Agricultural and Carbon Sequestration FASOM and IAM Models

Bruce A. McCarl

Regents Professor of Agricultural Economics Texas A&M University

Presented at Landuse and Integrated Assessment Workshop May 24-26 2004 Washington DC

Other Collaborators

Darius Adams Oregon State Ralph Alig USDA Forest Service Brian Murray RTI Uwe Schneider University of Hamburg Ben DeAngelo EPA Ken Andrasko EPA **Ron Sands PNNL Maryland Francisco Delachesnaye EPA** Mahmood EL-Halwagi TAMU Heng Chi Lee Waterloo **Dhazn Gillig AMEX** Xiaoyun Qin TAMU

Paper/Study Objectives

Address questions in conference document

- Discuss insights from studies done on ag and forestry that could influence IAM work
- Reveal some information on project direction

Reporting on FASOM – Forest and Agriculture Sector Optimizing Model – GHG version which is a 2 sector economic model (Not either an IAM or a biophysical)

Land Characterization depends on sector

Differs somewhat in ag and forestry

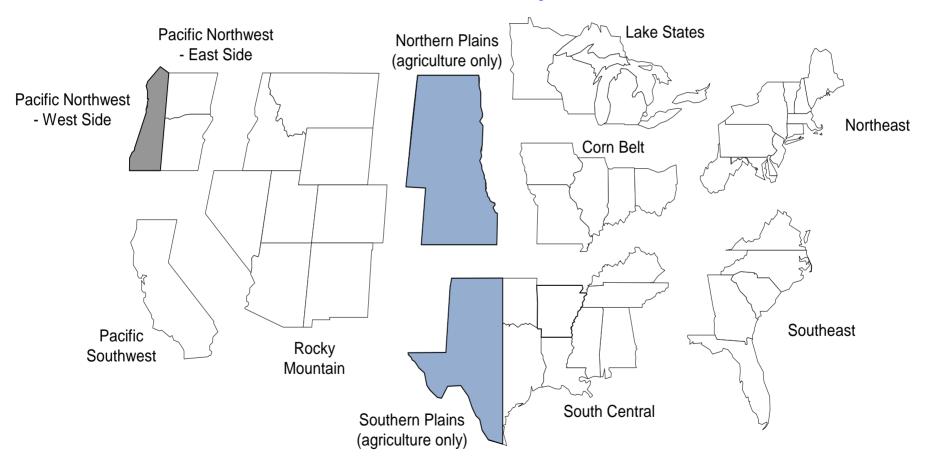
In Forestry

Land is represented by array

INVENT(cohort,reg,CLS,OWNER,SPECIES,SITE,MIC)

Which now has 7430 cases and we pick up a 100+ more with afforestation

Dimensions


Cohort tree ages 0-100+ years in 5 year ages

In Forestry

Regions

CB	Corn Belt
GP	Great Plains (no forestry)
LS	Lake States
NE	Northeast
RM	Rocky Mountains
PSW	Pacific Southwest
PNWW	Pacific Northwest west side (no ag)
PNWE	Pacific Northwest east side
SC	South Central
SE	Southeast
SW	South West (no forestry)

In Forestry

In Forestry

Cls Land suitability

FORONLY Forested land suitable only for forest uses
FORCROP Currently forested land that was once crop land
FORPAST Currently forested land that was once pasture
CROPFOR Afforested land that came from crop land
PASTFOR Afforested land that came from pasture land

Owner

- **FI** Forest industry lands
- **OP Other private ownership**
- NF National forest lands
- **OG Other governmental lands**

In Forestry

Species types of forest stands specifying rotation (30 but really 3)

plnt pine up hard nat pine nat pine nat pine bot hard oak pine oak pine up hard plnt pine bot_hard_bot_hard doug_fir_hard oth swds hard hard hard

plnt pine plnt pine plnt pine nat pine plnt pine oak pine plnt pine bot hard nat pine plnt pine nat pine oak pine nat pine up hard oak pine plnt pine oak pine nat pine oak pine up hard oak pine bot hard up hard up hard bot hard plnt pine doug_fir_doug_fir doug_fir_oth_swds oth_swds_doug_fir oth_swds_oth_swds hard doug fir hard oth swds soft hard soft soft

In US Forestry

Site land quality HIMELO

Mic management applied (25 types)

trad plnt pine plnt lo thin plnt med thin plnt hi short rotswds reserved part cut lo 10 part cut hi+ affor nat_regen_thin plant plant+ affor cb natregen partcut md natreg pcut hi lo nf

plnt_med
plnt_hi_thin
passive
part_cut_hi
nat_regen
plant_thin
ntregen_partcut_lo
lo_part_cut

In Forest trade Manufacture and Markets

No Land Modeling

CBCC	Canada British Columbia for product manufacture
CINT	Canada Interior for product manufacture
CEST	Canada East for product manufacture
North	Northern US for product manufacture
Northeast	Northeastern US for product manufacture
Northcentral	North Central US for product manufacture
South	Southern US for product manufacture
Southeast	South Eastern US for product manufacture
Southcentral	South Central US for product manufacture
West	Western US for product manufacture
Canada	Canada as a whole for demand and exports
Canada_East	Eastern Canada for log supply
Canada_West	Western Canada for log supply
Overseas	Overseas for log supply and exports

Forest products

SWSAWTLOG SWFUELLOG SWPLOG	HWSAWTLOG HWFUELLOG HWPLOG	SWPULPLOG SWSAWLOG	HWPULPLOG HWSAWLOG
SLUM HLUM OSB	SPLY HPLY	SWMISC HWMISC	SRESIDUES HRESIDUES
SPWOOD AGRIFIBERLONG	HPWOOD AGRIFIBERSHORT	HWPULP OLDNEWSPAPERS	SWPULP OLDCORRUGATE

5	PWOOD	HPWOOD	HWPULP	SWPULP
A	GRIFIBERLONG	AGRIFIBERSHORT	OLDNEWSPAPERS	OLDCORRUGATED
W.	ASTEPAPER	PULPSUBSTITUTE	HIGDEINKING	NEWSPRINT
U	NCFREESHEET	CFREESHEET	UNCGROUNDWOOD	CGROUNDWOOD
т	ISSUE	SPECIALTYPKG	KRAFTPKG	LINERBOARD
C	ORRUGMED	SBLBOARD	RECBOARD	CONSTPAPER
D	ISPULP	SWKMPULP	HWKMPULP	RECMPULP
C	TMPMPULP			

In US Agriculture

AGTILLAGEFORUSE(periods,allreg,landtype,tltech)

PeriodsYears2000-2100 in 5 year intervals

Land type

W3-8Land	wetlands
LOEILand	lo erodable crop land
MDEILand	medium erodable crop land
SVEILand	Severely erodable crop land
Pasture	Pasture land
AUMS	AUM grazing land
CRP	CRP (Conservation Reserve Program)

In US Agriculture

TLTECH tillage types

Vent Conventional TillageConsConservational TillageZero Zero Tillage

Plus duration

years 0 to 30 crop has been in this tillage type

Primary Commodities

Cotton	Corn	EthlCorn	Soybeans
SOFT	HRWW	DURW	HRSW
Sorghum	Rice	Oats	Barley
Silage	Hay	Alfalfa	Sugarcane
Sugarbeet	Potatoes	Fallow	Tomatofrsh
Tomatoproc	Orangefrsh	Orangeproc	Grpfrtfrsh
Grpfrtproc	SwitchGras	HybrPoplar	Willow
• •		v I	
CI			D '

Sheep HogFarrow StockSCav VealCalf Beefcows CowCalf FeedPig StockHCav Turkeys

BeefFeed PigFinish StockSYea Broilers Dairy OthLvstk StockHYea Eggs

In US Agriculture

Subreg

Alabama Colorado Tdaho TowaW Kentucky Michigan Nebraska NewYork OhioNE Southcarol Southdakot TxCntBlack TxEast TxTranspec Utah Westvirgin Wisconsin

Arizona Conn TllinoisN TowaCent Louisiana Minnesota Nevada NorthCarol NorthDakot OhioNW Oklahoma

Arkansas Delaware TllinoisS TowaNE Maine Mississipp Missouri NewHampshi NewJersey Oregon Tennessee TxEdplat Vermont Wyoming

CaliforniN CaliforniS Florida IndianaN Towas Maryland Pennsylvan Rhodeislan TxHiPlains TxCoastBe Virginia

Georgia Indianas Kansas Mass Montana NewMexico Ohios TxRolingPl TxSouth Washington

In US Agriculture

How are land-use and terrestrial GHG mitigation decisions currently modeled

Constrained Optimization Problem

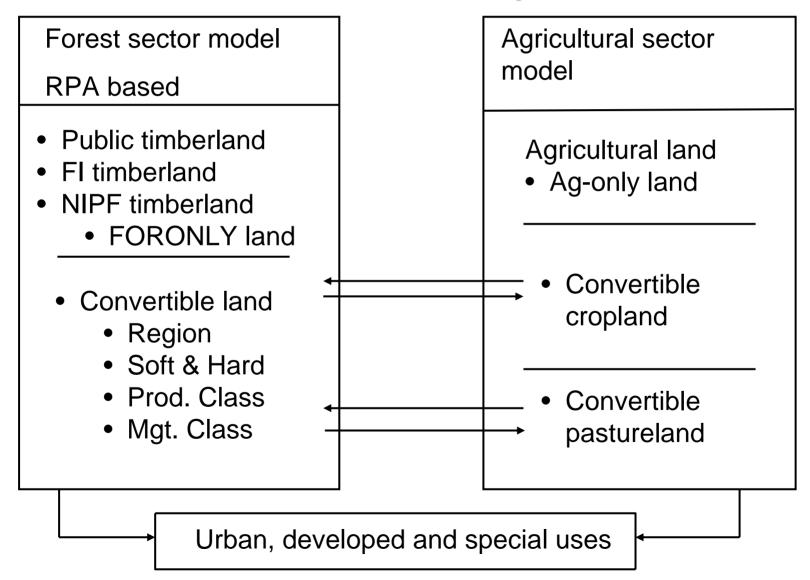
- Objective Function: Maximize NPV of sum of producers' and consumers' surpluses
 - Across Ag and Forest sectors
 - Over time (100 yrs)
 - Including GHG payments

Constraints

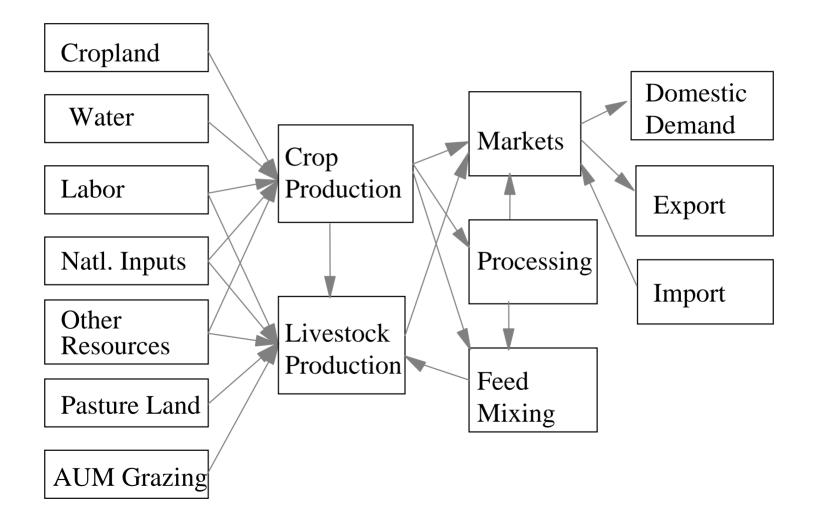
- Total Production = Total Consumption
- Tech Input/output relationships hold
- Land use balances

Condensed Tableau

CARBON


	FOREST CONSUMPTION	FOREST PRODUCTION	LAND FROM FOREST TO AG	LAND FROM AG TO FOREST	AG PRODUCTION	AG CONSUMPTION	AG INPUT SUPPLY	GHG INCENTIVE	
OBJECTIVE – NPV VALUE MAX	+INTEGRAL UNDER DEMAND	-COST	-TRANSFORM COST		- COST	+INTEGRAL UNDER DEMAND	- COST	+PRICE	
FOREST HARVEST	+1	- PRODUCTION							≤ 0
FOREST LAND BALANCE		+1	-1	+1					≤FL
AG OUTPUT					+PRODUCTION	+1			≤ 0
AG LAND BALANCE			+1	-1	+1				≤ AL
AG INPUTS					+USE		-W		≤ AV
AG > FOR LAND MAX			+1	-1					≤ AFMAX
FOR > AG LAND MAX			-1	+1					≤ FAMAX
CARBON AND OTHER GHG		∆ GHG IN FOREST			∆ GHG IN AG			+1	≤ 0
							I		

FOREST SECTOR


LAND TRANSFER

AGRICULTURE SECTOR

How are land-use and terrestrial GHG mitigation decisions currently modeled

How are land-use and terrestrial GHG mitigation decisions currently modeled Sector Scope

How are land-use and terrestrial GHG mitigation decisions currently modeled Foreign Regions in AG Part of FASOMGHG

How are land-use and terrestrial GHG mitigation decisions currently modeled

Activity and GHG Coverage

Strategy	Basic Nature	CO2	CH4	N2O	
Afforestation	Sequestration	X			
Existing timberland/reforestation	Sequestration	X			
Deforestation	Emission	Х			
Biofuel Production	Offset	Х	Χ	Х	
Crop Mix Alteration	Emiss, Seq	Х		Х	
Crop Fertilization Alteration	Emiss, Seq	Х		Х	
Crop Input Alteration	Emission	Х		Х	
Crop Tillage Alteration	Emission	Х		Х	
Grassland Conversion	Sequestration	Х			
Irrigated /Dry land Mix	Emission	Х		Х	
Enteric fermentation	Emission		Χ		
Livestock Herd Size	Emission		Χ	Х	
Livestock System Change	Emission		Χ	Х	
Manure Management	Emission		Χ	X	
Rice Acreage	Emission	Χ	Χ	X	

How should land potential and land-use responses (impacts) to climate change be modeled?

	Temp	Rainfall	C02	SeaLevel	ExtremeEvnts
Plants					
Crop and forage growth	Х	x	Х		X
Crop /forage water need	Х	x	Х		X
Soils					
Soil moisture supply	Х	x			X
Irrigation demand	Х	x	Х		X
Soil fertility	Х	x	Х		
Animals					
Performance	Х	x			X
Pasture/Range Carry cap	Х	x	Х		•
Irrigation Water Supply					
Evaporation loss	Х	x			X
Run-off/general supply	X	X			X
Non-AG competition	X	X	Х		
Other					
Water borne transport		X		X	X
Port facilities		x		X	X
Pest and diseases	Х	X			
Insurance	X	X			x

How should land potential and land-use responses (impacts) to climate change be modeled?

A House of Cards

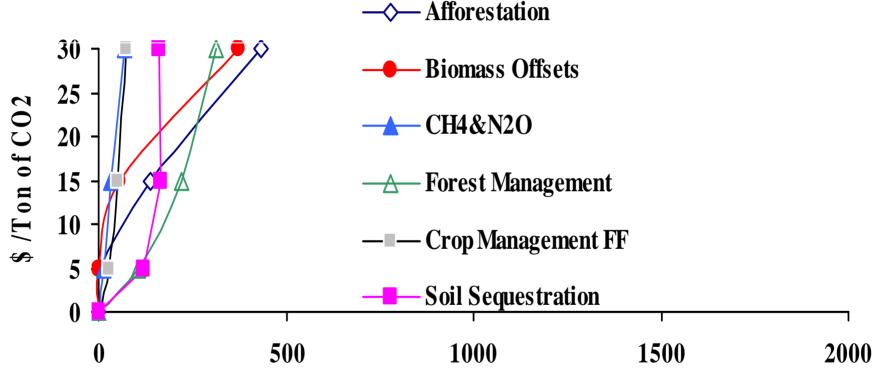
Climate Scenarios Crop Simulation

Forest Simulation Hydrologic simulation Livestock sim /experts Grass simulation

Other studies Regression

Adaptation obs/expert

Economics

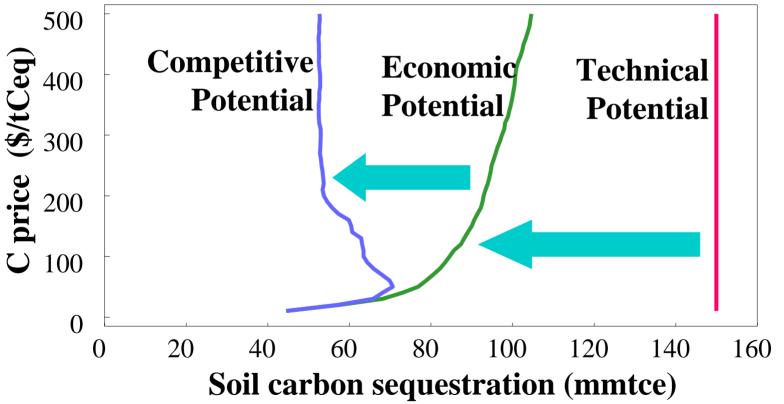

– GCMs

- Regional crop yields (dry and irr)
- Regional irrigated crop water use
- Yields by region, year and species
- Irrigation water
- Livestock performance,
- Livestock pasture usage,
 Animal unit month grazing supply
- International supply and demand
- Pesticide usage
 Non Ag water use
 Extreme event effects
- Crop mix shift
 Varieties
- FASOM sector model

What other issues should IAM modelers consider?

Undesirableness of sequestration only modeling Dynamics Substitution with traditional production – short and long run **Regional heterogeneity Fungibility Co-benefits Adapting price expectations Policy scope and applicability**

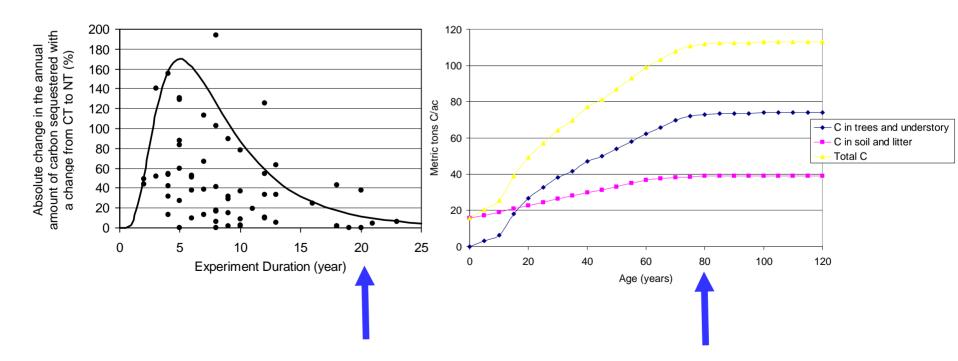
What other issues should IAM modelers consider? Undesirableness of sequestration only modeling MMt arising at an offset price giving \$/tonne carbon equiv



Emission Reduction in MMT CO2 Equivalent

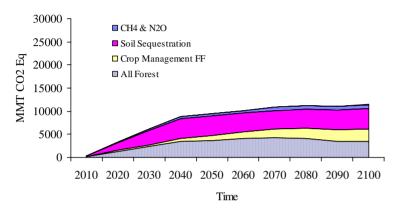
- •Small importance of CH4 and N2O
- •Different strategies dominate at different price levels

What other issues should IAM modelers consider? Undesirableness of sequestration only modeling


Example: U.S. ag soil potential:

What other issues should IAM modelers consider? Dynamics

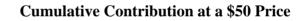
Absolute Change in the Annual Rate of Carbon Sequestered Following a Change from Conventional Tillage (CT) to No-Till (NT) - West and Post

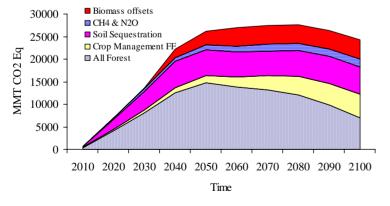

Carbon Accumulation on an Afforested Southeastern Pine Stand, to Saturation -- Birdsey

What other issues should IAM modelers consider? **Dynamics**

200000

150000


MMT CO2 Eq Crop Management FF 100000 All Forest 50000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Time

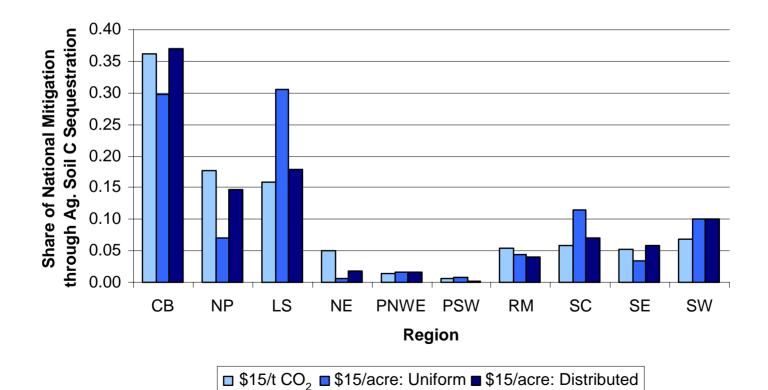

CH4 & N2O

Biomass offsets

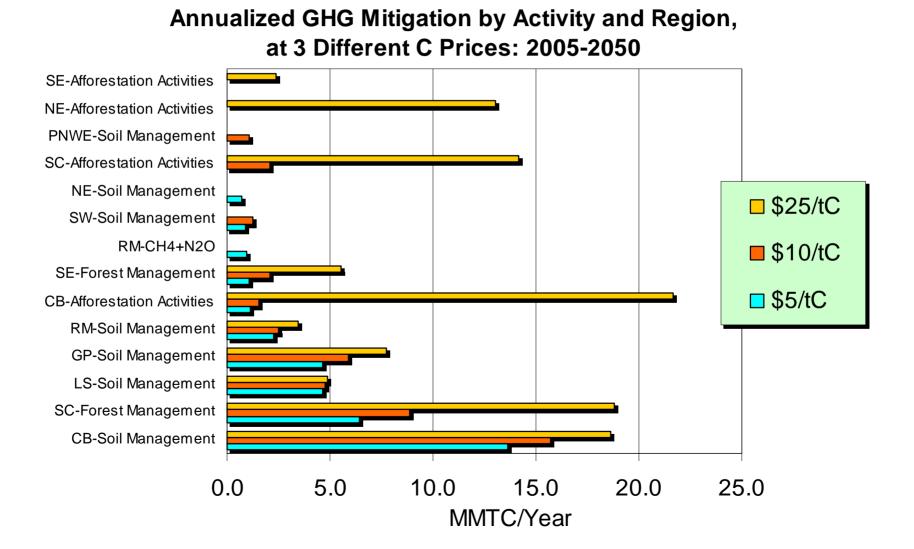
■ Soil Sequestration

Cumulative Contribution at a \$5 per tonne CO2 Price

Note

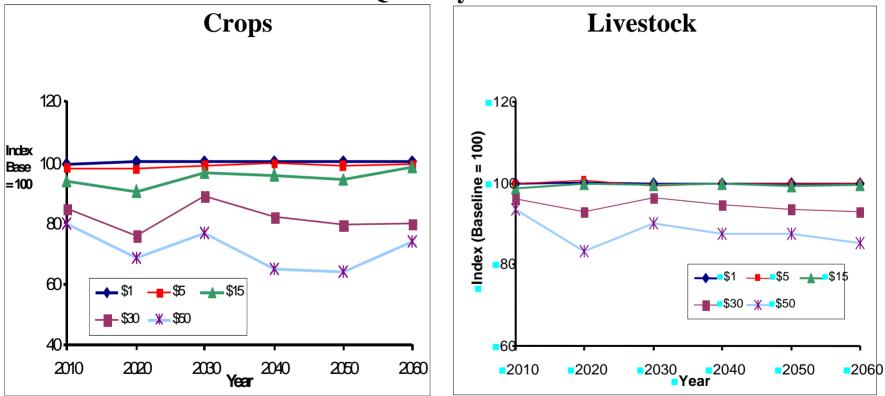

Effects of saturation on sequestration Growing nonco2 and biofuels

Cumulative Contribution at a \$15 Price

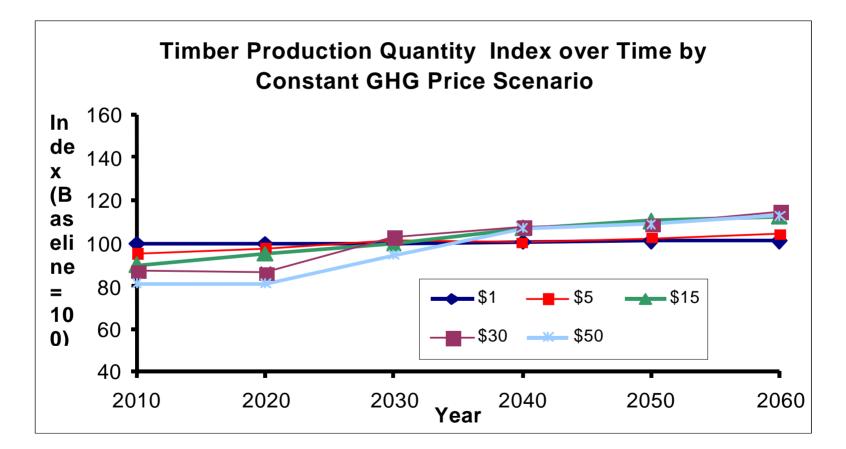

Source Lee, H.C., B.A. McCarl and D. Gillig, "The Dynamic Competitiveness of U.S. Agricultural and Forest Carbon Sequestration," 2003.

What other issues should IAM modelers consider? Regional heterogeneity

Regional Shares of Agricultural Soil Carbon Sequestration



What other issues should IAM modelers consider? Regional heterogeneity

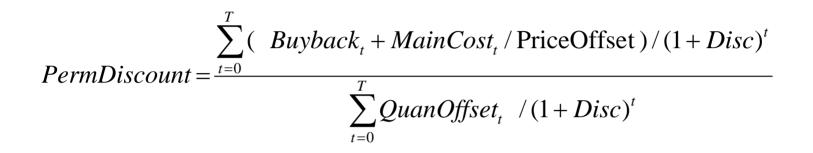

What other issues should IAM modelers consider? Substitution with traditional production – short and long run

Production Quantity Index over Time

Substitutes

What other issues should IAM modelers consider? Substitution with traditional production – short and long run

Near term Substitutes, Long Run Complement


What other issues should IAM modelers consider? Fungibility

A number of concepts have arisen that are likely to differentially characterize the contribution of alternative possible offsets within the total regulatory structure. These involve:

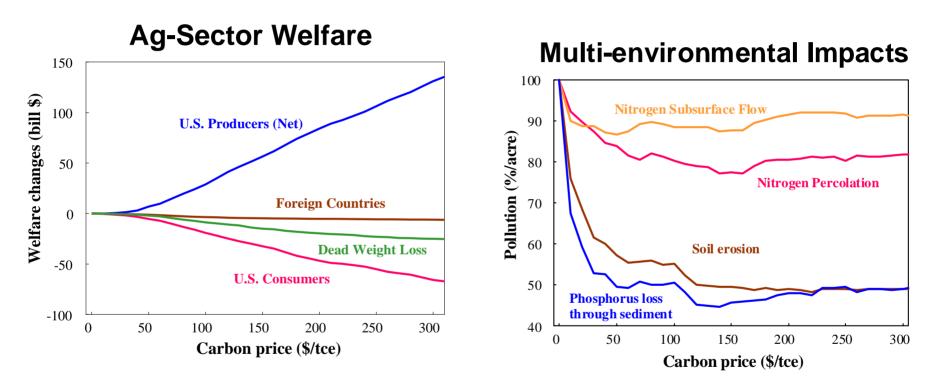
Permanence Additionality Leakage Uncertainty

General concern price may differentiate based on characteristics like a grading standard

What other issues should IAM modelers consider? Fungibility

Where

Buyback is amount when lease expires


MainCost is amount paid to maintain stands or practices

What other issues should IAM modelers consider? Fungibility

Beaumont through Columbus Texas area has historically produced rice. In 1985, 600,000 acres. In 2000, 214,000 acres. Policy, environment and markets are applying pressure. Today, many rice producers are in quest of new opportunities. Trees, other crops and pasture provide possible alternatives to some.

	Perm	Add	Leak	Uncer All		Salable
Rice to crops	30%	12%	32%	21%	67%	33%
Rice to pasture	50%	4%	17%	21%	69%	31%
Rice - trees(pulp)	30%	1%	16%	21%	54%	46%
Rice - trees (saw)	10%	1%	16%	21%	41%	59%

What other issues should IAM modelers consider? Co-benefits

Gain here but lose in energy sector

Probably should ignore for now

What other issues should IAM modelers consider?

Avoiding perfect Price foresight

Depicting anticipated possibly regionalized policy scope and applicability

Using response functions from FASOM type models Now upgrading to avoid foresight and be more dynamic