Economic Potential for Agricultural Non-CO2 Greenhouse Gas Mitigation: An Investigation in the United States

Bruce A. McCarl Department of Agricultural Economics Texas A&M University

U. A. Schneider Departments of Geosciences and Economics Hamburg University

Dhazn Gillig Department of Agricultural Economics Texas A&M University

> Hengchi Lee Department of Economics Western Ontario University

Francisco de la Chesnaye U.S. Environment Protection Agency

Economic Potential for Agricultural Non-CO2 Greenhouse Gas Mitigation: An Investigation in the United States- Abstract

This paper addresses the economic potential of U.S. agriculture and forestry to mitigate emissions considering carbon, nitrous oxide and methane focusing to a large extent on the possibilities for Non CO2 strategies both independently and in an overall approach. It also reports on an examination of the dynamics of non-CO2 mitigation strategies.

The paper reports results from a multi-period analysis of agricultural and forestry response to prices for GHG offset production. The model used is called FASOMGHG and is a 100 year forest and agriculture model .It covers GHG mitigation activities in 11 U.S. regions and 63 U.S. Sub-State regions), 28 foreign regions for 8 commodities, plus world market for 50+ other commodities. The 100 year period is simulated in decadal time steps. The forestry and agricultural sectors are linked through land and some commodity transfers. The model has rather detailed coverage of agricultural carbon and non-CO2 plus forest carbon management alternatives.

Using FASOMGHG marginal abatement curves are generated under alternative policy scenarios. The model results give overall and component response at varying carbon equivalent prices revealing an "optimal" portfolio of agricultural greenhouse gas emission related management alternatives. We also observe model results on commodity and factor prices, levels of production, exports and imports, management choices, resource usage, and environmental impacts.

Empirically carbon equivalent prices were varied from \$0 per metric ton to \$100 as constant real price for 100 years. The possible contributions of the gasses were treated both collectively and independently. In particular scenarios where run where only one of CO2, CH4 and N2O were eligible for payments followed by scenarios when non CO2 gasses were all that were eligible and then where all gasses were eligible.

A number of potential insights arise from the model analysis

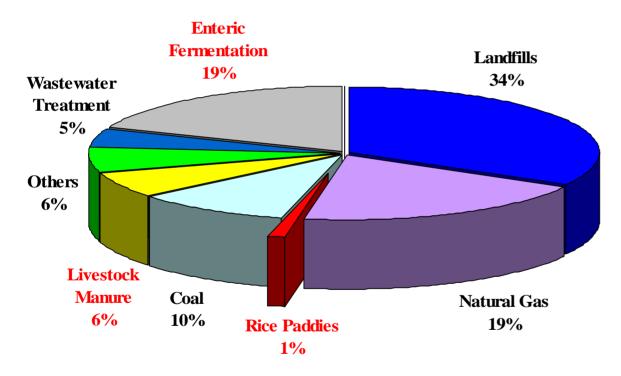
•Non CO2 gasses can be a significant player although they are somewhat less than one half as important as sequestration

- •NonCO2 gasses actions are persistent growing over time while sequestration saturates and diminishes
- •Competition exists between strategies and independent assessments can be misleading
- •Independent nonCO2 strategies cause significant leakage in the CO2 category
- •Enteric fermentation and fertilization based N2O management are highly complementary with CO2 management

More can be found on this type of analysis in the carbon related writings of McCarl and others that can be found on agecon.tamu.edu/faculty/mccarl.

PROJECT/ PAPER OBJECTIVES

- Assesses the economic potential of U.S. agriculture and forestry to mitigate emissions considering carbon, nitrous oxide and methane
- Focus on the role of Non CO2 strategies both independently and in an overall approach
- Examine the dynamics of non-CO2 mitigation strategies


ROLES OF U.S. AG & FORESTRY

- A carbon or GHG sequestering sink
- Offsetting net GHG emissions
- Operating in a mitigating world
- EMISSION REDUCERS
 - Globally
 - Ag and forestry emit 70% of N2O
 - Ag and forestry emit 50% of CH4
 - Ag and forestry emit 5% or 20% (including tropical deforestation) of CO2

ROLES OF US AG & FORESTRY in CH4

Emission accounting

Manure emissions

Mitigation Strategies

- Less rice acreage
- Fewer animals
- Liquid manure
 management
- Change feeding

Figure 1: U.S. Source of CH4 Emissions in Tg CO2 Eq.

Source: EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990-2001 Table ES-10, page ES 16, April 15, 2003.

ROLES OF U.S. AG & FORESTRY: N2O

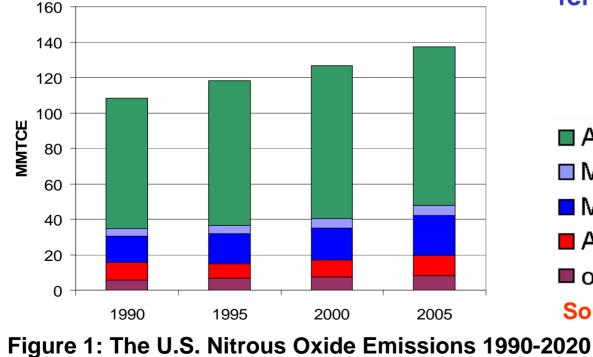
Emission accounting

- De-nitrification
- Air volatilization
- Livestock manure emissions

Mitigation Strategies

- Change of crop mix
- Less Nitrogen fertilization
- Choice between Nfertilizer types

Agriculture Soils


Mobile Sources

Source: U.S. EPA

Adipic & Nitric Acid

■ Manure Mgt

other

BASIC ASSESSMENT

- Multi-period analysis of ag/forest response
- Marginal abatement curve giving overall and component response at varying carbon equivalent prices
- Also wish to observe commodity and factor prices, levels of production, exports and imports, management choices, resource usage, and environmental impacts

MODELING APPROACH

- 100 year forest and agriculture model -FASOMGHG
- Covers GHG mitigation activities in U.S. regions (across 11 regions and 63 U.S. Sub-State regions), 28 foreign regions for 8 commodities, plus world market for other commodities.
- Simulates 100 years in decade time steps.
- Depicts sector linkage mainly through land transfers.

MODELING APPROACH

- When run with a price solution reveals a "optimal" portfolio of agricultural greenhouse gas emission related management alternatives.
- Rather detailed coverage of agricultural carbon and non-CO2 plus forest carbon management alternatives.

FASOMGHG REGIONS

GHG ACTIVITIES IN FASOMGHG

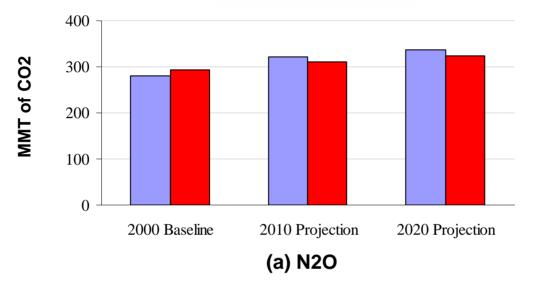
- Multiple GHG mitigation strategy setup
- Detailed GHG emission accounting
 - Forest carbon
 - Soil carbon
 - N2O
 - CH4
 - Fuel use carbon emissions
- National GHG balance
- GWP weighted sum of all GHG accounts
- GHG Policy implementation

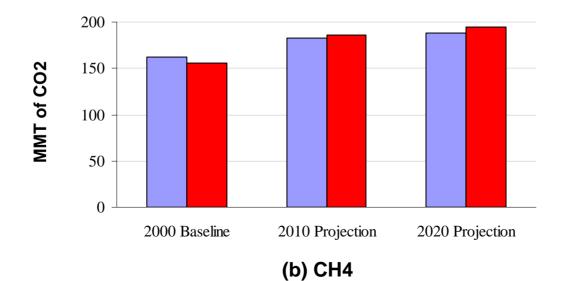
NON-CO2 SOURCES IN FASOMGHG

N2O

- Commercial Fertilizer
- Livestock Manure
- Sewage Sludge
- Fixing Crops
- Crop Residues
- Histosol
- Pasture/range/paddock livestock
- Volatilization
- Leaching and Runoff

CH4


- **Enteric Fermentation**
- Manure Management
 Systems
- Rice Cultivation
- Agricultural Residue
 Burning

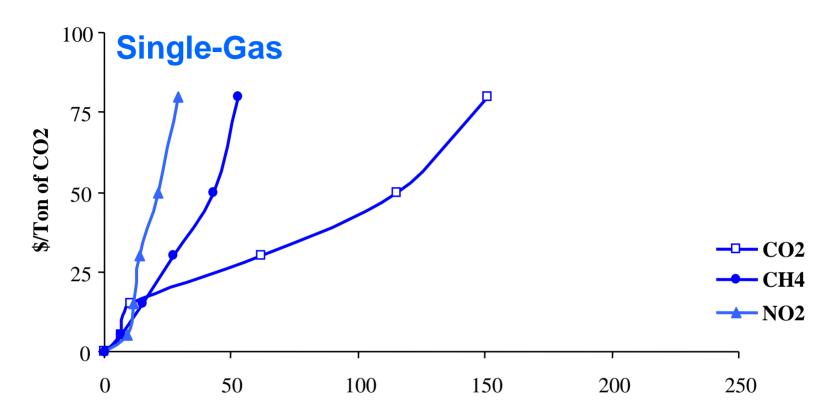

FASOMGHG MITIGATION OPTIONS

Strategy	Basic Nature	CO2	CH4	N2O
Crop Mix Alteration	Emis, Seq	X		X
Crop Fertilization Alteration	Emis, Seq	Χ		X
Crop Input Alteration	Emission	X		X
Crop Tillage Alteration	Emission	X		X
Grassland Conversion	Sequestration	X		
Irrigated /Dry land Mix	Emission	X		X
Biofuel Production	Offset	X	X	X
Afforestation	Sequestration	X		
Existing timberland Management	Sequestration	Χ		
Deforestation	Emission	X		
Stocker/Feedlot mix	Emission		X	
Enteric fermentation	Emission		X	
Livestock Herd Size	Emission		X	X
Livestock System Change	Emission		X	X
Manure Management	Emission		X	X
Rice Acreage	Emission	X	X	X

CALIBRATION

■ FASOMGHG ■ EPA

MODEL ANALYSIS

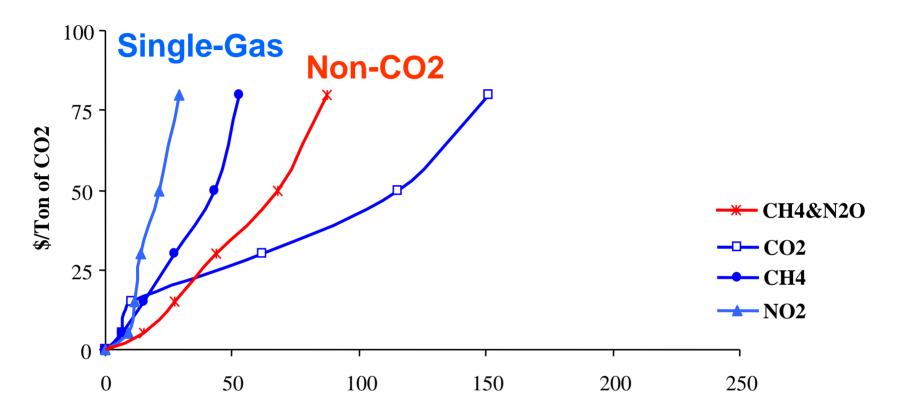

Experiments

- Prices varied from \$0 per ton to \$100 as constant real price for 100 years
- **Gasses treated collectively or independently**
 - CO2 only single gas
 - **CH4 only single gas**
 - N2O only single gas
 - □ CH4 and N2O Non CO2 gasses
 - □ All gasses CH4+CO2+N2O

Observed items

- Amount of major strategies used
- Prices, welfare

ECONOMIC POTENTIAL

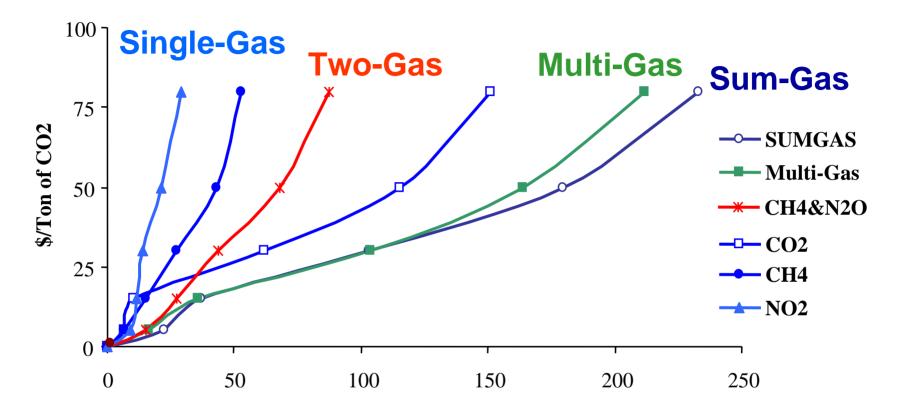


NON-CO2 Emission reduction in MMT of CO2 Equivalent

Economic potential:

how much one would get if this was the only gas paid for.

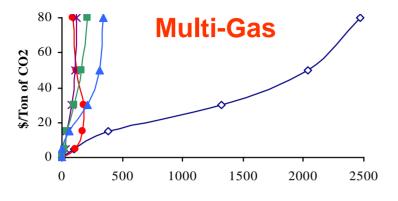
ECONOMIC POTENTIAL



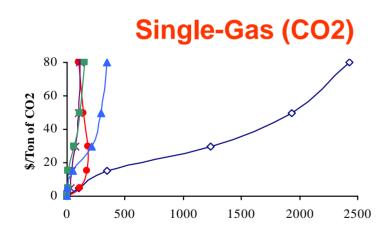
NON-CO2 Emission reduction in MMT of CO2 Equivalent

Economic potential:

how much one would get if this was the only strategy employed or id only non-co2 was paid.

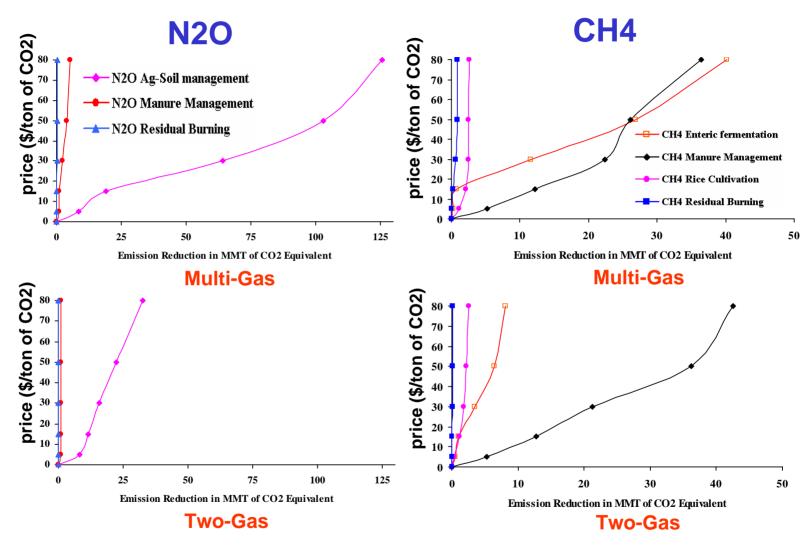

COMPETITIVE vs. ECONOMIC POTENTIAL

NON-CO2 Emission reduction in MMT of CO2 Equivalent


Results do not add up die to competition and complementarity

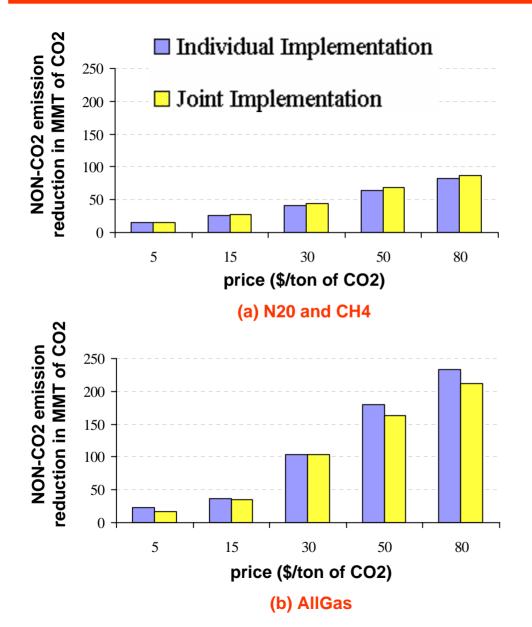
Portfolio Composition

Emission reduction in MMT of CO2 Equivalent


Emission reduction in MMT of CO2 Equivalent

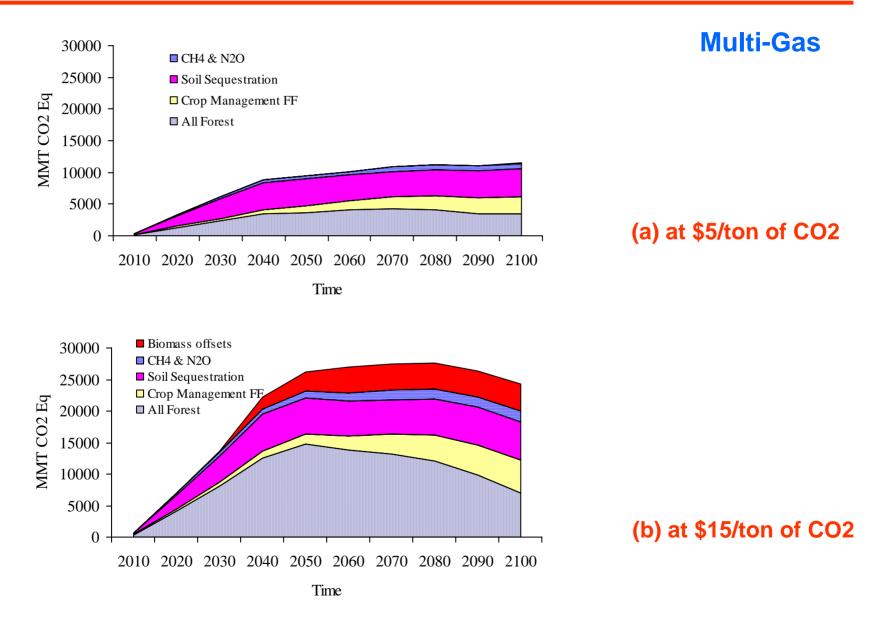
Two-Gas

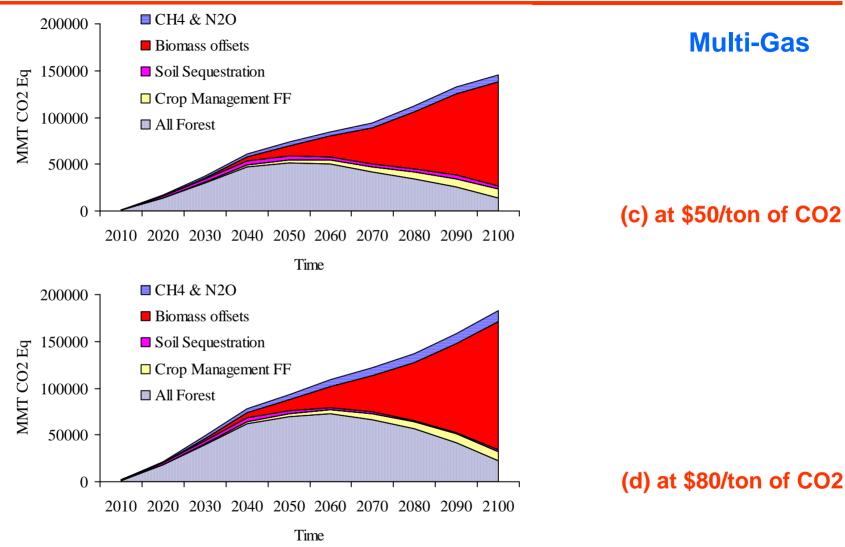
Emission reduction in MMT of CO2 Equivalent


All forest the big one Paying for CO2 only about same as including NonCO2 Paying for non CO2 only can do strange things to CO2

Portfolio Shares

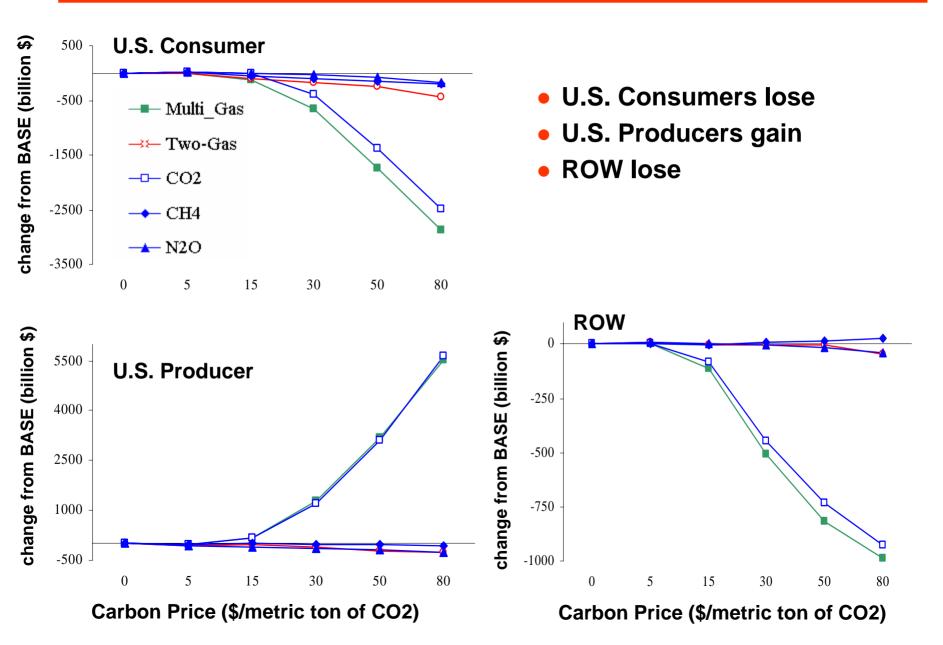
Enteric and fertilizer very complementary with CO2 Manure unaffected by multi gas


INDIVIDUAL vs. MULTIGAS IMPLEMENTATION

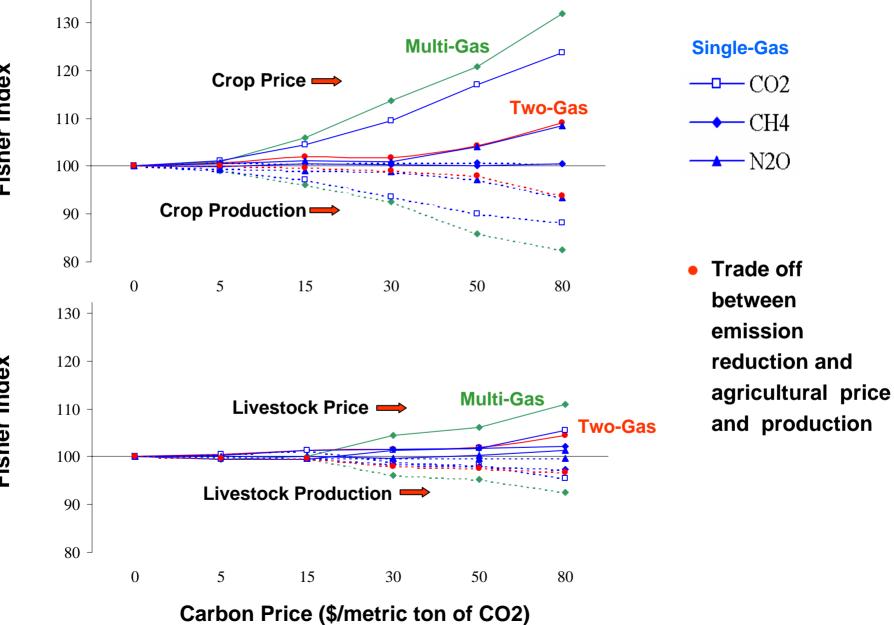

 Joint implementation achieves more quantity reduction at the same price => interaction effects

 Individual implementation overstates reduction => land competition

DYNAMICS OF GHG MITIGATION

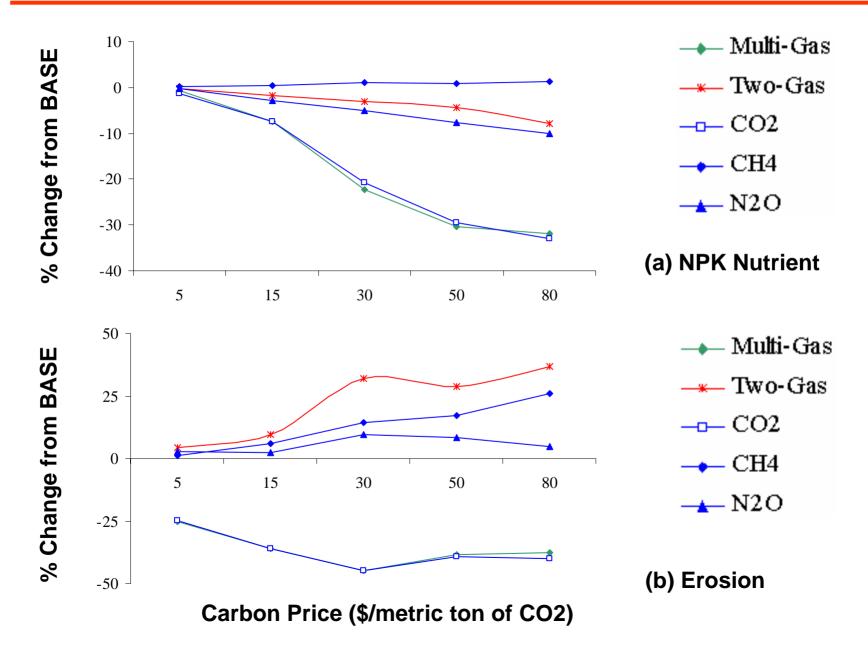


DYNAMIC OF GHG MITIGATION



Sequestration saturates Biofuels and non CO2 grow in long run Biofuel dominates at high price

WELFARE IMPACT


ECONOMIC INDICATORS

Fisher Index

Fisher Index

ENVIRONMENTAL IMPACTS

FUTURE DIRECTION AND CHALLENGES

Better Livestock Enteric and fertilizer

New forestry data

Transactions cost and discounts

Appendix : CALIBRATION

Table 1. Comparison NONCO₂ emissions from agriculture using FASOMGHG to EPA estimation in MMT of CO₂

	2000 Baseline		2010 Projection			2020 Projection			
	EPA	FASOM	% Deviate	EPA	FASOM	% Deviate	EPA	FASOM	% Deviate
N ₂ O:									
Agricultural Soil Management:									
Managed soils	177.3	153.7	-13.3	189.7	182.0	-4.1	199.1	197.0	-1.0
Pasture, Range, and Paddock livestock	41.0	36.3	-11.4	41.0	39.1	-4.5	41.0	39.4	-3.9
Indirect Emissions	79.8	73.1	-8.4	82.6	76.6	-7.2	85.4	75.4	-11.7
Manure Management	17.2	19.8	15.4	19.9	24.5	23.5	21.9	27.7	26.5
Agricultural Residue Burning	0.7	0.5	-21.5	0.7	0.7	4.3	0.7	0.8	16.9
Total N ₂ O	316.0	283.4	-10.3	333.9	322.9	-3.3	348.1	340.3	-2.2
CH₄:									
Enteric Fermentation	114.5	121.6	б.О	136.4	126.5	-7.3	139.4	128.0	-8.1
Manure Management Systems	38.9	30.0	-22.0	41.6	48.7	17.0	46.4	51.9	11.9
Rice Cultivation	7.5	9.4	25.8	7.5	6.0	-19.4	7.5	6.4	-14.5
Agricultural Residue Burning	0.9	1.0	22.0	0.9	1.4	68.9	0.9	1.6	86.6
Total CH4	161.8	162.1	-0.1	186.4	182.7	-2.0	194.1	188.0	-3.2
Total non-CO ₂	477.8	445.5	-6.7	520.3	505.6	-2.8	542.2	528.3	-2.6
	477.0	445.5	-0.7	J20.J	505.0	-2.0	JH 2. 2	J20.J	-2.

Source: U.S. Greenhouse Gas Emissions and Sinks: 1990-2001, EPA; Personal communication with a personnel at EPA.

Appendix : CALIBRATION

Table 2: Comparison N2O and CH4 emissions from manure management using FASOMGHG to EPA estimation in MMT of CO2

	2000 Ba	2000 Baseline		2010 Projection		2020 Projection	
	EPA	FASOM	EPA	FASOM	EPA	FASOM	
N ₂ O Emissions:							
Beef	5.4	6.7	6.8	9.6	7.6	10.3	
Dairy	3.9	5.5	3.8	5.0	3.4	4.8	
Horses	0.2	0.2	0.2	0.5	0.2	0.5	
Poultry	7.2	7.0	8.7	9.1	10.3	11.7	
Sheep	0.1	0.0	0.0	0.0	0.0	0.0	
Swine	0.4	0.3	0.4	0.4	0.4	0.4	
Total N ₂ O	172	198	198	24.5	219	27.7	
CH4 Emissions:							
Beef	3.4	1.5	3.8	2.1	3.8	2.4	
Dairy	11.8	10.1	15.8	16.0	18.6	18.3	
Horses	0.7	0.7	0.6	1.3	0.7	1.3	
Poultry	2.6	3.0	3.1	4.7	3.6	5.9	
Sheep	0.1	0.1	0.0	0.0	0.0	0.0	
Swine	14.1	14.8	18.3	24.6	19.7	24.0	
Total CH4	327	30.0	415	48.7	46 <i>A</i>	519	
Total	49.8	49.9	61.4	73.2	68.2	79.6	

Source: U.S. Greenhouse Gas Emissions and Sinks: 1990-2001, EPA; Personal communication with a personnel at EPA.

Appendix : CALIBRATION

Table 3: Comparison CH4 emissions from enteric fermentation using

FASOMGHG to EPA estimation in million metric tons of CO₂ equivalent

	20	2000		2010		20
	EPA	FASOM	EPA	FASOM	EPA	FASOM
CH4:						
Beef	91.7	91.5	101.7	96.1	102.3	95.9
Dairy	26.9	24.7	29.7	25.7	31.8	27.3
Horses	2.0	2.3	2.1	2.1	2.1	2.1
Sheep	1.2	1.2	0.8	0.8	0.7	0.7
Swine	1.9	1.9	1.9	1.9	2.1	2.1
Total CH4	123.7	121.6	136.2	126.5	139.0	128.0

Source: U.S. Greenhouse Gas Emissions and Sinks: 1990-2001, EPA;

Personal communication with a personnel at EPA.