# How to formulate an applied LP problem 

Notes for AGEC 622

Bruce McCarl<br>Regents Professor of Agricultural Economics

Texas A\&M University

# How to formulate an applied LP problem McCarl and Spreen Chapter 6 

Topics Covered
Tableau building
Identification of constraints
variables
relevant parameter values
We do this in the context of a problem

## How to formulate an applied LP problem

Lets look at a problem
Suppose a farmer approaches you and wants to set up a problem. He wants to know given government program changes what should he grow. The first question is what can be grown

The farmer says
Corn Cotton Cattle
These are our first indication of variables

## How to formulate an applied LP problem

|  | Corn | Cotton | Cattle |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

So we set up a tableau with variables across the top
And constraints down side plus an objective

## How to formulate an applied LP problem

Now we ask what limits your plans
The farmer says Land and Labor

|  | Corn | Cotton | Cattle |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective |  |  |  |  |  |  |
| Land |  |  |  |  |  |  |
| Labor |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## How to formulate an applied LP problem

Now we ask how much land and labor do you have
The farmer says 450 acres Land and a seasonal amount of Labor

|  |  | Corn | Cotton | Cattle |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective |  |  |  |  |  |  |
| Land |  |  |  |  |  |  |
| Spring Labor |  |  |  |  |  |  |
| Summer Labor |  |  |  |  |  |  |
| Fall Labor |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## How to formulate an applied LP problem

Now we ask how much labor by season
Farmer works 4 days per week during 6 weeks of spring with a hired hand 8 hours per day and similar statements for other seasons

|  | Corn | Cotton | Cattle |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective |  |  |  |  |  |  |
| Land |  |  |  |  |  | $\leq 450$ |
| Spring Labor |  |  |  |  |  | $\leq 192$ |
| Summer Labor |  |  |  |  |  | $\leq 245$ |
| Fall Labor |  |  |  |  |  | $\leq 155$ |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## How to formulate an applied LP problem

Now we ask how about land use
Farmer has 450 acres of which 300 are in pasture supporting 20 cows and 150 are planted to crops

|  | Corn | Cotton | Cattle |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective |  |  |  |  |  |  |
| Crop land | 1 | 1 |  |  |  | $\leq 150$ |
| Pasture land |  |  | 15 |  |  | $\leq 300$ |
| Spring Labor |  |  |  |  |  | $\leq 192$ |
| Summer Labor |  |  |  |  | $\leq 245$ |  |
| Fall Labor |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## How to formulate an applied LP problem

Now we ask how about cows. Fasrmer says the cost of buying one is $\$ 50$ plus a $\$ 50$ production cost then sells them for 60 cents per pound with weight 800 pounds. The farm uses 60 hours of spring labor on the whole herd or 3 hours/animal (60/20)=3 and gives other data for the other periods. The cow herd is fed 800 bushels corn or 40 bu per head

|  | Corn | Cotton | Cattle |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective |  |  | 380 |  |  |  |
| Crop land | 1 | 1 |  |  |  | $\leq 150$ |
| Pasture land |  |  | 15 |  |  | $\leq 300$ |
| Spring Labor |  |  | 3 |  |  | $\leq 192$ |
| Summer Labor |  |  | 5 |  |  | $\leq 245$ |
| Fall Labor |  |  | 3 |  |  | $\leq 155$ |
| Corn on hand |  |  | 40 |  |  | $\leq 0$ |
|  |  |  |  |  |  |  |

## How to formulate an applied LP problem

Now we ask how about corn. Farmer says yield is 100 bu per acre Production cost is $\$ 100$ per acre. 16 acres are planted in an 8 hour day in the spring In the fall the farm can harvest 16 acres per day. Corn sells for $\$ 2.30$ per bu

|  | Corn | Cotton | Cattle | Sell <br> corn |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective | -100 |  | 380 | 2.3 |  |  |
| Crop land | 1 | 1 |  |  |  | $\leq 150$ |
| Pasture land |  |  | 15 |  |  | $\leq 300$ |
| Spring Labor | 0.5 |  | 3 |  |  | $\leq 192$ |
| Summer Labor | 0.1 |  | 5 |  |  | $\leq 245$ |
| Fall Labor | 0.5 |  | 3 |  |  | $\leq 155$ |
| Corn on hand | -100 |  | 40 | 1 |  | $\leq 0$ |
|  |  |  |  |  |  |  |

## How to formulate an applied LP problem

Now we ask how about cotton. Yield is 1 bale per acre Production cost is $\$ 200$ per acre. The farm can get ready to and plant 16 acres in an 8 hour day in the spring and harvest 8 acres per day. Cotton sells for $\$ 325$ per bale

|  | Corn | Cotton | Cattle | Sell <br> Corn | Sell <br> Cotton |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Objective | -100 | -200 | 380 | 2.3 | 325 |  |
| Crop land | 1 | 1 |  |  |  | $\leq 150$ |
| Pasture land |  |  | 15 |  |  | $\leq 300$ |
| Spring Labor | 0.5 | 0.5 | 3 |  |  | $\leq 192$ |
| Summer Labor | 0.1 | 0.2 | 5 |  |  | $\leq 245$ |
| Fall Labor | 0.5 | 1 | 3 |  |  | $\leq 155$ |
| Corn on hand | -100 |  | 40 | 1 |  | $\leq 0$ |
| Cotton on hand |  | -1 |  |  | 1 | $\leq 0$ |

## How to formulate an applied LP problem

Now we solve

|  | Corn | Cotton | Cows | Sell <br> Corn | Sell <br> Cotton |  | Slack | Shadow <br> price |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| Objective | -100 | -200 | 380 | 2.3 | 325 |  | 25260 |  |
| Crop land | 1 | 1 |  |  |  | $\leq 150$ | 0 | 130 |
| Pasture land |  |  | 15 |  |  | $\leq 300$ | 0 | 19.2 |
| Spring Labor | 0.5 | 0.5 | 3 |  |  | $\leq 192$ | 57 | 0 |
| Summer Lab | 0.1 | 0.2 | 5 |  |  | $\leq 245$ | 130 | 0 |
| Fall Labor | 0.5 | 0.75 | 3 |  |  | $\leq 155$ | 20 | 0 |
| Corn on hand | -100 |  | 40 | 1 |  | $\leq 0$ | 0 | 2.30 |
| Cott. on hand |  | -1 |  |  | 1 | $\leq 0$ | 0 | 325 |
| Level | 150 | 0 | 20 | 14200 | 0 |  |  |  |
| Reduced cost | 0 | 5 | 0 | 0 | 0 |  |  |  |

## How to formulate an applied LP problem

Now a study lets see what it is worth to convert 100 acres pasture to crops

|  | Corn | Cotton | Cows | Sell <br> Corn | Sell <br> Cotton |  | Slack | Shadow <br> price |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| Objective | -100 | -200 | 380 | 2.3 | 325 |  | 35380 |  |
| Crop land | 1 | 1 |  |  |  | $\leq 250$ | 0 | 82 |
| Pasture land |  |  | 15 |  |  | $\leq 200$ | 50 | 0 |
| Spring Labor | 0.5 | 0.5 | 3 |  |  | $\leq 192$ | 37 | 0 |
| Summer Labor | 0.1 | 0.2 | 5 |  |  | $\leq 245$ | 170 | 0 |
| Fall Labor | 0.5 | 0.75 | 3 |  |  | $\leq 155$ | 0 | 96 |
| Corn on hand | -100 |  | 40 | 1 |  | $\leq 0$ | 0 | 2.30 |
| Cotton on hand |  | -1 |  |  | 1 | $\leq 0$ | 0 | 325 |
| Level | 250 | 0 | 10 | 24600 | 0 |  |  |  |
| Reduced cost | 0 | 53 | 0 | 0 | 0 |  |  |  |

## How to formulate an applied LP problem

After solve

Obj 35,380

Before 25,260

Land development worth 10,120 per year

## Application Thoughts

## Why use LP

1. Have decision problem to resolve
2. Want to simulate the results of a change

Steps

1. Identify variables
2. Identify constraints
3. Identify coefficients
really an iterative process

## Application Thoughts

Assumptions

1. Right OBJ, constraints, variables
2. Math
3. Additive
4. Proportional
5. Certain
6. Continuous

## LP in Action - war stories

1. Repair man location
2. Hydropower scheduling
3. Machinery adequacy for growth
4. Portfolio selection

## Toward Proper Modeling

Types of items in an applied LP problem
Constraints: $\quad$ AX $\leq \mathbf{b}$

- Types: technical, institutional, subjective.
- \# of constraints affects \# of non-zero variables
- carefully set up constraints - is this constraint necessary?
- What restriction should it be - LE, GE, EQ?
- When should it be relaxed?
- Unit consistency


## Variables Identifications:

- Types: technical, accounting, convenience
- Unit consistency

Objective Function:

- Maximization/Minimization
- Determines optimal solution


## Homogeneity of Units

$$
\begin{array}{cl}
\text { Max } & \mathrm{c}_{1} \mathrm{X}_{1}+\mathrm{c}_{2} \mathrm{X}_{2} \\
\text { s.t. } & \mathrm{a}_{11} \mathrm{X}_{1}+\mathrm{a}_{12} \mathrm{X}_{2} \leq \mathrm{b}_{1} \\
& \mathrm{a}_{21} \mathrm{X}_{1}+\mathrm{a}_{22} \mathrm{X}_{2} \leq \mathrm{b}_{2}
\end{array}
$$

## Rules

1. All coefficients in a row have common numerators.
2. All coefficients in a column have common denominators.

## Data Development

Good solutions do not arise from bad data -Key considerations:

- Time frame
- objective function, technical coefficient ( $\mathrm{a}_{\mathrm{ij}}$ 's) and RHS data must be mutually consistent i.e. annual basis vs. monthly basis
- Uncertainty
- how to incorporate data uncertainty
- Data sources
- vary by problem + judgments (statistical estimation or deductive process)
- Consistency
- homogeneity of units rules must hold
- Component specification
- objective, RHS, technical coefficients

