Regional GHG Mitigation Response and Leakage Effects:

Scenario Analysis of U.S. Forestry & Agricultural Activities

Ben DeAngelo, Ken Andrasko U.S. Environmental Protection Agency Brian Murray, Allan Sommer RTI International Bruce McCarl, Dhazn Gillig Department of Agricultural Economics, Texas A&M University

3rd Annual Conference on Carbon Capture & Sequestration May 4, 2004

Introduction & Overview of Analysis

- Assess net GHG mitigation potential in forestry & ag
- Use FASOM-GHG model
- Mitigation results from range of scenarios
 - vary price incentive (CO_2)
 - vary eligible activities (all vs. select)
 - vary GHG targets
 - vary payment approach
- Show regional mitigation potential across U.S.
- Implications of key issues (duration, leakage)
- Economic & environmental co-effects

Modeling Framework

Forestry and Agriculture Sector Optimization Model with Greenhouse Gases (FASOM-GHG)

Key Dimensions	Forest Sector	Ag Sector
Regions	11	63
Land Base	Private timberland, USFS FIA	All U.S. cropland, USDA NRI, Ag Census, NAS
Time Scale	Base yr = 2000, 100-yr simulations, 10-yr time steps	Same
GHG Accounting	Emissions/removals from all C pools (incl. products), FORCARB	Soil C, CENTURY CH ₄ , N ₂ O, IPCC FF CO ₂
Commodities	Sawlogs, pulpwood, timber from hard- & softwoods	48 primary 45 secondary
e: Adams et al. 1996; Lee 2002.		AL PROTECT

FASOM-GHG includes full range of forestry & ag activities and net GHGs

Strategy	Basic Nature	CO2	CH4	N2O	
Afforestation	Sequestration	X			
Existing timberland/reforestation	Sequestration	X			
Deforestation	Emission	X			
Biofuel Production	Offset	X	Χ	X	
Crop Mix Alteration	Emiss, Seq	X		X	
Crop Fertilization Alteration	Emiss, Seq	X		X	
Crop Input Alteration	Emission	X		X	
Crop Tillage Alteration	Emission	X		X	
Grassland Conversion	Sequestration	X			
Irrigated /Dry land Mix	Emission	X		X	
Enteric fermentation	Emission		X		
Livestock Herd Size	Emission		Χ	X	
Livestock System Change	Emission		X	X	
Manure Management	Emission		X	X	
Rice Acreage	Emission	X	X	X	

FASOM-GHG projects baseline against which all mitigation results are reported

	Agricultural	Biofuel	Forest	Crop Management	Agricultural	Total Net GHG
Decade	Sequestration	Offset	Sequestration	Fossil Fuels	Emissions	Emissions
2010	32	-11	-436	197	489	270
2020	10	-11	-222	200	503	479
2030	-83	-11	-145	213	560	535
2040	-148	-11	-225	229	597	442
2050	-167	-11	-170	242	626	520

- Numbers in TgCO₂ eq./yr (+ emissions; net sequestration).
- Declining rate of forest seq. over time; consistent with other projections.
- Forest sink smaller than reported in EPA inventory; no public lands here.
- Ag CH₄ & N₂O calibrated with EPA inventory and projections.
- Biofuels based on EIA 2003
- Soil C....?

Mitigation Scenarios with FASOM-GHG including ALL Activities & GHGs

Constant & Rising Price Scenarios, price signal begins in 2010 \$/tonne CO₂ eq. \$/tonne C eq. Rising by... Capped at... 3.67 1 5 18.35 15 55.05 30 110.10 50 183.50 3 11.01 1.5% / yr 3 11.01 4% / yr \$30/tCO₂ \$1.30/tCO₂ /yr \$75/tCO₂ 20 73.40

Note: Rising price paths and caps are similar to those chosen by Stanford Energy Modeling Forum-21

Cumulative Mitigation Results Over Time Show...

\$30/tCO₂ constant scenario

Year

- Cumulative mitigation continues to increase, even if annual mitigation rates decline.
- As C-seq. options saturate, permanent emission reduction options (biofuels, ag non-CO₂) contribute more to portfolio.

Mitigation Contributions by Options show...

prices

Regional Mitigation Potential Varies Across U.S.

- Corn Belt (IL, IN, IA, MO, OH)
- Northeast (CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT, WV)
- South-Central (AL, MS, LA, E-TX, E-OK, AR, TN, KY)
- Southeast (VA, NC, SC, GA, FL)

Mitigation Scenarios with FASOM-GHG for SELECT Activities

	GHG price (\$/t CO ₂)		
Scenario: Pay only for	\$15	\$3 @ 1.5%	\$3 @ 4%
Afforestation	165	2	13
Afforestation + Forest Management	355	68	96
Biofuels	90	0	174
Agricultural Management	301	192	178
Agricultural Soil Carbon	202	136	107

Results in $TgCO_2$ eq./year, annualized over 2010 - 2100.

Mitigation Potential of SELECT Activites vs. Same Activities under All-Activity Scenarios

GHG Mitigation by Activity: Targeted Payments vs. Untargeted Payments (\$15/t CO₂)

- When only select activity is paid for, mitigation potential is higher.
- Select activity is not competing with other activites, as in other scenarios.
- Aff & For Mgmt compete for mitigation, so this combo shows no difference.

Regional Mitigation Potential for Pay-for-Afforestation-Only Scenario

GHG Mitigation from Targeted Afforestation Payments at \$15/tCO2 by Region

Regional Mitigation Potential for Pay-for-Biofuels-Only Scenario

GHG Mitigation under Targeted Payments for Biofuel Offsets at \$3, Rising at 4% per Year: By Region

Leakage Estimates for Select Activity Scenarios

Targeted Mitigation Activities	A GHG Effects of Selected Payment (Tg CO ₂)	B Net GHG Effects of All Activities (Tg CO ₂)	C Leakage Rate ^a (%)
Afforestation Only			\frown
\$15/t CO ₂ constant price	165	118	28.4
3/t CO ₂ with 1.5% rising price	2	1	54.1
\$3/t CO ₂ with 4% rising price	13	9	34.5
Afforestation + Forest Management			
\$15/t CO ₂ constant price	355	373	-5.0
\$3/t CO ₂ with 1.5% rising price	68	72	-5.6
\$3/t CO ₂ with 4% rising price	96	100	-3.9
^a Leakage % calculation: $C = (A-B)/A *$	100		

- Aff-only scenario has highest leakage estimates among select activity scenarios.
- Leakage is dramatically reduced when For Mgmt added to Aff Only scenario.

Leakage Estimates for Select Activity Scenarios

Targeted Mitigation Activities	A GHG Effects of Selected Payment (Tg CO ₂)	B Net GHG Effects of All Activities (Tg CO ₂)	C Leakage Rate ^a (%)
Biofuels			
\$15/t CO ₂ constant price	90	86	3.8
3/t CO ₂ with 1.5% rising price	0	-1	—
\$3/t CO ₂ with 4% rising price	174	176	-1.3
Agricultural Soil Carbon			
\$15/t CO ₂ constant price	202	201	0.7
3/t CO ₂ with 1.5% rising price	136	139	-1.7
\$3/t CO ₂ with 4% rising price	107	107	0.5

^aLeakage % calculation: C = (A-B)/A * 100

• Leakage estimates for both Biofuel- & Ag Soil C-only scenarios are minimal.

Mitigation Actions Induced by GHG Incentives Have Economic Co-effects

Mitigation Actions Induced by GHG Incentives Have Environmental Co-effects

Important to Evaluate Options Using Multiple Criteria, from biophysical potential to implementation issues, to co-effects

- **Criterion 1:** Biophysical Potential (captures C saturation)
 - Criterion 2: Econ & Comp. Potential
- **Criterion 3:** Regional Potential
- **Criterion 4:** Implementation Issues (leakage, duration, measurement, etc.)
- **Criterion 5:** Econ & Enviro Co-effects

UNITED S

FIVIRONMENTAL PROV

Key Observations to Date

- GHG mitigation potential (at 'mid' prices, \$5-15/tCO₂) appears significant over next few decades: 4 - 9% current U.S. GHG emissions.
- Carbon saturation has declining effect on annual mitigation rate, though cumulative mitigation steadily increases; saturation also causes portfolio shift towards permanent-reduction options over time.
- Ag soil C & For Mgmt are lower cost options; Aff & Biofuels dominate at higher prices.
- Corn Belt, Southeast, South-Central & Northeast offer largest mitigation potential.
- Empirical evidence of leakage when eligible activities are limited; Affonly scenario shows highest leakage; others minimal.
- Economic & environmental co-effects can be significant and may help guide regional/activity selection for mitigation actions.