Insights from Agricultural GHG Offset studies

Bruce A. McCarl

Regents Professor of Agricultural Economics Texas A&M University

Presented at EPRI Workshop on Terrestrial Carbon Sequestration

> Alexandria VA October 19-21, 2004

Other Collaborators

Darius Adams Oregon State Ralph Alig USDA Forest Service Brian Murray RTI Uwe Schneider University of Hamburg Ben de Angelo EPA Ken Andrasko EPA **Ron Sands PNNL Maryland** Man Keun Kim PNNL Maryland Francisco de Lachesnaye EPA **Heng-Chi Lee Waterloo Dhazn Gillig AMEX**

Paper/Study Objectives

Discuss insights from aggregate studies done on ag and forestry

Address fungibility

Provide backup material on model structure

Basic Modeling

Urban, developed and special uses

How are land-use and terrestrial GHG mitigation decisions currently modeled

Activity and GHG Coverage

Strategy	Basic Nature	CO2	CH4	N2O
Afforestation	Sequestration	X		
Existing timberland/reforestation	Sequestration	Χ		
Deforestation	Emission	Χ		
Biofuel Production	Offset	X	Χ	X
Crop Mix Alteration	Emiss, Seq	Χ		X
Crop Fertilization Alteration	Emiss, Seq	Χ		X
Crop Input Alteration	Emission	X		X
Crop Tillage Alteration	Emission	Χ		X
Grassland Conversion	Sequestration	Χ		
Irrigated /Dry land Mix	Emission	X		X
Enteric fermentation	Emission		Χ	
Livestock Herd Size	Emission		Χ	X
Livestock System Change	Emission		Χ	Х
Manure Management	Emission		Χ	Х
Rice Acreage	Emission	Χ	Χ	Х

What issues might you consider?

Portfolio Complexity Price dependence Dynamics Single strategy consideration Value of economic framework **Economy wide perspective Substitution with traditional production** - short and long run **Regional heterogeneity Co-benefits Fungibility**

What issues might you consider? Portfolio complexity and price dependence

MMt arising at an offset price giving \$/tonne carbon equiv

Emission Reduction in MMT CO2 Equivalent

Many contributions

•Different strategies dominate at different price levels

What issues might you consider? Dynamics

Absolute Change in the Annual Rate of Carbon Sequestered Following a Change from Conventional Tillage (CT) to No-Till (NT) - West and Post

Carbon Accumulation on an Afforested Southeastern Pine Stand, to Saturation -- Birdsey

What issues might you consider? Dynamics

Cumulative Contribution at a \$5 per tonne CO2 Price

Note

Effects of saturation on sequestration Growing nonco2 and biofuels

Cumulative Contribution at a \$15 Price

Source Lee, H.C., B.A. McCarl and D. Gillig, "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," 2003.

What issues might you consider? Economy wide perspective

What issues might you consider? Assessing potential and value of economics

Example: U.S. ag soil potential:

What issues might you consider? Assessing potential and value of economics

Annual Carbon Sequestration in Forest Sector

What issues might you consider? Assessing potential and value of economics

GHG Mitigation and Ag-Markets

What issues might you consider? Regional heterogeneity

Regional Shares of Agricultural Soil Carbon Sequestration

■ \$15/t CO₂ ■ \$15/acre: Uniform ■ \$15/acre: Distributed

What issues might you consider? Regional heterogeneity

Annualized GHG Mitigation by Activity and Region, at 3 Different C Prices: 2005-2050

What issues might you consider? Substitution with traditional production – short and long run

Production Quantity Index over Time

Substitutes

What issues might you consider? Substitution with traditional production – short and long run

Near term Substitutes, Long Run Complement

What issues might you consider? Co-benefits

Gain here but lose in energy sector

Probably should ignore for now

What issues might you consider? Fungibility

A number of concepts have arisen that are likely to differentially characterize the contribution of alternative possible offsets within the total regulatory structure. These involve:

Permanence Additionality Leakage Uncertainty

General concern price may differentiate based on characteristics like a grading standard

What issues might you consider? Fungibility

Grading standards #2 yellow corn, CD plywood, long staple cotton

Receive a price premium/discount depending upon product characteristics and consumer cost of using

GHG offsets may have consumer cost effects being not fully claimable due to Permanence Additionality Leakage Uncertainty

What issues might you consider? Fungibility- How do we derive price discount?

PresValueCostOfOffset QuantityOffsetToday

CurCostPerTon

PresValueCostOfOffset = $\sum_{t=0}^{T} \frac{\text{PriceOffsetInYear}_{t} \text{ QuantityOffsetInYear}_{t} + OtherCost_{t}}{(1+Disc)^{t}}$

QuantityOffsetToday $= \sum_{t=0}^{T} \frac{\text{QuantityOffsetInYear}_{t}}{(1+\text{Disc})^{t}}$

CurCostPerTon
$$= \frac{\sum_{t=0}^{T} (\Pr iceOffset * QuantityOffsetInYear_{t} + OtherCost_{t}) / (1 + Disc)^{t}}{\sum_{t=0}^{T} QuantityOffsetInYear_{t} / (1 + Disc)^{t}}$$

Note I have a non constant price variant

What issues might you consider? Fungibility- How do we derive price discount?

To derive price discount for permanence etc add some terms (Pdiscount, buyback and claimable offsets) then equate a perfect perpetual offset with an imperfect one

What issues might you consider? Price discount -- Permanence case

 $\frac{\sum_{t=0}^{T} (OffsetPr*(1-discount)*(QOffset_t - Buyback_t) + OthCost_t)/(1+Disc)^t}{\sum_{t=0}^{T} ClaimQuanOffset_t/(1+Disc)^t}$ CurCostPerTon_{impermanent} OffsetPr is discounted = OffsetPr*(1-PermDiscount)OOffset. varies with t Buyback. <> 0 if leasing or if project reverses OthCost, <>0ClaimQuanOffset, $= QOffset_{\star}$ CurCostPerTon_{perfect} =CurCostPerTon_{imperfect} $\sum_{t=0}^{T} (OffsetPr*((1-PermDiscount)*QOffset_t - Buyback_t) + OthCost_t)/(1+Disc)^{t}$ OffsetPr $\sum_{t=0}^{t} ClaimQuanOffset_{t} / (1 + Disc)^{t}$ $\sum_{t=0}^{1} (Buyback_{t} + MainCost_{t} / PriceOffset) / (1 + Disc)^{t}$ PermDiscount = implies \sum QuanOffset_t / (1+Disc)^t

What issues might you consider? Price discount -- Permanence case

When is discount zero No Buyback No Maintenance cost

25 year lease with 100% buyback – 48% price discount Maintenance at 10% of cost -- 36%

What issues might you consider? Fungibility - Other Cases

PricetoOffsetProducer = Offsetprice * (1 - PermDisc) * (1 - UncerDisc) * (1 - AddDisc) * (1 - LeakDisc)

What issues might you consider? Fungibility - Other Cases

ProportionAdditional = $\frac{\text{WithProjectOffsets} - \text{BaselineOffsets}}{\text{WithProjectOffsets}}$ ProportionLeaking = $\frac{e^*C_{\text{ot}}}{[e - E^*(1 + P)]C_{\text{pr}}}$

- e is the price elasticity of supply for off project producers.
- **E** is the price elasticity of demand for commodity produced.
- Cot is GHG emissions per unit of increased commodity production outside project.

Cpr is GHG offsets per unit of reduced commodity production in project.

P is relative market share and is quantity of commodity produced by project divided by market amount produced.

What issues might you consider? Fungibility - Aggegate

FASOM handles permanence, domestic additivity, domestic leakage, some uncertainty, Back to ASM permanence only

What issues might you consider? Fungibility

Beaumont through Columbus Texas area has historically produced rice. In 1985, 600,000 acres. In 2000, 214,000 acres. Policy, environment and markets are applying pressure. Today, many rice producers are in quest of new opportunities. Trees, other crops and pasture provide possible alternatives to some.

PricetoOffsetProducer = Offsetprice*(1 - PermDisc)*(1 - UncerDisc)*(1 - AddDisc)*(1 - LeakDisc)

	Perm	Add	Leak	Uncer	· All	Saleable
Rice to crops	30%	12%	32%	10%	62%	38%
Rice to pasture	50%	4%	17%	10%	64%	36%
Rice - trees(pulp)	30%	1%	16%	10%	48%	52%
Rice - trees (saw)	10%	1%	16%	10%	33%	67%

Not additive

So What

Ag and forest have low cost opportunities

Type of response depends on price, place and time **Permanence** is an issue but may bridge to future Watch out for non economic estimates **Suports farm prices and incomes** Co benefits but double edged Fungibility can be a problem

Forest products

SWSAWTLOGWOODS	SWPULPLOGWOODS	SWFUELLOGWOODS
HWSAWTLOGWOODS	HWPULPLOGWOODS	HWFUELLOGWOODS

SWSAWTLOGMILL	SWPULPLOGMILL	SWFUELLOGMILL
HWSAWTLOGMILL	HWPULPLOGMILL	HWFUELLOGMILL

OSB

SLUM	SPLY	SWMISC	SRESIDUES
HLUM	HPLY	HWMISC	HRESIDUES

SPWOOD	HPWOOD	HWPULP	SWPULP
AGRIFIBERLONG	AGRIFIBERSHORT	OLDNEWSPAPERS	OLDCORRUGATED
WASTEPAPER	PULPSUBSTITUTE	HIGDEINKING	NEWSPRINT
UNCFREESHEET	CFREESHEET	UNCGROUNDWOOD	CGROUNDWOOD
TISSUE	SPECIALTYPKG	KRAFTPKG	LINERBOARD
CORRUGMED	SBLBOARD	RECBOARD	CONSTPAPER
DISPULP	SWKMPULP	HWKMPULP	RECMPULP
CTMPMPULP			

Regions In Forestry

How is land currently characterized by bio-physical models and IAMs?

In US Agriculture

Subreg

Alabama Colorado Tdaho TowaW Kentucky Michigan Nebraska NewYork OhioNE Southcarol Southdakot TxCntBlack TxEast TxTranspec Utah Westvirgin Wisconsin

Arizona Conn TllinoisN TowaCent Louisiana Minnesota Nevada NorthCarol NorthDakot OhioNW Oklahoma

Arkansas Delaware TllinoisS TowaNE Maine Mississipp Missouri NewHampshi NewJersey Oregon Tennessee TxEdplat Vermont Wyoming

CaliforniN CaliforniS Florida IndianaN Towas Maryland Mass Ohios Pennsylvan Rhodeislan TxHiPlains TxCoastBe Virginia

Georgia Indianas Kansas Montana NewMexico TxRolingPl TxSouth Washington

Forest products

SWSAWTLOGWOODS	SWPULPLOGWOODS	SWFUELLOGWOODS
HWSAWTLOGWOODS	HWPULPLOGWOODS	HWFUELLOGWOODS

SWSAWTLOGMILL	SWPULPLOGMILL	SWFUELLOGMILL
HWSAWTLOGMILL	HWPULPLOGMILL	HWFUELLOGMILL

OSB

SLUM	SPLY	SWMISC	SRESIDUES
HLUM	HPLY	HWMISC	HRESIDUES

SPWOOD	HPWOOD	HWPULP	SWPULP
AGRIFIBERLONG	AGRIFIBERSHORT	OLDNEWSPAPERS	OLDCORRUGATED
WASTEPAPER	PULPSUBSTITUTE	HIGDEINKING	NEWSPRINT
UNCFREESHEET	CFREESHEET	UNCGROUNDWOOD	CGROUNDWOOD
TISSUE	SPECIALTYPKG	KRAFTPKG	LINERBOARD
CORRUGMED	SBLBOARD	RECBOARD	CONSTPAPER
DISPULP	SWKMPULP	HWKMPULP	RECMPULP
CTMPMPULP			

In Forestry

Cls Land suitability

FORONLY Forested land suitable only for forest uses
FORCROP Currently forested land that was once crop land
FORPAST Currently forested land that was once pasture
CROPFOR Afforested land that came from crop land
PASTFOR Afforested land that came from pasture land

Owner

- **FI** Forest industry lands
- **OP Other private ownership**

In US Agriculture

TLTECH tillage types

VentConventional TillageConsConservational TillageZeroZero Tillage

Plus duration

years 0 to 30 that crop has been in this tillage type

In US Forestry

Site land quality

HI ME LO

MgtIntensity management applied (25 types as opposed to 4)

trad_plnt_pine	lo	plnt_med
plnt_hi	short_rotswds	reserved
Passive	arror	nat_regen
Plant	plant+	affor_cb
plnt_lo_thin nat_regen_thin	plnt_med_thin plant_thin	plnt_hi_thin
part_cut_lo	part_cut_hi	part_cut_hi+

lo part cut

natregen_partcut_md natreg_pcut_hi
ntregen_partcut_lo

In Forestry

Species types of forest stands specifying rotation
(10 as opposed to 2)
BOT_HARD HARD UP_HARDDOUG_FIRNAT_PINEOUG_FIRNAT_PINEOTH_SWDSPLNT_PINEPLT_PINESOFT

Tree age

0-4 to 95-99 in 5 year increments plus 100+ used to be 10 year age classes

A Modeling Approach: FASOMGHG

- Forest and Agricultural Sector Optimization Model with GHG effects (CO2, CH4, N2O)
- Examines land-based GHG strategies
- Considers saturation characteristics of both soils and forests (uses 30 years for ag soils, FORCARB model for forest soils and growth/yield characteristics of forests from USDA Forest Service)
- 100 year model, decadal time-step
- Land exchanges in response to GHG prices, plus all the agricultural activities by decade

FASOMGHG Dimensions (II)

Temporal

- 100 year horizon
- Decadal time step
- Dynamically optimal: economic agents are forward-looking
- Biophysical data from USDA RPA assessment:
 - capture non-linear, time-dependent processes of:
 - soil carbon accumulation,
 - forest growth, and
 - CO2 releases through forest product decay

Foreign Regions in FASOMGHG

Agricultural GHG Accounting — Saturation

- Assume soils stop sequestering carbon after 30 years.
- Assume linear approach to saturation.
- Model separates tillage from production, then keeps vintage information on how long tillage practice has been used.
- Assume carbon increments occur in the first three decades, then stop.
- Model separates carbon by crop under given tillage system, from the average carbon under that tillage system.
- Explicit saturation discounts not needed, since we formally use a NPV framework.

Biofuels

- Two opportunities Ethanol and biofuel for power plants
- Biomass production for power plant use in FASOM required several new production possibilities be added:
 - Diversion of mill residues from traditional pulp and paper or other uses;
 - Collection of logging residue or harvest of whole trees for chipping, and shipment to a power plant;
 - Production and hauling of switch grass and short rotation woody crops for biomass
 - Treatment of power plant use of biomass to the point where the energy in biomass is on an equivalent basis with the energy from coal; (100 mega watt plant) Ira Shavel, Mark Shenckel and Bob Shackleton made up numbers for this)
 - Treatment of the possible use of wood chips from short rotation woody crops for pulp and paper production.
- Each is covered in http://ageco.tamu.edu/faculty/mccarl/papers/679.pdf
- Turnure, J. T., S. Winnett, R. Shackleton, and W. Hohenstein. Biomass Electricity: Long-Run Economic Prospects and Climate Policy Implications. unpublished paper U.S. Environmental Protection Agency, Office of Policy Analysis, Washington, DC, 1995.

Merchantable Timber Volume Yields & Forest Inventory

- Timber inventory strata by:
 - Region (9)
 - Ownership (2)
 - Forest type (4 classes describing species composition, either softwoods or hardwoods, in the current and preceding rotation)
 - Site productivity (3 levels for potential wood volume growth)
 - Timber management intensity (4)
 - Suitability for conversion (3)
 - 10-year age classes (10)
- Each stratum is represented by the number of timberland acres and the growing stock volume per unit area

Forest Carbon Accounting after Harvest

How are land-use and terrestrial GHG mitigation decisions currently modeled

- **Constrained Optimization Problem**
- Objective Function: Maximize NPV of sum of producers' and consumers' surpluses
 - Across Ag and Forest sectors
 - Over time (100 yrs)
 - Including GHG payments
- Constraints
 - Total Production = Total Consumption Tech Input/output relationships hold Land use balances

How should land potential and land-use responses (impacts) to climate change be modeled?

Climate Scenarios Crop Simulation

Forest Simulation

Hydrologic simulation Livestock sim /experts Grass simulation

Other studies Regression

Adaptation obs/expert

GHG Mitigation

Economics

A House of Cards

- GCMs
- Crop yields (dry and irr), water use Carbon sequestration
- Yields by region, year and species
 Product fate
 Carbon sequestration
- Irrigation water
- Livestock performance,
- Livestock pasture usage
 Animal unit month grazing supply
 Carbon sequestered
- International supply and demand
- Pesticide usage, Non Ag water use Extreme event effects
- Crop mix shift Varieties
- Methane from rice, enteric, manure, others N2O from fertilizer, manure, other sources Biomass yields and processing
- FASOM sector model