Insights from Agricultural GHG Offset studies that might Influence IAM Modeling

Bruce A. McCarl

Regents Professor of Agricultural Economics Texas A&M University

Presented at Energy Modeling Forum Meeting August 2004 Snowmass, CO

Other Collaborators

Darius Adams Oregon State Ralph Alig USDA Forest Service Brian Murray RTI Uwe Schneider University of Hamburg Ben de Angelo EPA Ken Andrasko EPA **Ron Sands PNNL Maryland** Man Keun Kim PNNL Maryland Francisco de Lachesnaye EPA Mahmood EL-Halwagi TAMU Heng-Chi Lee Waterloo **Dhazn Gillig AMEX** Xiaoyun Qin TAMU

Paper/Study Objectives

Discuss insights from aggregate studies done on ag and forestry that could influence IAM work

Address fungibility

Reveal some information on project direction

FASOMGHG land

Regions In Forestry

How is land currently characterized by bio-physical models and IAMs?

In US Agriculture

Subreg

Alabama Colorado Tdaho TowaW Kentucky Michigan Nebraska NewYork OhioNE Southcarol Southdakot TxCntBlack TxEast TxTranspec Utah Westvirgin Wisconsin

Arizona Conn TllinoisN TowaCent Louisiana Minnesota Nevada NorthCarol NorthDakot OhioNW Oklahoma

Arkansas Delaware TllinoisS TowaNE Maine Mississipp Missouri NewHampshi NewJersey Oregon Tennessee TxEdplat Vermont Wyoming

CaliforniN CaliforniS Florida IndianaN Towas Maryland Mass Ohios Pennsylvan Rhodeislan TxHiPlains TxCoastBe Virginia

Georgia Indianas Kansas Montana NewMexico TxRolingPl TxSouth Washington

How are land-use and terrestrial GHG mitigation decisions currently modeled

Activity and GHG Coverage

Strategy	Basic Nature	CO2	CH4	N2O
Afforestation	Sequestration	X		
Existing timberland/reforestation	Sequestration	Χ		
Deforestation	Emission	Χ		
Biofuel Production	Offset	X	Χ	X
Crop Mix Alteration	Emiss, Seq	Χ		X
Crop Fertilization Alteration	Emiss, Seq	Χ		X
Crop Input Alteration	Emission	X		X
Crop Tillage Alteration	Emission	Χ		X
Grassland Conversion	Sequestration	Χ		
Irrigated /Dry land Mix	Emission	Χ		X
Enteric fermentation	Emission		Χ	
Livestock Herd Size	Emission		Χ	X
Livestock System Change	Emission		Χ	Х
Manure Management	Emission		Χ	Х
Rice Acreage	Emission	Χ	Χ	Х

How should land potential and land-use responses (impacts) to climate change be modeled?

Climate Scenarios Crop Simulation

Forest Simulation

Hydrologic simulation Livestock sim /experts Grass simulation

Other studies Regression

Adaptation obs/expert

GHG Mitigation

Economics

A House of Cards

- GCMs
- Crop yields (dry and irr), water use Carbon sequestration
- Yields by region, year and species
 Product fate
 Carbon sequestration
- Irrigation water
- Livestock performance,
- Livestock pasture usage
 Animal unit month grazing supply
 Carbon sequestered
- International supply and demand
- Pesticide usage, Non Ag water use Extreme event effects
- Crop mix shift Varieties
- Methane from rice, enteric, manure, others N2O from fertilizer, manure, other sources Biomass yields and processing
- FASOM sector model

How are land-use and terrestrial GHG mitigation decisions currently modeled

- **Constrained Optimization Problem**
- Objective Function: Maximize NPV of sum of producers' and consumers' surpluses
 - Across Ag and Forest sectors
 - Over time (100 yrs)
 - Including GHG payments
- Constraints
 - Total Production = Total Consumption Tech Input/output relationships hold Land use balances

What issues might IAM modelers consider?

Undesirableness of sequestration only modeling Dynamics Substitution with traditional production – short and long run **Regional heterogeneity Fungibility Co-benefits Adapting price expectations Policy scope and applicability**

What issues might IAM modelers consider? Undesirableness of sequestration only modeling MMt arising at an offset price giving \$/tonne carbon equiv

Emission Reduction in MMT CO2 Equivalent

- •Small importance of CH4 and N2O
- •Different strategies dominate at different price levels

What issues might IAM modelers consider? Undesirableness of sequestration only modeling

Example: U.S. ag soil potential:

What issues might IAM modelers consider? Dynamics

Absolute Change in the Annual Rate of Carbon Sequestered Following a Change from Conventional Tillage (CT) to No-Till (NT) - West and Post

Carbon Accumulation on an Afforested Southeastern Pine Stand, to Saturation -- Birdsey

What issues might IAM modelers consider? Dynamics

200000

Biomass offsets Soil Sequestration Crop Management FF All Forest 50000 0 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Time

CH4 & N2O

Cumulative Contribution at a \$5 per tonne CO2 Price

Effects of saturation on sequestration Growing nonco2 and biofuels

Cumulative Contribution at a \$15 Price

Source Lee, H.C., B.A. McCarl and D. Gillig, "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," 2003.

Note

What issues might IAM modelers consider? Regional heterogeneity

Regional Shares of Agricultural Soil Carbon Sequestration

■ \$15/t CO₂ ■ \$15/acre: Uniform ■ \$15/acre: Distributed

What issues might IAM modelers consider? Regional heterogeneity

Annualized GHG Mitigation by Activity and Region, at 3 Different C Prices: 2005-2050 SE-Afforestation Activities **NE-Afforestation Activities PNWE-Soil Management** SC-Afforestation Activities **NE-Soil Management** □ \$25/tC SW-Soil Management RM-CH4+N2O ■ \$10/tC SE-Forest Management □ \$5/tC **CB-Afforestation Activities RM-Soil Management GP-Soil Management** LS-Soil Management SC-Forest Management **CB-Soil Management** 5.0 10.0 15.020.0 25.00.0 MMTC/Year

What issues might IAM modelers consider? Substitution with traditional production – short and long run

Production Quantity Index over Time

Substitutes

What issues might IAM modelers consider? Substitution with traditional production – short and long run

Near term Substitutes, Long Run Complement

What issues might IAM modelers consider? Co-benefits

Gain here but lose in energy sector

Probably should ignore for now

What issues might IAM modelers consider? Fungibility

A number of concepts have arisen that are likely to differentially characterize the contribution of alternative possible offsets within the total regulatory structure. These involve:

Permanence Additionality Leakage Uncertainty

General concern price may differentiate based on characteristics like a grading standard

What issues might IAM modelers consider? Fungibility

Grading standards #2 yellow corn, CD plywood, long staple cotton

Receive a price premium/discount depending upon product characteristics and consumer cost of using

GHG offsets may have consumer cost effects being not fully claimable due to Permanence Additionality Leakage Uncertainty

What issues might IAM modelers consider? Fungibility- How do we derive price discount?

CurCostPerTon

PresValueCostOfOffset QuantityOffsetToday

PresValueCostOfOffset = $\sum_{t=0}^{T} \frac{\text{PriceOffsetInYear}_{t} \text{ QuantityOffsetInYear}_{t} + OtherCost_{t}}{(1+\text{Disc})^{t}}$

QuantityOffsetToday

$$= \sum_{t=0}^{T} \frac{\text{QOffset}_{t}}{(1+\text{Disc})^{t}}$$

$$=\frac{\sum_{t=0}^{T} (Offset \operatorname{Pr}^{*}(QOffset_{t} - Buyback_{t}) + OthCost_{t}) / (1 + Disc)^{t}}{\sum_{t=0}^{T} ClaimOuanOffset_{t} / (1 + Disc)^{t}}$$

CurCostPerTon

Note I have a non constant price variant

What issues might IAM modelers consider? Fungibility- How do we derive price discount?

To derive price discount equate a perfect perpetual offset with an imperfect one

CurCostPerTon perfect	$=\frac{\sum_{t=0}^{T} (Offset \operatorname{Pr}^{*}(QOffset_{t} - Buyback_{t}) + OthCost_{t}) / (1 + Disc)^{t}}{\sum_{t=0}^{T} ClaimQuanOffset_{t} / (1 + Disc)^{t}}$
QOffset	$= QOffset_t$
$Buyback_t$	=0
OthCost _t	=0
$ClaimQuanOffset_t$	= QOffset
CurCostPerTon perfect	= Offset Pr
CurCostPerTon perfect	$=CurCostPerTon_{imperfect}$

What issues might IAM modelers consider? Fungibility- How do we derive price discount?

Permanence case

What issues might IAM modelers consider? Fungibility - Other Cases

PricetoOffsetProducer = Offsetprice*(1 - PermDisc)*(1 - UncerDisc)*(1 - AddDisc)*(1 - LeakDisc)

What issues might IAM modelers consider? Fungibility - Other Cases

ProportionAdditional = $\frac{\text{WithProjectOffsets} - \text{BaselineOffsets}}{\text{WithProjectOffsets}}$ ProportionLeaking = $\frac{e^*C_{\text{ot}}}{[e - E^*(1 + P)]C_{\text{pr}}}$

- e is the price elasticity of supply for off project producers.
- **E** is the price elasticity of demand for commodity produced.
- Cot is GHG emissions per unit of increased commodity production outside project.
- **Cpr is GHG offsets per unit of reduced commodity production in project.**
- **P** is relative market share and is quantity of commodity produced by project divided by market amount produced.

What issues might IAM modelers consider? Fungibility - Empirical

Beaumont through Columbus Texas area has historically produced rice. In 1985, 600,000 acres. In 2000, 214,000 acres. Policy, environment and markets are applying pressure. Today, many rice producers are in quest of new opportunities. Trees, other crops and pasture provide possible alternatives to some.

	Perm	Add	Leak	Uncer	All	Salable
Rice to crops	30%	12%	32%	21%	67%	33%
Rice to pasture	50%	4%	17%	21%	69%	31%
Rice - trees(pulp)	30%	1%	16%	21%	54%	46%
Rice - trees (saw)	10%	1%	16%	21%	41%	59%

What issues might IAM modelers consider? Fungibility - Aggegate

FASOM handles permanence, domestic additivity, domestic leakage, some uncertainty, Back to ASM permanence only

What issues might IAM modelers consider? Fungibility

Beaumont through Columbus Texas area has historically produced rice. In 1985, 600,000 acres. In 2000, 214,000 acres. Policy, environment and markets are applying pressure. Today, many rice producers are in quest of new opportunities. Trees, other crops and pasture provide possible alternatives to some.

	Perm	Add	Leak	Uncer	All	Salable
Rice to crops	30%	12%	32%	21%	67%	33%
Rice to pasture	50%	4%	17%	21%	69%	31%
Rice - trees(pulp)	30%	1%	16%	21%	54%	46%
Rice - trees (saw)	10%	1%	16%	21%	41%	59%

Work items

More land detail

Avoiding perfect Price foresight

Depicting anticipated possibly regionalized policy scope and applicability

Using response functions from FASOM type models Now upgrading to avoid foresight and be more dynamic

In Forestry

Cls Land suitability

FORONLY Forested land suitable only for forest uses
FORCROP Currently forested land that was once crop land
FORPAST Currently forested land that was once pasture
CROPFOR Afforested land that came from crop land
PASTFOR Afforested land that came from pasture land

Owner

- **FI** Forest industry lands
- **OP Other private ownership**

In Forestry

Species types of forest stands specifying rotation
(10 as opposed to 2)
BOT_HARD HARD UP_HARDDOUG_FIRNAT_PINEOUG_FIRNAT_PINEOTH_SWDSPLNT_PINEPLT_PINESOFT

Tree age

0-4 to 95-99 in 5 year increments plus 100+ used to be 10 year age classes

In US Forestry

Site land quality

HI ME LO

MgtIntensity management applied (25 types as opposed to 4)

trad_plnt_pine	lo	plnt_med
plnt_hi	short_rotswds	reserved
Passive	affor	nat_regen
Plant	plant+	affor_cb
plnt_lo_thin nat_regen_thin	plnt_med_thin plant_thin	plnt_hi_thin
part_cut_lo natregen_partcut_md	part_cut_hi natreg_pcut_hi	part_cut_hi+ lo_part_cut

ntregen_partcut_lo

Forest products

SWSAWTLOGWOODS	SWPULPLOGWOODS	SWFUELLOGWOODS
HWSAWTLOGWOODS	HWPULPLOGWOODS	HWFUELLOGWOODS

SWSAWTLOGMILL	SWPULPLOGMILL	SWFUELLOGMILL
HWSAWTLOGMILL	HWPULPLOGMILL	HWFUELLOGMILL

OSB

SLUM	SPLY	SWMISC	SRESIDUES
HLUM	HPLY	HWMISC	HRESIDUES

SPWOOD	HPWOOD	HWPULP	SWPULP
AGRIFIBERLONG	AGRIFIBERSHORT	OLDNEWSPAPERS	OLDCORRUGATED
WASTEPAPER	PULPSUBSTITUTE	HIGDEINKING	NEWSPRINT
UNCFREESHEET	CFREESHEET	UNCGROUNDWOOD	CGROUNDWOOD
TISSUE	SPECIALTYPKG	KRAFTPKG	LINERBOARD
CORRUGMED	SBLBOARD	RECBOARD	CONSTPAPER
DISPULP	SWKMPULP	HWKMPULP	RECMPULP
CTMPMPULP			

In US Agriculture

PeriodsYears2000-2100 in 5 year intervals

Land type

W3-8Land	wetlands
LOEILand	lo erodable crop land
MDEILand	medium erodable crop land
SVEIL and	Severely erodable crop land
Pasture	Pasture land
AUMS	AUM grazing land
CRP	CRP (Conservation Reserve Program)

In US Agriculture

TLTECH tillage types

VentConventional TillageConsConservational TillageZeroZero Tillage

Plus duration

years 0 to 30 that crop has been in this tillage type