this kind of trust.  Most often, models are used for decision guidance or to 

predict the consequences of actions.  One should adopt the philosophical position that models are 

an abstraction of reality and that an abstraction will yield a solution suggesting a practical 

solution, not always one that should be implemented. 

 The second numerical mathematical programming usage involves prediction.  Here the 

model is assumed to be an adequate depiction of the entity being represented and is used to 

predict in a conditional normative setting.  Typically, this occurs in a business setting where the 

model is used to predict the consequences of environmental alterations (caused by investments, 

acquisition of resources, weather changes, market price conditions, etc.).  Similarly, models are 

commonly used in government policy settings to predict the consequences of policy changes.  

Models have been used, for example, to analyze the implications for social benefits of a change 

in ambient air quality.  Predictive use is probably the most common numerical usage of 

mathematical programming.  

The third and next most common numerical usage of mathematical programming is 

sensitivity demonstration.  Many research inquiries are of this nature where no one ever tries to 

implement the solutions, and no one ever uses the solutions for predictions.  Rather, the model is 

used to demonstrate what might happen if certain factors are changed.  Here the model is usually 

specified with a "realistic" data set, then is used to demonstrate the implications of alternative 

input parameter and constraint specifications. 

The final numerical use is as a technical device in empirical problems.  Mathematical 
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programs can be used to develop such things as solutions to large systems of equations, equation 

fitting such that the estimated parameters minimize absolute deviations, or exhibit in all positive 

or all negative error terms.  In this case, the ability of modern day solvers to treat problems with 

thousands of variables and constraints may be called to use.  For example, a large USDA 

econometric model was solved for a time using a mathematical programming solver. 

1.3.3 Algorithmic Development 

Much of the mathematical programming related effort involves solution algorithm 

development.  Formally, this is not a usage, but an enormous amount of work is done here as is 

evidenced by the many textbooks treating this topic.  In such a setting the mathematical 

programming model is used as a vehicle for solution technique development.  Work is also done 

on new formulation techniques and their ability to appropriately capture applied problems.  

 

 1.4 Book Plan 

Mathematical programming in application consists, to a large degree, of applied linear 

programming.  This book will not neglect that.  Chapters II-X will cover linear solution 

procedures, duality, modeling, and computational issues.  Discussion will then move onto 

nonlinear programming covering the general case, then price endogenous programming, risk 

incorporation, and integer programming.  


