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“Scientific knowledge is a body 
of statements of varying degrees 
of uncertainty, some of them 
unsure; some of them are nearly 
sure; but none is absolutely 
certain.” – Richard Feynman

Science informs and empowers. 
Uncertainty is an inherent part 
of science and is fundamental 
to scientific progress. It can 
propagate through multiple 
ways in the knowledge 
generation and dissemination 
process. Uncertainty can 
be classified on the basis of 
its nature (i.e., uncertainty 
due to imperfection in our 
knowledge, or the underlying 
cause of how the uncertainty 
came to exist), location (i.e., 
origin of uncertainty in the 
model outcome), and level (i.e., 
degree of uncertainty along the 
spectrum of total determinism 
to total ignorance). Uncertainty 
can be assessed, quantified, and 
constrained through different 
processes, and in some cases, 
it can be reduced. To inform 
sound public choices, and 
provide accurate and actionable 
information for decision making, 
it is important to acknowledge 
and communicate uncertainties 
in scientific knowledge. 
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Research scientists focus on the knowledge frontier, where doubt and  
 uncertainty are inherent. Formal uncertainty quantification of computer 

models is less relevant to science than an assessment of whether the model helps 
us learn about how the system works. 

However in context of the science-policy interface, uncertainty matters. There 
is a growing need for more constructive approaches to accountability about the 
different dimensions of uncertainty in climate change as related to policy making 
(e.g., Smith and Stern 2011) — what may happen in the future and what actions 
might be appropriate now. 

Risk is the probability that some undesirable event will occur and often described 
as the combination of that probability and the corresponding consequence of the 
event. Economists have a specific definition of risk and uncertainty that harkens 
back to Knight (1921). Knightian risk denotes the calculable and thus controllable 
part of what is unknowable, implying that robust probability information is available 
about future outcomes. Knightian uncertainty addresses what is incalculable and 
uncontrollable. 
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This issue of Variations is a 
collection of articles on various 
aspects of uncertainties 
in climate projections. In 
her essay, Curry integrates 
perspectives from climate 
modeling, philosophy of science, 
and decision making under 
uncertainty to examine when 
and how climate modeling can 
be used for decision-making 
applications. Wootten discusses 
uncertainties in statistical 
downscaling and concludes with 
some future research directions. 
Articles by Chueng and by Fei 
and McCarl explore ways in 
which uncertainties can be 
characterized to inform fisheries 
management and adaptation 
planning for agriculture, 
respectively. Morss and 
others highlight a project that 
integrates research on decadal 
prediction and communication 
of associated uncertainty for 
use in decision making. These 
articles shed light on some ways 
in which uncertainties in climate 
projections can be assessed, 
managed, and communicated.

The advancement of our society 
is closely coupled to the scientific 
and technological discoveries 
that transform knowledge. 
Helping people understand the 
value of science is a first step 
and making sure that those 
same people recognize that 
uncertainty does not undermine 
the inherent value of scientific 
information, but rather is part of 
that information, is the second.

US CLIVAR
VARIATIONS

Editor:
Kristan Uhlenbrock

US CLIVAR Project Office
1201 New York Ave NW, Suite 400

Washington, DC 20005
202-787-1682 | usclivar.org

© 2018 US CLIVAR

This article on climate uncertainty and risk integrates perspectives from climate 
modeling, philosophy of science and decision making under uncertainty, 
extending previous analyses by the author (Curry and Webster 2011; Curry 2011).  
The objective is to explore the kinds of evidence and reasoning that can help 
inform decision makers as to whether and how they should use climate models 
for different applications.  

Characterizing uncertainty

There are numerous categorizations and hierarchies of risk and uncertainty, which 
are further complicated by different disciplines using terms in different ways (for 
a summary, see Spiegelhaler and Rausch 2011). The categorization presented 
here focuses on model predictions for an intrinsically probabilistic system. This 
categorization discriminates among two dimensions of uncertainty (Walker et al, 
2013; Kwakkel et al. 2010): location and level of uncertainty. 

The location of uncertainty refers to where the uncertainty manifests itself within 
the model complex:

•	 Framing and context: identifies the boundaries of the modeled system. Portions 
of the real world that are outside the modeled system leave an invisible range 
of other uncertainties. 

•	 Model structure uncertainty: uncertainty about the conceptual modeling of 
the physical system, including the selection of subsystems to include, often 
introduced as a pragmatic compromise given limited computational resources.     

•	 Model technical uncertainty: the implementation of the model solution on a 
computer, including solution approximation and numerical errors.

•	 Input uncertainty: relates to uncertainty in model inputs that describe the 
system and the external forces that drive system changes. 

•	 Parameter uncertainty: uncertain constants and other parameters that are 
largely contained in subgrid scale parameterizations.  

•	 Model outcome uncertainty: the propagation of the aforementioned 
uncertainties through the model simulation. 

•	 Uncertainty quantification error: due to  Monte Carlo sampling used for 
probabilities and in the error quantification procedure itself. 

The level of uncertainty relates to where the model outcome uncertainty ranks in 
the spectrum between complete certainty and total ignorance: 

•	 Complete certainty: deterministic knowledge; no uncertainty.
•	 Statistical uncertainty (Knightian risk): outcomes can never be known precisely, 

but precise, decision-relevant probability statements can be provided.

http://www.usclivar.org


3

U S  C L I V A R  V A R I A T I O N S

US CLIVAR VARIATIONS   •   Summer 2018   •   Vol. 16, No. 3 3

•	 Scenario uncertainty (ambiguity): a range of plausible 
outcomes (scenarios) are enumerated but with a 
weak basis for ranking them in terms of likelihood. 

•	 Deep uncertainty (recognized ignorance): the scientific 
basis for developing outcomes (scenarios) is weak; 
future outcomes lie outside of the realm of regular 
or quantifiable expectations. 

•	 Total ignorance: the deepest level of uncertainty, to 
the extent that we do not even know that we do not 
know. 

If the policy-making challenge is defined in context of the 
response of climate to future greenhouse gas emissions, 
the uncertainty level is characterized as “scenario 
uncertainty.”  In this context, scenario uncertainty arises 
not only from uncertainty in future emissions but also 
from uncertainty in the equilibrium climate sensitivity 
(ECS) to CO2. According to the Intergovernmental Panel 
on Climate Change (IPCC) Fifth Assessment Report (AR5; 
IPCC 2013), “there is high confidence that ECS is extremely 
unlikely less than 1°C and medium confidence that the ECS 
is likely between 1.5°C and 4.5°C and very unlikely greater 
than 6°C.” The AR5 further states “No best estimate for 
equilibrium climate sensitivity can now be given because 
of a lack of agreement on values across assessed lines of 
evidence and studies.”  Despite the fact that we know 
a range of values within which the ECS is very likely to 
fall, we do not have grounds for associating a specific 
probability distribution with ECS. 

If the policy-making challenge is defined in the context 
of the actual evolution of the 21st century climate (such 
as for vulnerability and impact assessments), then the 
uncertainty level increases to deep uncertainty. Apart 
from the issue of unknown future greenhouse gas 
emissions, we have very little basis for developing future 
scenarios of solar variation, volcanic eruptions and long-
term internal variability. The likelihood of unanticipated 
outcomes (surprises) needs to be acknowledged.

Epistemology of climate models

The IPCC Fourth Assessment Report provided the 
following conclusion about climate models:

“There is considerable confidence that climate models 
provide credible quantitative estimates of future 
climate change, particularly at continental scales and 
above.” (Randall et al. 2007, p. 600) 

Is this level of confidence in climate model projections 
justified?  Given the complexity of the Earth climate 
system, the foundational basis for the knowledge claims 
made based on global climate models deserves greater 
attention (Loehle 2018). 

Climate models have been evaluated (e.g. Flato et al. 
2013) by assessing how well model results fit observation-
based data (empirical accuracy) and how well they agree 
with other models or model versions (robustness). 
Parker (2011) has argued that robustness does not 
objectively increase confidence in simulations of future 
climate change. Baumberger et al. (2017) address the 
challenge of building confidence in future climate model 
predictions through a combination of empirical accuracy, 
robustness and coherence with background knowledge. 
Assessing coherence with background knowledge is 
limited because of empirical parameterizations and 
the epistemic opacity of complex models (Lenhard and 
Winsberg 2010). 

With regards to empirical adequacy, the climate 
modeling community is beginning to apply uncertainty 
quantification (UQ) concepts to climate models (Qian 
et al. 2016). These endeavors are focused on exploring 
parameter uncertainty (towards optimizing model 
parameter selection) and on evaluating prediction error. 
Additional efforts are identifying which model variables 
to focus on in prediction error analyses (Burrows 2018) 
and evaluating models at shorter weather timescales 
and process levels. 
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A broader perspective on this issue is provided by 
recent scholarship on the epistemology of simulation, 
including how simulation models are confirmed. Lloyd 
(2009) describes how observational data are used in 
the evaluation of climate models and suggests new 
ways of viewing the significance of these model-data 
comparisons. However, attempts to assess climate 
model adequacy and similarity to the observed climate 
through demonstrating empirical accuracy are fraught 
with challenges: inadequacy of data, selection of variables 
to confirm and on which time and space scales, a vast 
and multi-dimensional parameter space to be explored, 
model initialization and internal variability, and concerns 
about circularity with regards to data used in both model 
tuning and confirmation.  

Parker (2009) suggests that known climate model error 
is too pervasive to allow climate model confirmation 
to be of use. Parker proposes a shift in approach from 
confirming climate models to confirming their “adequacy 
for purpose.” Adequacy-for-purpose assessments involve 
estimating what the degrees of accuracy of simulations 
for a wide variety of observed climatic quantities imply 
about the correctness of uncertain model assumptions 
and results. Assessing adequacy-for-purpose hypotheses 
is a daunting task owing to confirmation holism (Lenhard 
and Winsberg 2010).

Assessing the adequacy of climate models for the 
purpose of predicting future climate is particularly 
difficult and arguably impossible. It is often assumed 
that if climate models reproduce current and past 
climates reasonably well, then we can have confidence 
in future predictions. However, empirical accuracy, to a 
substantial degree, may be due to tuning rather than to 
the model structural form. Further, the model may lack 
representations of processes and feedbacks that would 
significantly influence future climate change. Therefore, 
reliably reproducing past and present climate is not a 
sufficient condition for a model to be adequate for long-
term projections, particularly for high-forcing scenarios 
that are well outside those previously observed in the 
instrumental record. 

Given the unaddressed concerns about uncertainties 
in model structural form and framing, Katzav (2014) 
argues that useful climate model assessment should 
aim to demonstrate that the simulations describe real 
possibilities. A simulation is taken to be a real possibility 
if its realization is compatible with our background 
knowledge and that background knowledge does not 
exclude the realization of the simulated scenario over the 
target period. 

Developing scenarios of climate futures

The possibilistic view regards the spread of an ensemble 
as a range of outcomes that cannot be ruled out. Stainforth 
et al. (2007) say, however, that climate models cannot be 
used to show that some possibilities are not real. Further, 
owing to structural limitations, existing climate models 
do not allow exploration of all the theoretical possibilities 
that are compatible with our knowledge of the basic 
way the climate system actually behaves. Some of these 
unexplored possibilities may turn out to be real ones.

Smith and Stern (2011) argue that there is value in scientific 
speculation on policy-relevant aspects of plausible, high-
impact scenarios, even though we can neither model 
them realistically nor provide a precise estimate of their 
probability. A surprise occurs if a possibility that had not 
even been articulated becomes true. Efforts to avoid 
surprises begin with ensuring there has been a fully 
imaginative consideration of possible future outcomes.  

When background knowledge supports doing so, modifying 
model results to broaden the range of possibilities they 
represent can generate additional scenarios. Further, the 
possibilist view extends to scenarios other than those 
that are created by global climate models. Simple climate 
models, process models and data-driven models can also 
be used as the basis for generating scenarios of future 
climate. The paleoclimate record provides a rich source 
of information for developing future scenarios (e.g., Cook 
et al. 2018). More creative approaches, such as mental 
simulation and abductive reasoning, also have value (NAS 
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2018). These alternative methods for generating future 
climate scenarios are particularly relevant for developing 
regional scenarios (for which global models are known to 
be inadequate) and impact variables such as sea level rise 
(that are not directly simulated by global climate models).

The potential problem of generating a plethora of 
potentially useless future scenarios is avoided if we focus 
on scenarios that we expect to be significant in a policy 
context.  Smith and Stern (2011) make an argument for 
estimating whether a scenario outcome has a less than 
1-in-200 chance, which is a threshold that is relevant to 
financial risk managers.

The worst-case scenario is judged to be the most 
extreme scenario that cannot be falsified as impossible 
based upon our background knowledge (Betz 2010). The 
scientific community involved in predicting future sea 
level rise has expended considerable effort in articulating 
the worst-case scenario (e.g., LeBars 2017). Sea level 
predictions are only indirectly driven by global climate 
models, since these models do not predict the mass 
balance of glaciers and ice sheets, land water storage 
or isostatic adjustments. So estimates of the worst-case 
scenario integrate climate model simulations, process 
model simulations, estimates from the literature, and 
paleoclimatic observations.

Integrated Assessment Models 

Optimization Integrated Assessment Models (IAMs) are 
widely used to assess impacts of climate change and 
various policy responses (see Frisch 2013 for a summary).  
For example, to assess the social cost of carbon, IAMs 
couple an economic general equilibrium model to 
an extremely simplified climate model. According to 
expected utility theory, we should adopt the climate 
policy that maximizes expected utility — the extent to 
which an outcome is preferable to the alternatives. 

The key climate science input to IAMs is the probability 
density function of equilibrium climate sensitivity (ECS). 

The dilemma is that with regards to ECS, we are in a 
situation of scenario (Knightian) uncertainty — we simply 
do not have grounds for formulating a precise probability 
distribution.  Other deep uncertainties in IAM inputs 
include the damage function (economic impact) and 
discount rate (discounting of future utilities with respect 
to the present).  Without precise probability distributions, 
no expected utility calculation is possible.

This problem has been addressed by creating a precise 
probability distribution based upon the parameters 
provided by the IPCC assessment reports (NAS 2017). 
In effect, IAMs convert Knightian uncertainty in ECS into 
precise probabilities. Of particular concern is how the 
upper end of the ECS distribution is treated—typically 
with a fat tail.  The end result is that this most important 
part of the distribution that drives the economic costs of 
carbon is based upon a statistically manufactured fat tail 
that has no scientific justification. 

Subjective or imprecise probabilities may be the best 
ones available. Some decision techniques have been 
formulated using imprecise probabilities that do not 
depart too much from the appeal to expected utility 
(e.g., Troffaes 2007). Frisch (2013) suggests that such 
applications of IAMs are dangerous, because while 
they purport to offer precise numbers to use for policy 
guidance, that precision is illusory and fraught with 
assumption and value judgments. 

Policies optimized for a “likely” future may fail in the face 
of surprise. At best, policy makers have a range of possible 
future scenarios to consider. Alternative decision-analytic 
frameworks that are consistent with conditions of deep 
uncertainty can make more scientifically defensible use 
of scenarios of climate futures.

For situations of deep uncertainty, precautionary and 
robust approaches are appropriate. A precautionary 
appraisal is initiated when there is uncertainty. A robust 
policy is defined to be one that yields outcomes that are 
deemed to be satisfactory across a wide range of plausible 
future outcomes (e.g., Walker et al. 2016). As such, 
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robust policy making interfaces well with possibilistic 
approaches that generate a range of possible futures.  
Flexible strategies are adaptive and can be quickly 
adjusted to advancing scientific insights and clarification 
of scenarios of future outcomes. 

Conclusions

While climate models continue to be used by climate 
scientists to increase understanding about how the 
climate system works, they are also playing a central role 
in developing international, national, and local policies. 

There is a gap between what climate scientists can 
provide versus the information desired by policy makers. 
Spiegelhalter and Rausch (2011) state that it is important 
for scientists to avoid the attrition of uncertainty in the 
face of an inappropriate demand for certainty from policy 
makers. Betz (2010) reminds us that the difficulties of the 
problem must not serve as an excuse for scientists to 
simplify the epistemic situation, thereby predetermining 
the complex value judgments involved.

Both climate scientists and policy makers need to accept 
the limits of probabilistic methods in conditions of 
ambiguity and deep uncertainty that characterize climate 
change. Encouraging overconfidence in the realism 
of current climate model simulations or intentionally 
portraying recognized ignorance incorrectly as if it 
was statistical uncertainty (Knightian risk) can lead to 
questionable policy outcomes. 

This analysis raises questions as to whether the path 
we are currently on for developing and evaluating 
climate models (NRC 2012) is the best use of resources 
for supporting policy making (Katzav and Parker 2015). 
Exploring alternative model structures is a rich and 
important direction for climate research, both for 
understanding the climate system and for supporting 
policy making. Some alternative model structures 
include stochastic models (Mayda et al. 1999) and 
parameterizations (Berner et al. 2017), a multi-
component, multi-phase atmosphere (Bannon 2002), 
network-based models (Steinhauser et al. 2011), and 
artificial intelligence fortified models (Voosen et al. 2018).
This analysis also describes new challenges for climate 
scientists to develop a broader range of future scenarios, 
including worst-case scenarios and regional scenarios.  
Weaver et al. (2013) argue for expanding the ways that 
climate models are used for policy making. They should 
be considered not simply as prediction machines, but 
as scenario generators, sources of insight into complex 
system behavior, and aids to critical thinking within 
robust decision frameworks. Such a shift would have 
implications for how users perceive and use information 
from climate models and the types of simulations that 
will have the most value for informing decision making.
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The subtle processes in statistical downscaling 
and the potential uncertainty
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Climate projections are an integral part of defining  
 the effects of anthropogenic climate change. This 

includes describing possible changes in the climate and 
helping describe possible impacts. The projections are 
also created with a complex chain of climate modeling 
and downscaling with several sources of uncertainty. 
These sources of uncertainty are important to consider 
in decision making and impact assessments to reduce 
the risk of a maladaptive decision. There are four main 
sources of uncertainty with respect to the climate 
projections: (1) the scenario uncertainty, reflecting 
the choices of society with respect to the economy, 
development, and emissions; (2) the global climate 
models’ (GCMs) uncertainty; (3) the natural variability 
of our climate from oscillations, such as the El Niño-
Southern Oscillation (Hawkins and Sutton 2009; Hawkins 
and Sutton 2011; Gettleman and Rood 2016); and (4)  the 
downscaling techniques, which translate global change 
to local scales (Wootten et al. 2017). 

Downscaling of GCMs is performed with numerous 
techniques, which can be broken into two categories: 
dynamical and statistical (Benestad et al. 2008; Wootten 
et al. 2014). Dynamical downscaling uses regional 
climate models, which run on a finer resolution with 
GCMs providing the boundary conditions. Statistical 
downscaling relies on building a statistical relationship 
between GCMs and observations and using that 
relationship with future GCM projections to define future 
“observations” at local scales. Some aspects of statistical 

downscaling have received little attention in the literature 
despite the potential impacts to projections of variables 
important to decision making and impact assessments. 
In this article, I will discuss some of these aspects of 
statistical downscaling, their potential impacts, and 
recommendations for future research efforts.

Statistical downscaling processes and effects

As already described, downscaling comes in two main 
types: statistical and dynamical. In the case of dynamical 
downscaling, regional climate models (RCMs) are used 
to translate GCM information to local scales. Given 
their similar construction, it is a reasonable assumption 
that RCMs have similar internal sources of uncertainty 
as GCMs (structural and parametric; Knutti et al. 2008). 
However, what are the sources of uncertainty internal to 
statistical downscaling? Statistical downscaling is defined 
by creating a statistical relationship between GCMs and 
observations, which is effectively an exercise in statistical 
modeling. Therefore, one could argue that statistical 
downscaling has model uncertainty as described by the 
statistics community (Chatfield 1995), including structural 
and parametric. However, a close examination of the 
literature suggests that statistical downscaling includes 
more sources of uncertainty than simply the model 
uncertainty associated with the downscaling technique 
(e.g. Pourmokhtarian et al. 2016; Olyer and Nicholas, 
2018). Statistical downscaling also includes numerous 
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sets of data handling and special processing approaches. 
These are processes that include those implemented 
prior to downscaling (such as data transformations, 
regridding, or interpolation) and processes implemented 
alongside a downscaling technique (such as treatments 
for extreme values). These special treatments and extra 
processes have received little attention in downscaling 
literature, though some are connected with projected 
extremes and occurrence. How much of an effect do 
these subtle processes have on projected variables of 
interest? The answer to this question is yet unknown.

To underscore the potential effects, I focus on two such 
processes, beginning with treatments for extremes of 
temperature and precipitation. I use a simple quantile 
mapping (Cannon et al. 2015) to provide 
the downscaling using realistic synthetic 
inputs. These synthetic inputs are based 
on 1979–2005 gridMET (Abatzoglou 
2013) observations from Arkansas and 
New Mexico and GCM data from RCP 
8.5 (Van Vuuren et al. 2011; Riahi et al. 
2007) driven simulations of MPI-ESM-
LR (Giorgetta et al. 2013) for 2070–2099 
used in the CMIP5 (Taylor et al. 2012). 

In statistical downscaling, situations arise 
where GCM projected change pushes 
the downscaling  beyond the historical 
distribution of a variable. In such cases, an 
additional process is used to estimate the 
extremes, which cannot be determined by 
the downscaling technique alone. These 
are called tail adjustments, which may 
have an impact on projected extremes, 
even if the downscaling technique, GCM, 
and emissions scenario remain the 
same. Figure 1 illustrates an example of 
historical observations, GCM historical 
and future projections, and downscaling 
with tail adjustments. Consider our 
synthetic observations for a site in New 
Mexico, where daily high temperatures 

never rise above 95°F (35°C). Quantile mapping with the 
GCM would push the downscaled values beyond the 
observational range. In this situation, quantile mapping 
cannot build a robust relationship between the GCM and 
the observations. A tail adjustment is required. But which 
one? For this illustration, I have implemented quantile 
mapping with three such tail adjustments: (1) a constant 
value correction, which is the difference between the 
maximum observed and maximum historical GCM value 
(similar to Deque 2007, hereafter DS1); (2) a constant 
value correction based upon the largest ten values of the 
observations and historical GCM (hereafter DS2); and (3) a 
correction factor calculated based on a linear regression 
of the correction factor for the largest ten values of the 
historical GCM and observations prior to implementing 
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the tail adjustment divided by ten (hereafter DS3). Each 
correction factor is added to the GCM future value, which 
quantile mapping is attempting to downscale. Applying 
these three tail adjustments with the same downscaling 
technique, GCM, and observations, the downscaling is 
identical until the tail adjustment is activated. What does 
this mean for the projected change in the number of days 
the high temperature is greater than 95°F (35°C)? The 
GCM for this region suggests that the projected increase 
is 43 days per year (~6 weeks), but the downscaling (with 
three different tail adjustments) suggests an increase 
of 18 to 30 days per year (~2–4 weeks). This range may 
matter, but current literature provides little guidance as 
to which tail adjustments provide the highest skill and if 
the uncertainty is reducible.

Understanding and predicting 
precipitation extremes is also 
of interest to understand 
risk in a changing climate. If 
the same tail adjustments 
previously defined are 
used with observed and 
GCM precipitation from 
Arkansas, how are projected 
precipitation extremes 
different? Figure 2 focuses 
on annual 1-day maximum 
precipitation (rx1day; 
Karl et al. 1999). Applying 
quantile mapping with the 
synthetic observed and 
GCM precipitation, the 
tail adjustments again 
cause the downscaling to 
diverge at the end of the 
precipitation distribution. 
Examining the change of 
the rx1day climatology, the 
GCM suggests an increase 
in precipitation extremes 
by ~2 inches (50 mm). The 
downscaling (with the three 

tail adjustments) suggests an increase of 2–3.5 inches 
(50–90 mm) for the precipitation extremes. Which of 
these tail adjustments are appropriate? Which of these 
adjustments have the highest skill for precipitation 
extremes?

Tail adjustments are one of several aspects that can 
affect statistically downscaled projections. In GCMs, 
there is a tendency to over produce precipitation at small 
amounts (Pendergrass and Hartmann 2014), causing a 
tendency for GCMs to overestimate the wet day fraction. 
Some downscaling efforts attempt to correct this bias 
using a process referred to as a trace adjustment. Given 
their nature, different trace adjustments may impact 
the projected frequency of rain events. Consider the 
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same synthetic precipitation from 
Arkansas (observations and GCM) 
used previously but with the quantile 
mapping now using the following three 
trace adjustments. First, Pierce et al. 
(2015; P15 in Figure 3) define different 
wet day thresholds for the GCM and 
observations in order to correct the GCM 
wet day fraction. Second, Cannon et al. 
(2015; C15 in Figure 3) substitute values 
from a uniform distribution greater 
than zero and less than 0.05 mm/day 
for all values less than 0.05 mm/day in 
the inputs (GCM and observations) and 
set all values less than 0.05 mm/day in 
the downscaled output to zero. Third, 
Maraun et al. (2013; M13 in Figure 3) 
define a wet day as values > 1 mm/
day in all inputs. While one can choose 
what a wet day ultimately is in the 
output of downscaling, we can observe 
that there is a difference regardless 
of the post-downscaling threshold for 
a wet day. If a wet day is a day with 
rainfall greater than the standard for 
trace precipitation (0.254 mm), then 
the GCM projects 15 fewer wet days 
per year, while the three chosen trace 
adjustments range from 13 to 38 fewer 
wet days per year.

The point of this exercise is not to say which method is best 
suited for each extra process in statistical downscaling. It 
is out of the scope to explore the sensitivity to changes 
to each process and downscaling method here. Rather, 
the purpose of this article is to illuminate the potential 
source of uncertainty that these subtle extra processes 
could provide. At this juncture, how sensitive statistical 
downscaling methods are to extra processes (tail 
adjustments, trace adjustments) is not well known. 
Statistical downscaling requires building a statistical 
relationship between observations and a GCM. Should 
these processes affect either the input (observations or 

GCM) or the output, then the resulting projections are 
also affected. Therefore, these processes should be 
considered carefully as a potential source of uncertainty 
in statistical downscaling, which can be explored and 
reduced. In addition, statistical downscaling has been 
used to inform several impact related studies, with little 
consideration given to some of these subtle aspects of 
statistical downscaling (e.g., Werth and Chen 2014; Basso 
et al. 2015; Parmesan et al. 2015; Gergel et al. 2017). If 
such subtle processes affect the frequency and intensity 
of events, could they also influence impact assessments, 
which make use of the output of statistical downscaling?
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Impacts and future direction

The little attention given to the subtle processes 
connected to statistical downscaling leads me to raise 
some questions regarding the associated skill and 
uncertainty. For each class of these extra processes (e.g., 
tail adjustment, trace adjustment, interpolation), which 
method has the highest skill? Are some downscaling 
techniques more sensitive to such subtle processes? 
Do these subtle processes introduce enough variability 
to affect our confidence in projections created with 
statistical downscaling, particularly for the extremes and 
occurrence of events? Is such variability translated into 
the results of impact modeling? Such questions in the 
realm of statistical downscaling may be answered by a 
series of sensitivity studies. What the answers mean for 
assessing the impacts of a changing climate is another 
aspect. For many planning efforts, summary information 
on a changing climate may be all that is needed. For 
more expansive efforts to assess impacts, some decision 
makers desire and require more localized information. 

This article illustrates some of the challenges to statistical 
downscaling and potential sources of uncertainty. 
Without the answers to the science questions raised here, 
it is difficult to say the exact effect on planning efforts 
beyond what I have shown here. However, the answers 
to such questions can provide guidance for how much 
care should be taken when using or creating statistically 
downscaled projections for planning efforts.

All of this is not to state that statistical downscaling has no 
value for planning and impact assessments. Numerous 
studies have made use of statistical downscaling for 
impacts assessments and demonstrated the added value 
(Ivanov and Kotlarski 2017, Lanzante et al. 2018). Rather, 
it is important for those using statistically downscaled 
projections to be aware of these issues, the guidance 
available, and continue their planning efforts. For the 
downscaling community, we have incorporated these 
different processes as part of statistical downscaling. As 
we continue our work on the added value of statistical 
downscaling and attempt to identify, characterize, 
and reduce sources of uncertainty in downscaling, our 
evaluations should not be limited to the downscaling 
technique alone but include these extra processes. This 
is not merely for the advancement of our understanding 
and modeling of the climate but to ensure the resulting 
output can be used properly with respect to the strengths 
and limitations of using climate projections in adaptation 
planning. 
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Addressing uncertainty in adaptation 
planning for agriculture 

Chengcheng J. Fei and Bruce A. McCarl

Texas A&M University

Scientists project that temperatures will increase  
 about 1°C by 2050 (IPCC 2007, 2013). Agriculture 

has been influenced by recent alterations in climate, 
and the impacts will increase with climate change 
(IPCC 2014a; McCarl et al. 2016; Fan et al. 2017). Thus, 
agricultural adaption to climate change in the next 25 
years is inevitable (Rose and McCarl 2008; McCarl 2015). 
There are many uncertainties, however, associated with 
adaptation in regards to the extent of climate change, 
agricultural impacts, resource availabilities, land usages, 
and market responses. We are also uncertain about 
the pace of technological progress, adaptation practice 
effectiveness, and stakeholder adoption (IPCC 2014a; 
Fan et al. 2017). While uncertainty in climate mitigation 
has been discussed (Yohe et al. 2004; Kim and McCarl 
2009; IPCC 2014b), there are few papers addressing 
uncertainty in adaption. Here, we will discuss adaptation 
uncertainty.

Uncertainties in adaptation planning 

Uncertainties in agricultural adaption planning are not 
only about climate but are also associated with agricultural 
effects, technological progress, stakeholder actions, and 
the interactions among them. The uncertainty in climate 
predictions (see Curry article) adds to the uncertainty 
involved with agricultural adaptation planning through 
alterations in temperature, precipitation, soil moisture, 
heat stress, and growing seasons (Adams et al. 1990, 
1995; McCarl et al. 2016; Fan et al. 2017). Also the 

threat from increasing severity of extreme events has 
implications for agricultural productivity (IPCC 2013), but 
associated extreme events forecasts are not commonly 
available.  

Uncertainty in agricultural adaptation needs 
Adaptation planners must manage uncertainty that 
arises in our ability to estimate agricultural consequences 
of changes in climate and its extremes but are not 
always certain of what is subject to change. In many 
cases the projected amount of climate change exceeds 
past observations, so extrapolation is questionable. Our 
ability to simulate the impacts outside of the realm of 
historical observations is also limited. In the following, we 
discuss major uncertainty factors for adaptation.

a) Technological progress: Agriculture technological 
progress is hard to predict but drives agriculture and 
can be a means of adaptation (Chang et al. 2011). For 
example, the average 2014–16 US corn yields were 
more than 4.6 times those in 1949–51, while output 
per unit input was about 2.5 times greater. However, 
technological progress is slowing down (Andersen et al. 
2018), and Villavicencio et al. (2013) identifies climate 
as one cause. Current climate simulation models, such 
as those used in assessments (see Reilly et al. 2003), do 
not include technical progress. Furthermore, statistical 
extrapolation of technical progress may be imperfect as 
it is difficult to cover all the dimensions of climate change 
(i.e., extremes are difficult), plus the extent of climate 
change may exceed the range of historical observations. 
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Also technical progress depends on research investment, 
which in some cases has been declining causing lower 
increases in productivity (Pardey et al. 2013). Additionally 
it is difficult to forecast innovation (Armstrong et al. 
2015). Thus, we are uncertain whether the possible 
negative effects of climate change will be fully or partially 
offset by technologically induced growth in productivity. 

b) Demand growth: Demand for agricultural goods 
increases with population and income. Global population 
projections are for 1.9 to 5.7 billion more people in 2100, 
which requires about 25% – 75% more food. Moreover, 
income is projected to grow, increasing meat demand 
within the middle class and, in turn, livestock feed demand 
(Robinson and Pozzi 2011), further applying pressure on 
agriculture. Demand can also be altered by consumer 
preferences and policy changes, such as relaxation of 
the one child policy in China or the US ethanol policy that 
substantially altered US corn demand (Jones et al. 2017). 

c) Broad nature of climate effects: Climate change 
influences agriculture through alterations in temperature, 
precipitation, water supplies, evapotranspiration, soil 
moisture, pest incidence, extreme weather events, and 
fire incidence among many other factors (McCarl et al. 
2016; Fan et al. 2017). Anticipated changes in crop, milk, 
and meat yields; pest damage losses; livestock mortality; 
and livestock fecundity are all relevant to adaptation 
planning. Furthermore, the impacts vary substantially 
by region, crop, grassland incidence, and livestock 
populations. Maize in southern Africa, wheat in South 
Asia, and rice in Southeast Asia are staple foods where 
yields are projected to decrease, which could worsen food 
security (Lobell et al. 2008), raising a major adaptation 
challenge. 

d) Practice efficiency: Climate change affects agricultural 
practice efficiency and can increase costs. For example, 
farmers may have to apply more pesticides (Chen and 
McCarl 2001; Wolfe et al. 2008). Also greater water 
demands may increase surface and ground water needs 
and associated energy costs (Reilly et al. 2003; Chen et al. 
2001a). 

e) Water: Climate change increases the water-related 
uncertainty directly and indirectly. An increase in the 
evapotranspiration rate coupled with a decrease in soil 
moisture and an increase in irrigation demand (Adams 
et al. 1999). However, regionally less rainfall coupled with 
climate induced increases in nonagricultural demands 
can decrease freshwater availability (Chen et al. 2001a; 
Rodell et al. 2018). 

f) Extreme events: Extreme events can damage the 
agriculture sector. For example, heat waves in 1995 and 
1999 killed nearly 5,000 US cattle (Hahn et al. 2001). 
Hurricanes (Chen and McCarl 2009), hail storms, flooding, 
and heavy rainfall can also greatly diminish production as 
can increases in the frequency of El Niño events (Chen et 
al. 2001b). 

f) International trade: Climate change varies across 
regions, which influences agricultural production and 
comparative advantage, altering trade flows (Baldos and 
Hertel 2015). Trade alterations are a possible adaptation, 
where countries facing yield reductions can import 
commodities to protect domestic food security (Butt 
et al. 2006; Lobell et al. 2008), but the extent of this is 
uncertain. 

g) Adjustments in infrastructure: Uncertainty arises 
with respect to agricultural infrastructure and needed 
investment. Existing flood risk infrastructures may have 
to adjust operations to adapt to changes in rainfall 
frequency, extreme events, and sea level rise (Gersonius 
et al. 2013; Cinner et al. 2018). 

h) Challenges in simulation: One way to project 
effects and gains from adaptation involves the use 
of crop, livestock, or hydrology simulation models. 
However, it is difficult in these models to fully reflect 
the multidimensional nature of climate change and the 
uncertainty therein. For example, most crop models 
ignore pest interactions, assume water is fully available, 
and omit effects of hurricanes, hailstorms, and other 
damaging weather events. Furthermore, combinations 
and permutations of scenarios may need to be run to 
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represent the full scope of climate change — possibly 
yielding results that are difficult to synthesize and 
interpret (Asseng et al. 2013).

Uncertainty from time
Agriculture adaptation can include long-term 
investments, such as building dams, irrigation systems, 
and funding of agricultural research and development 
(Fan et al. 2017; McCarl et al. 2016). These are often 
costly and take substantial lead-time to implement. 
Climate change may also influence the functioning and 
performance of infrastructure, so the flexibility and ability 
of infrastructure to evolve is very important to adaption 
planning (Hallegatte 2009; Gersonius et al. 2013). 

Uncertainty in stakeholder reactions
Adaptation implementation may or may not require 
public involvement, as they constitute public goods. Many 
adaptations are implemented by individuals acting in 
their own best interests, for example shifting crop mixes, 
changing irrigation schedules, and altering planting 
dates. However, some adaptations require public action, 
such as irrigation facility construction and crop variety 
development. Cases also exist where producers are 
severely constrained in terms of information, resources, 
and human capital availability. Thus, adaptation projects 
contain uncertainty about the amount of needed public 
investment, extent of stakeholder participation, incentive 
design, and time to achieve implementation (Fan et al. 
2017). Furthermore, stakeholders may vary in recognition 
of the need to adapt (Hallegatte 2009).

Considering uncertainty in adaptation planning

The above uncertainties coupled with the complexities 
of social-ecological systems raise analytical challenges 
for adaptation planning (IPCC 2014a). The following 
should be considered in adaptation appraisals to reflect 
uncertainty. 

Meeting different information requirements for 
adaption planning 
The IPCC (2014a) emphasizes the need for a variety of 
tools to address the scope, complexity, and uncertainty 
of adaptation planning. Involvement of multiple 
stakeholders is important, and analysts must realize that 
stakeholders have different preferences, orientations, 
and understandings of climate change. Use of multiple 
tools, such as brochures, TV, and two-way radios, can 
improve communication.

Evaluating adaptation possibilities
Implementation of many adaptation strategies requires 
public intervention. To supply money, adaptation 
funds have arisen, including the Green Climate Fund 
established by the UN Framework Convention on Climate 
Change. Applications for such funds are required and 
need evaluation. Evaluation criteria have been proposed 
(McCarl et al. 2016; Fan et al. 2017), including: 

•	 Additionality: The adaptation action that would be 
adopted in the absence of adaptation funding. A 
number of possible adaptations may already be 
in use or may be done autonomously by decision 
makers and funding may not be necessary.

•	 Permanence: one major question is how long will an 
adaptation be effective. For example in a sea level 
case, permanence may involve appraisal of the range 
of sea levels for which the adaptation works. 

•	 Maladaptation: to what extent will the adaptation 
benefit one group but worsen the situation for other 
groups. 

•	 Uncertainty: how confident is one of the extent to 
which this adaptation reduces vulnerability. Here 
estimates are needed of the probability given certain 
degrees of climate change that damages will be 
reduced. 

•	 Transactions costs: to what extent will funding be 
transmitted through to the implementing parties, like 
farmers and water managers.
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Reducing risks by selecting “no-regret” strategies
One means of reducing risk is choice of low-cost and 
low-risk possibilities that return benefits under a wide 
variety of climate outcomes (Hallegatte 2009). Purchasing 
crop insurance, building irrigation infrastructures, and 
developing drought resistant crops are “no-regret” 
examples. However, strategy effectiveness is expected to 
diminish as climate change increases (Parry et al. 2009).

Monitoring and adjusting adaption planning during 
implements
Monitoring plays an important role in tracking adaption 
success and evolving strategies (IPCC 2014a). It helps to 
reduce cumulative uncertainties and to adapt the plan 
so it is more suitable.  Monitoring also provides updated 
information on adaptation effectiveness and allows for 
improvement over time.

Using reversible and flexible options at initial stage
Adherence to rigid adaptation policies can contribute 
to risk. Some adaption plans (e.g., flood preventing 
infrastructure) are costly and, while typically defined for 
a concept like a hundred-year flood, are not necessarily 
going to be effective in the face of changing probability 
distributions of yields and hydrology (Milly et al. 2008; 
McCarl et al. 2008). When faced with such developments, 
it is important to use reversible and flexible strategies 
to allow alterations in the face of an evolving climate 
(Hallegatte 2009; Gersonius et al. 2013). 

Reduce asset fixity time horizon
Shorter term, more flexible alternatives may be preferred 
to long-term infrastructure investment as a means of 
reducing uncertainty exposure (Hallegatte 2009). For 
example, one might plant annual crops rather than long-
lived trees and also use less expensive, faster irrigation 
water supply possibilities rather than long-term hard 
infrastructure. 

Placing a lower confidence interval on potential planning
In a mitigation context, Kim and McCarl (2009) propose 
to lower the expected results from carbon projects by a 
discount related to project performance uncertainty. A 
similar procedure could be applied to discount adaptation 
practice performance uncertainty as an input to project 
comparison.

Conclusion

Agricultural adaptation is inevitable in the next 25 years. 
But implementation is plagued by uncertainty. We are not 
confident of the full extent and amount of future climate 
change or of the resultant vulnerability of agriculture. 
Such a situation raises tremendous adaptation planning 
challenges. The possible strategies to reduce the 
uncertainty in agriculture adaption planning include 
but are not limited to increasing the variety of tools, 
carefully designing incentive programs, evaluating key 
aspects of potential applications, selecting “no-regret” 
strategies, monitoring, using reversible and flexible 
strategies, favoring short-term relative to long-term fixed 
alternatives, and discounting uncertainty. 
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Uncertainty and fisheries management

William W. L. Cheung 

The University of British Columbia, Canada

One of the many ways that humans benefit from  
 marine biodiversity and ecosystems is through 

fisheries. Globally, marine fisheries landings amounts 
to approximately 80 million tonnes annually in the 
2000s (FAO 2018). If unreported catches are taken into 
account, fisheries catches may reach up to 130 million 
tonnes per year (Pauly and Zeller 2016). Annual gross 
revenues from reported landings was estimated to be 
around $100 billion USD annually, directly or indirectly 
supporting the livelihood of about 10–12% of the world’s 
populations. Sustaining the contributions of this living 
marine resource requires careful management. 

Climate change is affecting fish stocks worldwide as 
abundance and productivity of fish stocks (including 
invertebrates and fishes) are sensitive to changes in 
ocean variables such as warming, deoxygenation, 
acidification, and alteration of primary production under 
increasing greenhouse gas concentrations (Pörtner 
et al. 2014). In general, fish stocks are shifting their 
distribution poleward and into deeper waters, with 

increasing dominance of warmer water species, changing 
body size and phenology, and redistribution of fisheries 
productivity (Cheung 2018). Climate change, therefore, 
elevates the risk of long-term viability of marine species, 
functioning of marine ecosystems, and sustainability 
of fisheries. A global assessment of the risk of climate 
impacts on 825 marine fishes and invertebrates suggests 
that 60% (499 species) of these species are projected 
to be at very high risk (i.e., these species are predicted 
to have a one in five chance of extinction) under high 
greenhouse gas emission scenarios (Representative 
Concentration Pathway 8.5) and "business-as-usual" 
fishing levels (Jones and Cheung 2017; Cheung et al. 
2018). 

Changing ocean conditions have now become an 
important challenge for effective management of fisheries 
resources (Perry et al. 2010). Fisheries management that 
fails to account for climate change effects on fish stocks 
may underperform in achieving their objectives and can 
even lead to fisheries collapse. For example, in the Gulf 
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of Maine, ocean warming might have increased juvenile 
mortalities of Atlantic cod (Gadus morhua). Catch quotas 
that were set by management agencies and followed by 
fishers without consideration of such climate effects are 
suggested to be a factor driving the continuous decline 
of the cod population (Pershing et al. 2015). 

Unfortunately, we don't have a crystal ball to tell us exactly 
what will happen in the future to advise fisheries. Instead, 
we could better understand and characterize uncertainties 
to inform the design of fisheries management to cope with 
such uncertainties. This article aims to discuss various 
ideas about fisheries management with uncertainties 
associated with climate change. 

Uncertainties of coupled human-natural marine 
systems

The relative contributions of uncertainties of future 
changes in coupled human-natural marine systems 
vary between different organizational, temporal, and 
spatial scales (Cheung et al. 2016a). Uncertainties 
about the future of the ocean and fisheries come from 
different sources, including internal variability, model 
uncertainties, and scenario uncertainties (Cheung et al. 

2016b). While climatic scenario uncertainties are generally 
much larger in the global scale, the relative importance 
of internal variability is much greater in some ocean 
regions (e.g., high climatic internal variability in the North 
Pacific) and in smaller spatial scales (Rodgers et al. 2014; 
Frölicher et al. 2016; Figure 1). These internal variabilities, 
generated from inherent processes of complex systems, 
are intrinsic not only to climate but also ecological and 
socioeconomic systems. At the same time, for fish stocks 
and fisheries, intensive fishing contributes to their direct 
mortalities often at a higher level than natural mortalities, 
while catches are dependent on the abundance and 
fishing levels. Therefore, uncertainties for fish stocks and 
fisheries may be dominated by variations in the seafood 
markets, fisheries management, and pathways of societal 
changes (e.g., population growth, consumption pattern) 
that drive changes in fishing pressure and mortality rates 
of fish populations. Pathways of societal changes will also 
partly affect greenhouse gas emissions and, thus, climate 
change scenarios as well as regional and global ocean 
governance. At the same time, climate change will affect 
the effectiveness of fisheries management measures. 
These changes in human drivers on oceans and fish 
stocks contribute to uncertainties of future scenarios. In 
addition, gaps in our knowledge about the system and 
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Figure 1. Time series of observations (black line) and uncertainty ranges due to internal variability (orange), model 
uncertainty (blue), and scenario uncertainty (green) for annual average sea surface temperature (SST, 10-year running 
mean) for (a) global mean and (b) Northeast Pacific relative to the 1986–2005 mean (Cheung et al. 2016).
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limitation of modeling tools are also important sources 
of uncertainties.

Characterizing uncertainties of coupled human-natural 
fisheries systems could help inform the development 
of effective approaches to fisheries management under 
the changing climate. Exploration of uncertainties 
within coupled human-natural fisheries systems can be 
undertaken through the use of simulation models and 
scenarios. Projections can be made from ensemble 
members of climate-living marine resource models 
with different properties of internal temporal or spatial 
variability as well as different climate and fishing scenarios. 

Different degrees of uncertainties of the coupled human-
natural marine system and the levels of controllability 
may be more effectively managed by different strategies 
and approaches (Figure 2). Controllability of marine 
systems also covaries with uncertainties over temporal 
and spatial scales. Particularly, for fisheries, controllability 
is higher at local and national scales (e.g., within the 
Exclusive Economic Zones) relative to regional and global 
scales (e.g., in areas beyond national jurisdictions). When 
the system is highly controllable and uncertainties about 
the future are low, it may be most effective to implement 
optimal control tactics. Optimal control tactics generally 
involve “predict-then-act,” such as determining catch or 
fishing quotas based on short-term predictions (Bowyer 
et al. 2015). However, in situations where controllability 
is low, hedging or robust decision making may become 
more favorable. These are interventions that seek 
to minimize the potential negative consequences or 
“regret,” such as protecting critical habitats of fish 
stocks. In contrast, high uncertainty and lack of control 
of the system might favor the use of scenario planning. 
Specifically, scenario is used as a planning tool to evaluate 
the outcomes of different actions, policies, and social-
economic development. If effective implementation, 
monitoring, and control of the fisheries are possible, 
active adaptive management will likely to be successful in 
continuously adjusting fisheries and their management 
based on updated knowledge generated from planned 
data-collection, experimentation, and analysis.    

The use of scenario for fisheries management under 
uncertainty

Scenario planning can help integrate scientific, local, and 
traditional knowledge to deliver pathways of change in 
coupled human-natural marine systems under global 
change. Scenarios are representations of possible futures 
for one or more components of a system under its drivers 
of changes, including alternative policy or management 
options. There are generally four types of scenarios: 
exploratory scenarios, target-seeking scenarios, policy-
screening scenarios, and retrospective policy evaluation 
(Figure 3). These different types of scenarios generally 
contribute to different decision-making contexts. 

Exploratory (“story-line”) or target seeking scenarios are 
useful for longer-term strategic planning and agenda 
setting exercises in which controllability is low while 
uncertainties are high. The exploration of projections 
from scenario pathways helps inform plausible 
trajectories that could be realized in the future in order 
to inform policy decisions (Jones et al. 2015; Sumaila et 
al. 2017). Target seeking scenarios are particularly useful 
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Figure 2. Approaches to fisheries management under different 
levels of uncertainty and controllability of the coupled human-
natural marine systems (Peterson et al. 2003).
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when clear strategic goals and targets are available and 
the scenario exercise would help to identify different 
potential pathways to achieve them.

In contrast, policy-screening scenarios are applicable 
for identifying specific interventions. For example, for 
tactical fisheries management, management system 
evaluation (MSE) is one of the main approaches to assess 
the performance of fisheries management options under 
different management and climate scenarios (Link et al. 
2012; Tommasi et al. 2017). MSE is particularly applicable 
to fisheries and their time and spatial scales that have 
relatively higher controllability in which management 
measures could be effectively implemented. 

A combination of optimal control, adaptive management, 
and scenario planning should be an effective approach 
towards managing fisheries under the changing climate. 
Variations in the level and characteristics of uncertainties 
and controllability over different components of the 
coupled human-natural fisheries systems over different 

time and space horizons render 
the need of multiple strategies 
and tactics. Specifically, short-
term adaptation to climate change 
may result in pathways to long-
term sustainable development. In 
systems where controllability is 
high (e.g., strong governance, good 
system understanding), precise 
short-term interventions informed 
by scientific forecast and predictions 
could help adjust fishing practices 
and fisheries management to 
improve their performance (Buizer 
et al. 2016; Dunn et al. 2016; Hobday 
et al. 2016). For longer time frames, 
designing management systems 
with flexible and learning-based 
collaborations and decision-making 
processes that involve multiple 
stakeholders, often at multiple 

governance levels, can improve the adaptiveness of 
fisheries management (Schultz et al. 2015).

Progresses in scenario planning for fisheries

A wide range of models and scenarios are available for 
management of fisheries under climate change, but 
important gaps exist. Existing models and scenarios need 
to be better linked in order to improve understanding and 
explanation of coupled social-ecological systems (Cheung 
et al. 2016a). Particularly, the development of multi-
scale scenarios that link global society changes, such 
as the Shared Socioeconomic Pathways currently being 
developed to aid assessment of climate vulnerability and 
response with fisheries-relevant and regional-to-local 
scale changes (Maury et al. 2017). 

There are increasing efforts to integrate and distribute 
available information on marine ecosystems in a more 
efficient manner. Capacity to use models and scenarios, 

Figure 3. Four types of scenario planning approaches and their decision-making 
context (IPBES 2016).
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in decadal climate predictions: 
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Decadal prediction is a relatively new area within climate  
 science that uses initialized modeling to generate 

climate forecasts that extend out approximately 5 to 30 
years. Interest in decadal climate prediction is motivated 
in part by recent advances in understanding decadal 
climate variability and associated predictive potential on 
decadal timescales (Meehl et al. 2009, 2014; Murphy et 
al. 2010; Goddard et al. 2012; Smith et al. 2013; Boer et 
al. 2016; Cassou et al. 2018). It is also motivated by the 
potential uses of such predictive information in climate 
risk management in sectors such as water resources, 
forestry, agriculture, ecosystems, and energy (Vera et al. 
2010; Taylor et al. 2015; Bruno Soares et al. 2018; Towler 
et al. 2018). 

From both climate science and stakeholder perspectives, 
decadal predictions may provide a bridge between 
seasonal predictions and longer-term climate projections 
(Goddard et al. 2012; Towler et al. 2018). By extending 
seasonal predictions, decadal predictions offer the 
potential to support climate-related decisions on 
interannual-to-decadal time horizons. Compared to 
uninitialized multidecadal-to-century climate projections, 
decadal predictions offer the potential to narrow the 
uncertainty range (due to, e.g., predictable components 
of decadal variability and less sensitivity to emissions 
scenarios; Hawkins and Sutton 2009) and better connect 
to the timescales of many climate-related decisions.

In this article, we discuss a project called UDECIDE 
(Understanding Decision-Climate Interactions on 
Decadal Scales) that integrates statistical and dynamical 
modeling research on decadal climate predictive capacity 
with stakeholder-oriented research on potential uses of 
climate-related information on decadal timescales. Like 
all weather and climate predictions and projections, 
the information in decadal climate predictions is 
unavoidably uncertain. Thus, understanding, assessing, 
and communicating predictive uncertainties are inherent 
components of work in this area.  

The research discussed here builds on previous work 
on developing usable climate and weather information 
(Cash et al. 2003, 2006; Jacobs et al. 2005; Morss et al. 
2005, 2008a; McNie 2007; Pielke 2007; Dilling and Lemos 
2011; Larson et al. 2015). Key lessons from this previous 
work include the importance of beginning early in an 
effort to integrate scientific research with understanding 
of stakeholders’ information needs, decision contexts, 
and constraints. This integration typically occurs through 
iteration between knowledge producers and users, often 
mediated through “information brokers” or “boundary 
organizations” (Cash et al. 2006; Dilling and Lemos 
2011, Kirchhoff et al. 2015). Through such interactions, 
scientists and stakeholders can co-produce information 
that represents current scientific capabilities and 
uncertainties while also projecting onto stakeholders’ 
decision spaces.
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Starting co-production of knowledge early in the 
development of a new scientific area can enhance both 
the science and its societal benefits. With this in mind, 
UDECIDE was developed to investigate the intersections 
between decadal predictive capacity and stakeholders’ 
information needs, and then to develop prototype 
presentations of decadal predictive information for 
testing in those decision spaces. The project is ongoing, 
so this article focuses on our research approach and 
findings to date. Our aims in discussing this research 
here include, first, motivating additional integrative work 
in decadal prediction and, second, providing an initial 
template for future related work on decadal prediction 
and communication of predictive uncertainties.

Research approach

To design and implement the UDECIDE project, our 
research team developed the framework in Figure 
1. One research thread (right-
hand side of Figure 1) focuses on 
understanding current and potential 
needs for decadal climate predictions 
for stakeholders in two application 
sectors: water resources and flood 
risk management. This research is 
identifying decision spaces that may 
be ready for near-term uptake of 
decadal climate information, given 
predictive uncertainties. A second, 
simultaneous research thread (left-
hand side of Figure 1) focuses on 
assessing and building capacities 
for generating the needed decadal 
predictive information. As these two 
research threads progress, we are 
iterating across them to identify key 
entry points for communication of 
decadal climate prediction for decision 
making in the context of uncertainties, 
constraints, and other factors.

Weather and climate information is generally most useful 
to stakeholders when it is provided in terms of decision-
relevant variables. As depicted in Figure 1, one research 
theme is exploring the potential for providing skillful 
decadal predictive information in terms of climate-related 
impact variables of interest for decisions. Examples 
include predicted reservoir inflow from a watershed or 
the probability of crossing a decision-relevant threshold 
such as number of days below a minimum streamflow 
level (Goddard et al. 2010; Towler et al. 2013; Raucher 
et al. 2015). Since climate-related impacts of interest 
often manifest at the regional or local levels, a second 
theme is linking decadal climate prediction to decision 
making at regional and local scales. To allow exploration 
of the intersection space in Figure 1 in depth, UDECIDE 
is focusing primarily on climate prediction for water 
resource and flood risk management in two regions of 
the US with different climatic characteristics and decision 
contexts: north-central Colorado and California. 

Figure 1. Framework for co-production of usable climate-related information on 
decadal timescales. The framework was adapted from Dessai and Hulme (2004) 
and the literature on usable climate and weather science and co-production of 
knowledge described in the text. 
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Given the interdisciplinary nature of this type of effort, 
the project team includes researchers with expertise in 
atmospheric science, statistics, economics, anthropology, 
risk communication, and water resource engineering. 
It also includes staff from Jacobs Engineering Group 
(hereafter Jacobs, formerly CH2M HILL), a private firm 
with substantial experience bridging climate science 
and practice. Partnering with Jacobs is helping our 
research team to identify climate-related decision spaces 
and impact variables for deeper investigation. It also 
allows us to better understand the private firm’s role 
as a boundary organization and to explore strategies 
for translating decadal climate research into decision-
relevant information communicated through the private 
as well as the public sector.

Research methodologies and emerging results

The stakeholder-oriented research began with 
conversations with personnel from Jacobs (functioning 
here as both a research partner and boundary 
organization) and with stakeholders employed by state, 
regional, and local governmental agencies involved in 
the two application sectors in Colorado and California. 
Members of the UDECIDE team then conducted a 
set of in-depth semi-structured interviews with flood 
management personnel in Colorado; these data are being 
qualitatively analyzed to identify key themes. We also 
continued interacting with Jacobs personnel and other 
stakeholders, and we are currently designing additional 
data collection in California.

The prediction-oriented research builds on previous 
and concurrent research on decadal predictive skill 
and uncertainties. Decadal prediction is an active area 
of research, but work to date suggests that decadal 
predictions currently have greatest skill for upper ocean 
heat content and surface temperature, with lower skill 
for precipitation due in part to its lower signal-to-noise 
ratio associated with greater internal variability (Meehl et 
al. 2009, 2014; Murphy et al. 2010; Goddard et al. 2013; 
Shaffrey et al. 2017; Yeager et al. 2018). To extend this 

previous work to assess predictive capacity relevant to the 
stakeholders’ decision spaces, we are using a combination 
of statistical and dynamical modeling. One UDECIDE 
effort is employing geostatistical spatial modeling to 
investigate linkages between precipitation in different 
US regions and remote ocean temperatures (Hewitt et al. 
2018). This research finds that winter precipitation in both 
Colorado and California is teleconnected to the spatial 
temperature pattern in the Pacific Ocean, suggesting 
that there is potential for skillful decadal predictions of 
winter precipitation in both regions, though more so in 
California.  

Another UDECIDE effort is using simulations with the 
global atmospheric Model for Prediction Across Scales 
(MPAS; Skamarock et al. 2012) to investigate the dynamical 
linkages between Pacific Ocean temperature patterns 
and regional US precipitation. This research indicates the 
potential for decadal prediction of atmospheric rivers 
affecting California and other areas of the US West Coast 
(Figure 2; Done and Ge 2018). In particular, the model’s 
atmospheric response to a positive Interdecadal Pacific 
Oscillation (IPO) ocean temperature pattern results in a 
southward shift in precipitation from the northwest US 
towards coastal California. This modeling work suggests 
that the effects of the IPO on precipitation over Colorado, 
however, are not significant.

As discussed in the next section, we are analyzing these 
emerging results to identify areas where potential skill 
intersect with needs for predictive information (darker 
green oval in Figure 1). Even at these intersections, 
however, communicating predictive uncertainty in ways 
that are understandable to, usable by, and useful to 
stakeholders remains challenging (National Research 
Council 2006; Morss et al. 2008b; Budescu et al. 2009; 
Pidgeon and Fischhoff 2011; Spiegelhalter et al. 2011; 
Taylor et al. 2015). Thus, UDECIDE team members are 
also investigating systematic approaches for processing 
and translating decadal predictions and associated 
uncertainties for use by stakeholders, including 
approaches adapted from seasonal climate forecasts 
and centennial climate projections (Towler et al. 2018). 
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We are currently extending this work to explore the use 
of hydrological and other impact models to translate 
the information in decadal climate predictions (and 
associated uncertainties) into impact predictions that are 
more directly relevant for stakeholders’ decisions. 

Identifying intersections between decadal predictive 
skill and decisions: Colorado and California case 
studies

For the flood management stakeholders in Colorado, 
the primary decadal climate-related decision spaces 
identified were infrastructure maintenance and master 
planning for flood control. Stakeholders discussed 
potential uses of climate information on decadal 
timescales, such as designing culverts and planning for 
the use of vegetation in flood control. However, they noted 

that their flood risk management 
projects incorporate freeboard 
— a factor above flood level 
that provides an extra margin 
of safety — and that currently 
the freeboard levels are greater 
than the signal from climate 
predictions and projections 
(given climate variability and 
predictive uncertainties). They 
also noted that the climate signal 
on potential future changes in 
flood risk is currently dominated 
by hydrological uncertainties, the 
signal from population growth 
and associated land use change, 
and other non-climate factors. 

The primary climate variable of 
interest for this decision space is 
local summertime precipitation 
extremes, which are highly 
spatially and temporally variable 
and thus typically have significant 
predictive uncertainties. Recent 

research indicates that decadal predictions currently 
have poor skill for precipitation in the Colorado region 
of the US (Salvi et al. 2017a). Together with the other 
issues discussed above, this suggests decadal predictive 
capacity for use in flood risk management in north-
central Colorado is currently limited. Decadal predictions 
of temperature may have skill in this region (Salvi et al. 
2017b; Towler et al. 2018), and Colorado stakeholders 
noted that temperature changes might affect snow melt-
related flooding as well as water resource and drought 
management decisions. 

For the stakeholders in California, the decadal climate-
related decision spaces identified include water reservoir 
operations, management of water supply quality 
and quantity, flood risk management, and meeting 
environmental regulations. Major climate-related 

Figure 2. Difference in simulated mean winter (December-February) precipitation (mm) 
between the positive and negative phase of the Interdecadal Pacific Oscillation (IPO), depicted 
for the western US and nearby areas. Mean winter precipitation was derived from 10-member 
ensembles of MPAS simulations driven by ocean temperature patterns associated with each 
phase of the IPO. 
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concerns include multi-year drought, within different 
basins and simultaneously across basins, and several-
day periods of heavy rainfall associated with atmospheric 
rivers. A related concern is the potential for intense 
precipitation events over post-wildfire watersheds, which 
can negatively impact water quality. 

The primary climate variable of interest in these California 
decision spaces is precipitation in winter. Compared to 
summer precipitation in Colorado, winter precipitation in 
California has a larger signal-to-noise ratio, associated in 
part with connections between California winter climate 
and Pacific Ocean temperature patterns across a range 
of timescales. On subseasonal and seasonal timescales, 
precipitation in different regions of California is related to 
features such as atmospheric rivers and El Niño-Southern 
Oscillation (Dettinger et al. 2011). California precipitation 
also exhibits variability on decadal and multidecadal 
scales, which has been linked to decadal modes of 
variability with signatures in Pacific Ocean temperature 
patterns (Dai 2013). These connections are a likely reason 
for recent research results that suggest some potential 
decadal predictive skill in this region (Salvi et al. 2017a,b; 
Yeager et al. 2018; Figure 2).

This analysis suggests that there is currently more 
potential in California than in Colorado for developing 
decadal predictive information that is usable to the 
stakeholders involved in the UDECIDE project. Stated 
another way, in Colorado the climate signal is small 
and predictive uncertainties are large compared to 
the influence of other factors and uncertainties on the 
decisions of the flood risk management stakeholders 
that we interviewed. Therefore, we decided at this stage 
to focus on the California stakeholders for additional 
work on decision-relevant communication of decadal 
predictions and associated uncertainties.

Moving forward

Building on our research to date, the UDECIDE team is now 
focusing on work in the intersecting green oval in Figure 1,  

where potential decadal predictive skill intersects 
with California water resource and flood management 
stakeholders’ decision spaces, given uncertainties. 
This includes investigating, in greater depth, key 
climate-related impact variables and the translation 
of decadal climate predictions into those variables on 
spatial and temporal scales relevant to stakeholders’ 
information needs. We then plan to design prototype 
presentations of decadal predictive information in terms 
of these impact variables, test those presentations with 
stakeholders, and iterate to develop understanding 
of the key characteristics of usable information and 
effective communication of uncertainty. 

Because, as noted above, uncertainty is inherent in 
decadal predictions, communication of uncertainty 
is a key component of this work. Our focus, however, 
is not on assessing and communicating predictive 
uncertainties in terms of climate variables alone. 
Instead, we are leveraging the experience of Jacobs 
and stakeholders to develop mechanisms for creating 
and communicating decadal predictive information and 
associated uncertainties in decision-relevant terms. One 
important step in this process is evaluating whether the 
potential climate signal is dominated by other sources 
of uncertainty in the decisions of interest, as currently 
appears to be the case in our Colorado study, or whether 
it is sufficiently strong to potentially provide usable 
information, as in California (Raucher et al. 2015).

This article presents a framework for improving the 
communication of climate-related predictive uncertainties 
by developing and conveying predictive information 
in ways that project more readily onto stakeholders’ 
decision spaces. By discussing how we are using this 
framework to conduct research on the intersections 
between predictive skill and information needs, we aim 
to help the field of decadal climate prediction evolve in 
ways that are relevant to and valued by society. 
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