AGEC 622

Review Notes for Test

(02/10/2004)

Formulation of LP Problem

- Pick a possible problem that a business might have to solve, and formulate a LP model to solve it with following terms;
- Objective Function
- Decision variables
- Constraints
- ► What kinds of information does the firm get from such a formulation and what type of data might they need?
- Assumptions of LP
 - Objective Function Appropriateness
 - Decision variable Appropriateness
 - Constraint Appropriateness
 - Proportionality
 - Additivity
 - Divisibility
 - Certainty

■ Violation of the LP Assumptions

- State a case where each of the LP assumptions might be violatde in a specific LP problem (Transportation, Feeding, Portfolio, Integer Programming, etc.)
- Predictive setting vs. Prescriptive setting
- Read and Interpret LP results
 - ► Key questions
 - 1) Where are the results?
 - 2) What are the values?
 - 3) What is the interpretation of each item in a business decision making?
 - Objective function value
 - Final value under target cell on answer report

- The max or min value a firm can get given the parameters and resource constraints
- Decision Variable
 - final value column under adjustable cells on answer report
 - The decision variable values that max or min its objective function value—how much of each variable to employ
- Shadow price
 - Lagrange multiplier column on sensitivity report
 - The change in the objective function value when one unit of resource is changed. Economic meaning is marginal value of the resource.
- Reduced Cost
 - Reduced gradient column on sensitivity report
 - Reduced cost is the reduction in objective function value when one unit of a decision variable that is not in the solution is forced into solution.
- Non zero / Zero variables
 - Explain in terms of Decision variable / Reduced cost
- Binding / Non-binding constraints
 - Explain in terms of Shadow price / Slack
- Basic LP Problems
 - 1) Transportation
 - 2) Diet / Feed Mix / Blending
 - 3) Joint Product
 - 4) Dissassembly

■ Portfolio Selection: Including risk in LP problem

- When do we need to incorporate risk in LP problem?
 - We face a situation in which parameters are not certain or risky *(Violate the assumption of certainty)*
 - But we assume that we have historical probability distribution of parameters and that this is relevant to future decisions
- Why do we need to incorporate risk in LP problem?
 - Generate a plan which is robust in face of the uncertainty yielding a good solution across the set of possible events, not the best solution necessarily in any possible events

- E-V Model example tradeoff of expected value and variance
- What does RAP alteration yield
- Integer Programming
 - When do we need Integer programming?
 - Decision variables are integer or binary (*Violate the assumption of divisibility*)
 - Lumpy Investments and fixed costs
 - Logical Conditions
 - How can we handle the indivisibility problems in Excel?
 - Put constraints on decision variable: integer or binary