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Yield Variability asInfluenced by Climate: A Statistical I nvestigation
Abgtract:

Studies of agriculturd impacts of possible future climate change seldom report digtributions of
potential outcomes. Part of the reason for this may be thet little empirica evidenceis available on
sources of agriculturd output variability. This study presents maximum likelihood pand data estimates
of the impacts of climate on yidd variability for the mgor U.S. agricultural crops. Pand datatime-
series techniques are used to specify and estimate a sochastic production function of the form
suggested by Just and Pope . The effects of climate on yidd levels and variances are shown to vary
depending on the crop. For sorghum more rainfal and higher temperaturesincrease yidds while
increasing yield variability. Precipitation and temperature individudly have opposite effects on corn

yield levls and varizhility.
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Yield Variability asInfluenced by Climate: A Statistical I nvestigation

Variability of agriculturd yield iswdl known to depend on the weether. Extreme weather
events like hurricanes and droughts have obvious impacts and recently necessitated two disaster relief
billsfor farmers. Identification and prediction of the influences of seasond-to-interannua climate
phenomena, like the El NiAo Southern Oscillation (ENSO), has brought attention to possible short-term
impacts of changesin climate. More subtle seasond phenomena aso have been linked to agricultura
productivity, with Horida citrus freeze risk (Downton and Miller), and dryland maize production in
southern Africa having been shown to be influenced by ENSO and other ocean circulation patterns
(Cane, Eshd, and Buckland).

The consderable atention that has been focused on agriculturd impacts of climate change, has
largdly focused on fifty to 100 year mean climate change effects (Lewandrowski and Schimmelpfennig;
Adamset d.). Climate variability has been congdered in afew longer term studies, but the studies do
not generaly incorporate sengtivity tests or estimate changes in distributions of outcomes (Mearns,
Rosenzweig, and Goldberg, 1996 and 1997; Schimmelpfennig).

Factors other than climate influence the variability of agricultura production. Anderson and
Hazd| argue that adoption of common high-yidding varieties, uniform planting practices, and common
timing of field operations, have caused yidds of many crops to become more sengtive to the wegther,
especidly in developing countries. Hazell makes smilar observations concerning cered production in
the United States. Roumasset et d. and Tollini and Seagraves argue that increased fertilizer use has had
an impact.

An open quedtion is how sengtive might agriculturd yidd varigbility be to dimatic change? The



ultimate answer will depend upon future technologica progress, crop climatic adaptation, and CO,
fertilization effects among many other factors, but a current Satistica answer can be obtained from
historicd records relating crop yied variability to climate. An approach usng pooled time-series cross-
sectiond data much like that employed in Mendel sohn, Nordhaus and Shaw can be used to measure
yield variability impacts of shiftsin climate. The question addressed is how is the variability of U.S.
corn, cotton, sorghum, soybeans, and wheet yields affected by shiftsin climate?

M ethodological Background

Just and Pope (1978,1979) developed a stochagtic production function specification that after
estimation explicitly shows the effects of independent variables on the probability distribution of output
(p.79) and does not impose dependence between an item’ s effect on yidd variability and it's effect on
mean yield. Just and Pope (1978,1979) described both Maximum Likelihood (MLE) and athree
sep, feasble generdized least squares (FGLS) procedure for estimating the function.

Antle extended Just and Pope' s approach by devel oping a moment-based stochastic
production function that estimated higher order moments and used it in the estimation of a set of input
demand functions and a distribution of risk preferences. Love and Buccola gpplied related techniques
to primd risk modds, alowing joint estimation of either technology and yidd varigbility or input
demands and yidd variability. Saha, Shumway, and Tdpaz' s showed how to jointly estimate risk
preferences and the production technology. Buccola and McCarl investigated the small-sample
properties of Just and Pope' s three stage method, usng Monte Carlo experiments. McCarl and
Rettig used the three step approach to examine the effects of changes in ocean conditions on the

variability of the sdmon catch.



Despite the fact that Just-Pope production functions have traditiondly been estimated by the
three-step FGL S approach, Saha, Havenner, and Ta paz show in Monte Carlo experiments that for
amal samples, MLEs are more efficient and unbiased than FGL S estimates. They show that FGLS
edtimates systematicdly understate the risk effects of inputs, a serious problem in the present context.

Panel Data Set for Estimation

The availability of Sate leve detaled climate and yidd data acrossthe U.S. dlowsfor the
exploration of both inter-temporal and inter-spatial variances in the data with ate level characteristics,
and changes in technology controlled. State leve yields and acreage harvested for 25 years, 1973 to

1997 were used from USDA-NASS Agricultura Saidtics for the contiguous 48 states, yielding about

1200 observations.

State-levd dlimate data that matches the agricultural output datais available on the NOAA
Internet home-page which includes time series observations for thousands of weather sations. The
temperature data predominantly April to November averages for the published weather dationsin a
date. For regions growing predominantly winter wheet, we used the November to March average
temperature. The rainfal data are state annud totds, reflecting both precipitation faling directly on a
crop, and aso inter-seasona water accumulation.

Time Series Estimation

The Just-Pope production function can be estimated from panel data reating yield to exogenous
variables. This procedure produces estimates of the impacts of the exogenous variables on levels and
the variance of yidd. An assumption of the mode is that included varigbles are sationary. Deterministic

and stochagtic trends in variables can introduce spurious correl ations between the variables, because



the errors in the data-generating-processes for different series might not be independent (Granger and
Newbold). In other words, correlations might be detected between variables that are increasing for
different reasons and in increments that are uncorrelated (Banerjee, et d, p.71).

An early method for accounting for the trends in many economic time series, and the pogtive
trends that are certainly evident in agriculturd yields, was to include a determinigtic time trend.
Unfortunatdly, correlations between variables may dill be spurious even when determinigtic time trends
are accounted for. To make matters worse, standard t-statistics on the time trend variable are inflated
when the other variables in aregresson are non-gationary (Phillips). Thismight makeit seem that a
time trend is properly accounted for when it isnot. The solution to these problems, isto first test for
dationarity. Non-stationary variables can be differenced once and retested. |If the differenced versons
are sationary, the variables are said to be integrated order one or 1(1). Stationary time series are
integrated order zero or 1(0). Regressons on stationary variables may satisfy ided conditions, and
inferences on adeterminigtic time trend can be made safely. Even though our data has more regions
than annual observations, any data set with atime dimension of 20 years or more should be tested for
its time series properties.

Prectitioners have tested for unit roots and used differencing or other filtering techniquesto
make their variables Sationary. Until recently the time-series characteristics of pand data have been
difficult to characterize. The observations on one or more regions in a pand could be non-stationary
when congdered done, but with pane data modds al of the regions are generdly taken together. The
question has been how to characterize the time series properties of one variable made up of many

regions? New tests are available that offer more power than earlier tests on region series. These new
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tests for Sationarity are applied to each variable taking the whole pand a once. This avoids possibly
conflicting time seriesinformation on regionsin the pand. There are saverd versons of these so-called
panel unit root tests due to Im, Pesaran, and Shin, Levin and Lin (1992, 1993), and Quah. Quah’stest
does not dlow for region specific effects. Since we show the importance of region effectsin the next
section, werely onIm et d.’stest. Their test shows better finite sample performance than the tests due
to Levin and Lin, in Monte Carlo smulations on panels with alarge number of regions rdative to the
number of time periods*
Panel Unit Root Tests

Im, Pesaran, and Shin propose a series of unit root test Satistics in dynamic heterogenous
panels based on individud Dickey-Fuller (Dickey and Fuller) regressons. The LM-bar test is based on
the mean of individua unit root gatistics. The test is vaid when the errors in the region regressions are
seridly uncorrelated, and normally and independently distributed across regions. Under these
circumstances LM-bar is digtributed as standard normd as long as the number of regions (N) islarge
relative to the number of time periods (T). For wheet, corn, and soybeans we have 25 annud
observations with in some cases substate level observations. There are, e.g. 1400 observations for
wheat, with 25 years of data across 56 regions. Thisisthe widest panel, but for dl the crops
conddered here, N islargerelativeto T.

Suppose that the variable of interest, y;;, has a representation as a stochastic firs-order auto-

regressive process for region i and time period t,

1Application of the Im, Pesaran, and Shin test to another data set can be found in Coakley and Fuertes.
Heimonen uses Levin and Lin’ stest.
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where Dy, = V¥, - V... Thenull hypothesis of aunit root in (1) is then atest of

Hob, = 0 for all i.

Under the assumption of serialy uncorreated errors, the LM-bar statistic used

to test this null hypothesisis defined by
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LM-bar isthe smple average of N region Lagrange Multipliers taken from equation (1), andisa

gandard normd variate cdculated as follows
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When the assumptions hold, O, will be identicaly and independently digtributed with afinite mean,

E(h,;) , andfinitevariance, Var (h,;) , for any T<N.2

Results of the Panel Unit Root Test

The above pand unit root test procedureis individuadly gpplied to each of our potentia
dependent (yield) and independent variables (acreage, rainfdl, and temperature). Theresultsin Table 1
show that for corn, cotton, sorghum, soybeans, and whest, the variables are sationary as a panel or
integrated order zero (1(0)), rejecting the null hypothesis of aunit root. To test the sengtivity of this
result to possible violation of the assumption of serialy uncorrelated errors, either the error terms can
be tested directly, or an additiona test can be performed.

A dightly modified test is described in Im, Pesaran, and Shin that is robust to seria correlation.
Since the results we obtain by this second method are the same as for the firgt, reported in the second
section of Table 1, we conclude that we do not have seria correlation in the errors of any of the
variables. The bottom section of Table 1, shows that a different modification of the test, based on de-

meaned variables in each pand, yieds dightly different results. Since the de-meaned version of the test

%A Shazam program that implements the procedure in this sub-section is available from the authors upon
request.



is robust to correlation across regions, we conclude that there is correlation across regions. This result
is not surprisng snce we will show the existence of random region effects in the production functions
that we estimate in the next section. We proceed by differencing the non-gtationary variables, sorghum
yidld, cotton precipitation, and soybean temperature, in their region pands. These differenced versons
arere-tested as pands and are shown to be stationary or 1(0).

These pand time series characterigtics of the data are used in formulating the estimation
goproach. Stationary versons of dl of the variables are used in the pand production function model in
the next section. This avoids possible spurious correlations between variables and dlows the
establishment of vaid rdationships. In addition, a determinigtic time trend may be included that does
not suffer from an inflated t-gatistic.

Fixed or Random Effects?

Having established the time series properties of the variables; it isimportant to establish the
correct panel model form. Results of the previous section reved that some of the variablesin Table 1
have correlaions across regions. To test for fixed or random region effects in the moddl, severa
approaches are available.

The Breusch and Pagan test considers anull hypothesis that the variance of region and time
specific effectsis zero, in atwo-way error component model. Honda suggests a one-sded version of
thistest, which is preferred because of expected non-negative variance components. Honda s verson

of the test isa uniformly most powerful test of Hy: 2 = 0 vs fixed effects, where p are unobserved

region specific effects. Thetest Satidtic is (Batagi p.62),
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(2HO= 2(T-1)[ - 1J® N(0,1)

where N arethe number of cross-sections (regions);
T the number of time-series observations,

U isavector of resduds;

| N isan identity matrix with dimenson N;

J; isamatrix of oneswith dimension T;

u ~ID(0,52%), v, ~IID(0,s2)
The results from the estimation of (2), in the second row of Table 2, indicates that the null hypothes's
(HO) isrgected for dl five equations, and a zero variance on the region effect is rejected with 99%

confidence. An dternative test for fixed or random region effectsis provided by Hausman.

The MLE Approach to Estimating the Production Function
The previous sections established gationarity of the variables and random region effects,
without ruling out possible deterministic trends. Following Saha, Havenner and Tdpaz we estimate

production functions of the form

(3 y=f(X,b)+h(X;a)e

wherey is crop yied (corn, cotton, sorghum, soybeans, and wheat), f(f) is an average production
function, and X isaset of independent explanatory variables (climate, location, and time period). The

functiona form h(f) for the error term u, is an explicit form for heteroskedadtic errors, alowing



estimation of variance effects. Estimates of the parameters of f(f) give the average effect of the
independent variables on yidld, while () gives the effect of each independent variable on the variance
of yied. The interpretation of the Sgns on the parameters of h(f) are sraightforward. If the margind
effect on yield variance of any independent variable is pogitive, then increasesin that variable increase
the sandard deviation of yield, while a negative sgn implies increases in that variable reduces yidd
variance.

The log-ikelihood function is then:

_ 1 Q' 2 o (Y - f(xi’b))z
4 InL=- 2[n In(2p)+ia:_1 In(h(X; ,a) )+§1 h(Xi,a)Z .

Due to advancesin non-linear optimization procedures, the parametersa  and b can be estimated in
single-stage maximization of (4), under the assumptionsthat 'y, ~ N(f (X.,b),h(X,,a)?)and
e. ~N(0]).
Crop Yield Production Function Estimates

After controlling for random effects, the MLEs of the f(X,$) part of the crop production
functions are displayed in Table 3. Two specifications are tested, linear and Cobb-Douglas, and for
precipitation and temperature for corn, cotton and sorghum these forms give Smilar results. Thesignon
precipitetion is positive for dl three crops and is negative on temperature. Thisindicates that crop

yiddsincrease with more rainfal and decrease with higher temperatures, holding acreage constant and

after controlling for adeterministic time trend that may serve as a proxy for the non-stochastic portion
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of the advance of agriculturd technology.

Higher temperatures postively impact soybean yieds (Cobb-Douglas estimate inggnificant) and
negatively impact wheet yidds. The coefficients on the deterministic time trend are positive and
sgnificant as expected for al crops, except the Cobb-Douglas estimates for cotton and wheet. This
may come from the tendency of Cobb-Douglas formsto pick up curvature because this form is non-
linear over awide range of parameter vaues, and may indicate a declining rate of increase in the effect
of technology on yidld rather than an actud negative impact of technology .

The coefficients for rainfall and temperature can be converted to eadticities by multiplying by
sample average climate and dividing by average yidld. These dadticities are reported in Table 4. For
corn yields, the percentage effects of changesin climate estimated by Cobb-Douglas are higher than the
linear estimates. Eladiicitiesfor the other crops are mixed, with uniformly high eladticities being
messured for both rainfal and temperature on sorghum.

A Test of Model Adequacy

Before consdering variability estimatesin the next section, it is worthwhile to test the adequacy
of the pand production function models. The classica assumption of the random effects mode is that
the errors are region specific. The sgnificance of adeterminigtic time trend adong with the other
dationary variables, raises a question whether region production function errors might also be time
gpecific. If serid correlation was previoudy ignored, estimatesin Table 3 could be consstent but
inefficient, with biased standard errors.

Since random region effects are identified in Table 2, it is gppropriate to test for serid

correlation jointly with thisinformation. Baltagi and Li present a series of tests for serid correlation that
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are caried out jointly with various assumptions concerning region effects. Their Lagrange Multiplier
(LM) test for zero firgt-order seria correlation assuming random region effects, is the same whether the
dternative isAR(1) or MA(1) (Bdtagi, pp.91-93), which is fortunate as we have no way of testing

which is the gppropriate aternative.

For AR(1) seria correlation, a new specification of the error termsin equation (4) are asan
AR(1) processwith v, = rv;, , + €., €, ~N(O,s 62) . Thenull hypothesisisthe restriction

A1l

onthisequationthat Hy:r = 0. Thetet statisic LM = (D, )?J  isdistributed X for large N,
where

N2 N2 -
" $1-Se 2 " N E J E "
D =[N(T- /T[54 /2 U{I A [CF + 2)G(F + )]} u

S1 S1 Se S1 Se
A1l n N4 N4

J = N2T2(T- 1) /det(J)4s 15 o

N2 N n
Se=U(l A E))U/N(T-1)
N2 AN _ N
s;=u(l A Jr)u/N

Jr=J /T, Ep=1,- Jr

N N

and U are the maximum likelihood residuas under the null hypothesis.  J is an information matrix while

G isabidiagond matrix with bidiagond dementsal equd to one.

Test results for serid corrdation are displayed in the third row of Table 2, dong with the other

pand modd specification tests. They fal to rgect the null hypothesis, indicating no serid corrdation in

the production functions for dl five crops.  Since the region production function errors are not time
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gpecific, the estimatesin Table 3 are efficient and unbiased. Another assumption of the maximum
likelihood modds are that the error terms are normdly distributed. A standard test of this assumption is
avalablein Greene (chapter 4) and the null hypothesis of non-normdlity is rejected with 99%
confidence. Test datistics are reported in the last row of Table 2.

Variability Results from the Estimated M odel

As was the case for the average production functions, the clearest results are obtained for corn,
cotton and sorghum, and do not depend on functiond form (Table 5). Increasesin rainfal decreasethe
variability of corn and cotton yidds. More precipitation aso increases the variability of sorghum yidds,
which is not surprisng given the tolerance of sorghum to dry conditions. Higher temperatures decrease
the variance of cotton and sorghum yields, which is congstent with their geographic distribution.

Corn yidds are predictably more variable with higher temperatures, because corn isgrown in
areas where it is seldom stressed by low temperatures. The determinigtic trend in technology has an
interesting pogitive impact on yield variability for these three crops. In Table 3 the determinitic trend
has a pogitive impact on yield leves, so this might have been achieved at the expense of increased yidd
risk confirming work by Anderson and Hazell. More rainfall decreases the variability of wheet yields,
but the temperature effect ismixed. For soybeans, the linearly estimated impacts are negative and the
Cobb-Douglas estimates are positive.

Eladticities caculated for rainfdl and temperature variability are reported in Table 6. Cotton
and sorghum rainfal variability dagticities are dl smdl, with a one percent increase in rainfdl leading to a
haf of one percent or lessincrease or decrease in yidd variability. Cotton and sorghum have high

temperature variance eadticities with a one percent change in temperature leading to an up to eleven
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times decrease in yidd varigbility. Smilarly large eadticities are obtained for rainfall effects on corn and
wheset yield varigbility. All of these results are congstent across functiona forms. Soybean dadticities
are dl less than one, but sgn inconsstency across functiona forms make these results harder to
interpret. The digtinction between the impacts of climate on levels and variance of yields, raises severd
policy questions related to crop insurance and climate change assessment that will be addressed in the
conclusons.

Findly and for perspective we used the regiona estimates of climate change arising under the
Canadian and Hadley smulators used under the US Globa Climate Change Research Program’s
Nationd Synthesis using the 2090 climate projections to obtain estimates of the effects of projected
climate change on crop yield variance for selected crops in selected regions. These involved plugging
the projected precipitation and temperature changes for the selected regions into the formulas and
computing the projected yield changes into the Cobb Douglasform. Theresultsare givenin Table 7

and show uniform decreases in corn and cotton yield variability with mixed results for the other crops.

Concluding Comments
This study has deve oped quantitative estimates of the impacts of climate on yied variability of
magjor U.S. agriculturd crops by incorporating recent time series and panel datain Just-Pope
sochadtic production function estimation exercise. The results highlight crop specific differencesin the
climate impacts on yidd levels and variability. For corn, precipitation and temperature results are found
to have opposite effects on yidd levels and variability. Morerainfal causes corn yield levelstorise,

while decreasing yield variance. Temperature has the reverse effects on corn yield levels and variance.
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For sorghum the effects go in the same direction, with higher temperatures reducing yields but dso
reducing variability. More rainfdl increases sorghum yidds but also increases vaiahility.

These results have important policy implications. If future climate changes can be predicted to
increase or decrease climate variables, aguide to possibly differentia impacts on U.S. crops may be
inferred from these results. This information might be useful to agriculturd dimate change impact
modeders. These results could aso be considered when future crop insurance programs are being
congtructed that protect farmers while providing desired incentives for adaptation through possible crop
switching. Federd agriculturd R& D policy might aso be informed by the results on deterministic
technologica advance. If further research continues to confirm the result that technology has improved
yidds while dso intengfying cycles of boom and bugt, it may be possible to formulate technological
responses to the problem while rieving some of the burden on U.S. taxpayers evidenced by recent

disaster relief packages.
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Tablel Unit Root Test Results

No-Serial Yied Acre Precipitation Temperature
Correlation
Corn 13.87* 65.08* 73.17* 125.88*
Cotton 14.48* 35.38* 83.74* 81.18*
Sorghum 14.83* 51.34* 91.02* 88.42¢
Soybeans 34.37* 52.39* 56.73 104.00*
Wheat 27.77* 46.82* 73.38* 128.81*
Serial correlation Yied Acre Precipitation Temperature
Corn -4.86* 64.37* 63.88* 126.07*
Cotton 6.86* 32.98* 67.63* 84.13
Sorghum -2.26* 70.22* 81.82* 89.58*
Soybeans 6.92 63.06* 4945 101.26*
Wheat 231 50.88* 64.19* 126.20*
Correlation across Yied Acre Precipitation Temperature
groups
Corn 2.79* -3.72* 7.10* 9.92*
Cotton 3513 -5.69* 0.79 1.91*
28.22*
Sorghum 055 -3.34* 2.54* 221*
10.40*
Soybeans 8.17* -6.98* 5.53* -0.48
499.13*
Wheat 8.15* -7.02* 7.05% 10.36*

Notes: Table 1 reportsthreeversionsof Im et al.’sLM-bar test statistic. “Serial correlation” statistics are robust to
error term serial correlation, while “correlation across groups’ statistics are robust to serial correlation in the
cross-section dimension.

Key:  * Null hypothesis of non-stationarity is rejected with 99% confidence.
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Table 2 Pand Modd Specification Tests

Corn Cotton Sorghum Soybeans Wheat
Fixed vs. Random 15.37* 6.44* 7.52* 14.45* 12.06*
Effects
Serial Correlation 0.87+* 0.81** 1.22%* 1.23** 0.18**
Normality 6.27E+12* 123.34* 4,16E+12* 2.34E+9* 2.86E+12*

Key:  * Null hypothesisis rejected with 99% confidence.
** Failsto reject the null hypothesis of no seria correlation with 99% confidence.

17



Table3 Average Crop Yield Production Function (f(X,$))-Comparison of Maximum
Likelihood Linear and Cobb-Douglas Estimates
Corn Acre Precipitation Temperature Y ear Constant
Linear 0.0146* 0.9265* -0.3843* 3.3018* 0.4430
(0.00039) (0.00606) (0.01599) (0.06492) (0.9978)
Cobb- 1.0728* 1.5148* -2.9792* 2.0470* 0.0560*
Douglas (0.00105) (0.00160) (0.00064) (0.00061) (0.00007)
Cotton
Linear -0.00010* 0.00679* -0.02731* 0.02107* 2.8990*
(0.000001) (0.00010) (0.00035) (0.00014) (0.02524)
Cobb- 0.30879* 0.40751* -0.74763* -0.31626* 26774*
Douglas (0.00736) (0.01812) (0.02059) (0.01382) (0.01618)
Sorghum
Linear 0.00042* 0.05786* -0.02242* 0.10573* -1.4303*
(0.00002) (0.00086) (0.00281) (0.00186) (0.19234)
Cobb- 0.3895* 1.8977* -2.6070* 1.3758* 0.2610*
Douglas (0.02159) (0.03633) (0.04189) (0.02864) (0.01441)
Soybeans
Linear 0.00149* -0.16234* 0.00386* 0.34695* 29.865*
(0.000006) (0.00082) (0.00037) (0.00145) (0.04464)
Cobb- 0.1558* 0.3640* 0.0016 0.2113* 1.5992*
Douglas (0.00086) (0.00267) (0.00149) (0.00159) (0.00351)
Wheat
Linear 0.00130* -0.15262* -0.33372* 0.63271* 60.371*
(0.000004) (0.00054) (0.00145) (0.00094) (0.08986)
Cobb- 0.03485* 14178* -0.37209* -0.23611* 1.6014*
Douglas (0.01337) (0.03053) (0.00613) (0.01605) (0.00364)

Key:  Numbersin parentheses are standard errors.
* Significant at 99% confidence level.

18



Table4 Eladticity of Average Crop Yield to a Change in Climate
Production Corn Cotton Sorghum
Function Form Precipitation Temperature Precipitation Temperature Precipitation Temperature
Linear 0.3273 -0.2433 0.0371 -1.5334 2.8844 -2.0866
Cobb-Douglas 15148 -2.9792 0.4075 -0.7476 18977 -2.6070
Soybeans Wheat
Precipitation Temperature Precipitation Temperature
Linear -0.2068 0.0002 -0.1309 -0.5076
Cobb-Douglas 0.34640 N.S. 14178 -0.3721

Note:  Linear elasticities are coefficientsin the Table 3 times average climate divided by average yield.

Key:  N.S. not significant.

19



Table5

Crop Yidd Varidhility (h(X,")) —Comparison of Maximum Likeihood Linear and

Caobb-Douglas Estimates
Corn Acre Precipitation Temperature Y ear Constant
Linear 0.0005* -0.2720* 0.1172* 0.2052* 9.4197*
(0.000002) (0.00070) (0.00105) (0.00217) (0.0555)
Cobb- 04711* -1.4461* 0.8923* 0.1356* 2.2785*
Douglas (0.00116) (0.00284) (0.11526) (0.00019) (0.4744)
Cotton
Linear -0.00007* -0.04405* -0.15506* 0.03161* 9.2579*
(0.000005) (0.00068) (0.00095) (0.00052) (0.06642)
Cobb- 0.2537* -0.02124* -3.5800* 0.34964* 13519
Douglas (0.00534) (0.00798) (0.22972) (0.00798) (09732
Sorghum
Linear 0.00028* 0.01431* -0.07847* 0.03925* 8.7116*
(0.00003) (0.00015) (0.00041) (0.00030) (0.0291)
Cobb- 0.2373* 0.48029* -2.5633* 0.55248* 11.238*
Douglas (0.00672) (0.00399) (0.05870) (0.00269) (0.2211)
Soybeans
Linear -0.00006* -0.02048* -0.16895* -0.00148* 5.0756*
(0.000001) (0.00021) (0.00139) (0.00033) (0.02035)
Cobb- 0.0210* 0.8194* 0.0586* 0.2028* 0.4920*
Douglas (0.00356) (0.02242) (0.00267) (0.00846) (0.0803)
Wheat
Linear -0.00003* -0.06201* -0.00167* 0.05412* 6.4186*
(0.000001) (0.00006) (0.00015) (0.00015) (0.01034)
Cobb- 0.14732* -1.6473* 5.0875* -2.1145* -8.8744*
Douglas (0.01035) (0.01493) (0.24809) (0.02403) (0.9673)

Key:  Numbersin parentheses are standard errors.
* Significant at 99% confidence level.
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Table6

Eladticity of Variancein Crop Yield to a Change in Climate

Yield Variability Corn Cotton Sorghum
Function Precipitation Temperature Precipitation Temperature Precipitation Temperature
Linear -9.7187 7.5058 -0.3028 -10.9386 0.5230 -5.3517
Cobb-Douglas -1.4461 0.8923 -0.0212 -3.5800 0.4802 -2.5633
Soybeans Wheat

Precipitation Temperature Precipitation Temperature
Linear -0.7932 -0.2739 -2.1572 -0.1035
Cobb-Douglas 0.81%4 0.0586 -1.6473 5.0875
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Table?.

Percentage Increase in Crop Variability for 2090 Y ear by Scenario

Canadian Climate Change Scenario

Hadley Climate Change Scenario

Corn Soybean Cotton Wheat Sorghum Corn Soybean Cotton Wheat  Sorghu
s s m
CA -12.84 -11.81
CO 34.43 -10.60
GA -10.35 -6.92
IL -25.71 21.28 -24.73 1890
IN -8.73 8.06 -26.31 20.30
A -36.89 3314 -26.83 20.90
KS -14.39 -0.75 -18.16 338
LA -13.03 -7.97
MN 401 10.60
MT 32.86 -6.36
MS -13.92 -7.73
NE 15.30 -4.74 4822 -16.15 | -1505 11.65 -557 -1.72
OK 16.34 -9.27 -17.07 283
SD 2175 -6.%4 -24.37 -19.10
X -13.21 27.86 -10.83 -8.05 2.26 -310
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