AGEC 641 - HOMEWORK

Chapter 13 Price Endogenous Programming

1. Given the problem

Max $\quad \mathrm{CX}+0.5^{*} \mathrm{X}^{\prime} \mathrm{QX}-\mathrm{dY}$
$\begin{array}{rlrl}\text { s.t. } & \mathrm{X} & -\mathrm{EY} & \leq 0 \\ & \text { AY } & \leq b \\ & \mathrm{X} & \mathrm{Y} & \geq 0\end{array}$
where X is a vector of quantities consumed
C is the vector of intercepts of the demand equations for X
Q is the matrix of slopes of the demand equations for X
Y is a vector of production alternatives
d is the vector of per unit costs of producing Y
E is the matrix of per unit yields of Y
A is a matrix of resource usages by Y
b is a vector of resource endowments
Do the following
a. State the conditions under which a global optimal solution would arise.
b. Explain the Kuhn Tucker conditions.
c. Explain the significance of the 0.5 term which pre multiplies $X^{\prime} Q X$.
2. The potato growers have come to you with the following situation. Potatoes are produced during the first two quarters of a year. The following supply functions have been estimated:

Quarter
1
2
3
4

Function

$$
\begin{aligned}
& \mathrm{P}_{1}=18,000+1 / 2 \mathrm{X}_{1} \\
& \mathrm{P}_{2}=40,000+\mathrm{X}_{2} \\
& \mathrm{X}_{3}=0 \\
& \mathrm{X}_{4}=0
\end{aligned}
$$

where X_{j} is the quantity of potatoes supplied in quarter j in pounds.
After potatoes are harvested, they may be sold as fresh potatoes processed into frozen french fries. It takes 2 pounds of potatoes to produce 1 pound of frozen french fries, and the conversion costs are $\$.10$ per pound of frozen french fries produced. Processing may take place only during the harvest season (Quarters 1 and 2).
Fresh potatoes may be stored for sale in the future at a cost of $\$.03$ per pound for each quarter stored. Storage costs for frozen french fries are $\$.05$ per pound for each quarter stored.
The demand for fresh potatoes and frozen french fries is:

Quarter	Fresh Potato Demand	Frozen French Fry Demand
1	$\mathrm{P}_{1 \mathrm{~F}}=10,000-\mathrm{QF}_{1}$	$\mathrm{P}_{1 \mathrm{Z}}=1000-1 / 2 \mathrm{QZ}_{1}$
2	$\mathrm{P}_{2 \mathrm{~F}}=8,000-2 \mathrm{QF}_{2}$	$\mathrm{P}_{2 \mathrm{~L}}=2000-\mathrm{QZ}_{2}$
3	$\mathrm{P}_{3 \mathrm{~F}}=15,000-\mathrm{QF}_{3}$	$\mathrm{P}_{3 \mathrm{Z}}=1500-\mathrm{QZ}_{3}$
4	$\mathrm{P}_{4 \mathrm{~F}}=12,000-\mathrm{QF}_{4}$	$\mathrm{P}_{4 \mathrm{Z}}=3000-\mathrm{QZ}_{4}$

where $\mathrm{P}_{\mathrm{jF}}=$ price of fresh potatoes in quarter 1 ,
$\mathrm{Q}_{\mathrm{Fj}}=$ quantity of fresh potatoes demanded in quarter 1, $\mathrm{P}_{\mathrm{jZ}}=$ price of frozen french fries in quarter 1, $\mathrm{Q}_{\mathrm{Zj}}=$ quantity of frozen french fries demanded in quarter 1.
a) Formulate a mathematical model which determines the competitive allocation of potatoes to the fresh and frozen markets and the optimal level of storage.
3. Given the following data for a marketing firm, develop, using simple calculus:
a) perfectly competitive optimum
b) monopolistic optimum
c) monopsonistic optimum
d) monopolistic monopsonistic optimum
e) optimum when $\alpha=1 / 2$ for all curves but the fourth where $\alpha=1$
f) explain your results

Inverse demand curve for exports of the good $\mathrm{P}=15-.5 \mathrm{q}_{1}$
Inverse demand curve for domestic consumption of the good $\mathrm{P}=18-\mathrm{q}_{2}$
Inverse supply curve for imports of the good $\mathrm{P}=6+\mathrm{q}_{3}$
Inverse supply curve for domestic production of the $\operatorname{good} \mathrm{P}=3+.5 \mathrm{q}_{4}$
4. Choose a problem for which you have a GAMS formulation from an earlier homework, add price endogenous to one demand condition and one supply, then solve it with GAMS.

