
Water Quality Co-effects of Greenhouse Gas Mitigation in US Agriculture 

 

Subhrendu K. Pattanayak, Bruce A. McCarl, Allan J. Sommer, Brian C. Murray, Timothy 

Bondelid, Dhazn Gillig, and Benjamin DeAngelo♣

March 2004 

 

Abstract 

This study develops first-order estimates of water quality co-effects of terrestrial greenhouse gas 

(GHG) emission offset strategies in U.S. agriculture by linking a national level agricultural sector 

model (ASMGHG) to a national level water quality model (NWPCAM).  The simulated policy 

scenario considers GHG mitigation incentive payments of $25 and $50 per tonne, carbon 

equivalent to landowners for reducing emissions or enhancing the sequestration of GHG through 

agricultural and land use practices.  ASMGHG projects that these GHG price incentives could 

induce widespread conversion of agricultural to forested lands, along with alteration of tillage 

practices, crop mix on land remaining in agriculture, and livestock management.  This study 

focuses on changes in cropland use and management.  The results indicate that through 

agricultural cropland about 60 to 70 million tonnes of carbon equivalent (MMTCE) emissions can 

be mitigated annually in the U.S.  These responses also lead to a 2% increase in aggregate 

national water quality, with substantial variation across regions.  Such GHG mitigation activities 

are found to reduce annual nitrogen loadings into the Gulf of Mexico by up to one half of the 

reduction goals established by the national Watershed Nutrient Task Force for addressing the 

hypoxia problem.   
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Water Quality Co-effects of Greenhouse Gas Mitigation in US Agriculture 

1. Introduction 

There is growing recognition that terrestrial activities in agriculture, land use change, and forestry 

can play an important role in reducing the potential impacts of climate change by mitigating 

greenhouse gas (GHG) emissions (Watson et al., 2000, McCarl and Schneider, 2000).  A number 

of economic studies have focused on the cost of securing agricultural and forestry participation.1 

These studies estimate the costs of carbon sequestration by calculating the foregone agricultural 

returns that result from converting cultivated agricultural lands to forest, and the associated costs 

of conversion and management.  However these studies have largely neglected the potential non-

GHG environmental co-effects of GHG mitigation.   

The Intergovernmental Panel on Climate Change (IPCC) Special Report on Land Use, Land-Use 

Change and Forestry suggests many land-use change and forestry (LUCF) practices for GHG 

mitigation would likely lead to broader environmental benefits such as improved water quality 

and quantity, reduced soil erosion and improved soil quality, greater biodiversity and reduced 

acidification, though there may be tradeoffs between GHG benefits and environmental quality in 

some cases (Watson et al., 2000).  Recently, Matthews, O’Connor, and Plantinga (2002) have 

investigated the potential impacts on bird populations of GHG mitigation through the 

afforestation of croplands.  While researchers have posited links between LUCF practices and 

water quality (Plantinga, 1996; Wear et al., 1998), little quantitative research exists on the water 

quality co-effects of land uses (Planting and Wu, 2003).  Although a small but growing body of 

work (Atwood et al., 2000; Bansayat et al., 1999, 2000; Miller and Plantinga, 1999; Plantinga and 

Wu, 2003) has modeled changes in loadings (specifically reduced erosion, nitrogen and atrazine 

levels) from LUCF practices into water bodies, detailed assessments of in-stream water quality 

across the national hydrologic network have been lacking.   

2 



This study estimates the national and regional potential water quality co-effects from GHG 

mitigation in U.S. agriculture.  Three inter-related features of our study distinguish it from past 

research on the environmental co-effects of LUCF practices.  First, compared to most previous 

studies that have confined their analysis to a state, regional, watershed, or river level, we analyze 

the water quality impacts comprehensively, covering the 630,000 miles of rivers and streams that 

comprise the hydrologic network of the conterminous U.S.2  Past studies have investigated the 

impacts of a carbon sequestration policy at the state level (Matthews, O’Connor, and Plantinga, 

2002; Plantinga and Wu, 2003) However, state or regional analysis of the impacts of a GHG 

incentive program will not fully capture the costs or benefits of a national scale policy.  Second, 

we model the decay, transport and fate of pollutants within this national hydrologic system, not 

simply the loadings at the ‘contributing zone’ (typically of erosion or a single pollutant e.g. 

nitrogen).  The water quality modeling exercise explicitly accounts for baseline loadings and 

concentrations and, thereby, measures incremental impacts of LUCF practices for GHG 

mitigation.  Because we model the transport and decay of pollutants, we can, for example, 

examine how LUCF practices in the US Corn Belt impacts water quality in the Gulf of Mexico.  

Third, we can develop a comprehensive index of water quality considering both in-stream toxics 

and nutrients, after accounting for their fate, transport and decay.  Such an integrative index 

provides an overall measure of water quality at different levels of spatial aggregation.   

From an economic perspective, quantitative estimates of co-effects can be important for 

designing GHG mitigation policies whether the goal is to determine if the total benefits of such 

policies outweigh the costs or, alternatively, to ensure that GHG policies do not generate negative 

co-effects.  In an attempt to address these issues, this study develops first-order national estimates 

of water quality co-effects of terrestrial GHG mitigation strategies by linking a national level 

water quality model (NWPCAM) to a national level agricultural sector model (ASMGHG).   
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Terrestrial or biological carbon sequestration removes carbon dioxide (CO2) from the atmosphere 

and stores it as carbon in biomass and soils.  Typical land-use or land management practices that 

preserve and enhance terrestrial carbon storage include switching from conventional to low- or 

no-till agriculture, converting agricultural land to forests, protecting forests, lengthening rotation 

periods of the timber-harvest cycle, and establishing riparian buffers with forests or other native 

vegetation.  Other forms of GHG mitigation from agriculture include management changes that 

induce reductions in nitrous oxide (N2O) from fertilizer use and reductions in methane (CH4) 

from livestock management.   

The land-use and land management practices that sequester carbon and reduce GHG emissions 

have substantial overlap with practices that have historically been used to improve environmental 

quality by reducing farm-generated non-point source pollution.  As such, widespread land-based 

GHG mitigation practices should, all else equal, simultaneously yield environmental co-effects.  

But economic behavior and market processes are complex.  Feedback effects from GHG 

reduction incentives could induce secondary effects that diminish water quality (e.g., switching to 

crops with greater fertilizer requirements).  So the net effect on water quality is an empirical issue 

requiring integrated modeling and quantitative analysis.  

2. Model Components and Process Overview 

Two national scale modeling systems were used to examine the joint GHG mitigation and water 

quality effects of carbon mitigation incentives in U.S. agriculture.    This section provides a 

detailed description of the two component modeling systems and the technical approach 

developed to link the two. 

2.1 Agricultural Sector Model with Greenhouse Gases (ASMGHG) 

An agricultural sector model was used so that we could examine the complex market actions that 

would occur in the agriculture and forestry sector as a result of a GHG mitigation policy.  For 
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example, conversion of large acreages of agricultural lands to forestry would increase agricultural 

prices and reduce forest commodity prices, thereby providing economic incentives for some 

offsetting movement of land from forest to agriculture.  The model used, ASMGHG, has been 

developed based on past work by McCarl and colleagues as reported in McCarl and Schneider 

(2000, 2001) and Chang et al. (1992).    The version of ASMGHG developed by Schneider (2000) 

was expanded to include forestry possibilities for carbon production by including data on land 

diversion, carbon production, and the economic value of forest products as generated from a 

forestry sector model, FASOM (Adams et al., 1996) using 30-year average results over the 2000-

2029 period.   

ASMGHG depicts production, consumption, and international trade in 63 U.S. regions of 22 

traditional and 3 biofuel crops, 29 animal products, and more than 60 processed agricultural 

products.  ASMGHG simulates the market and trade equilibrium in agricultural markets of the 

U.S. and 28 major foreign trading partners.  Domestic and foreign supply and demand conditions 

are considered, as are regional production conditions and resource endowments.  The market 

equilibrium reveals commodity and factor prices, levels of domestic production, export and 

import quantities, GHG emissions management strategy adoption, resource usage, and 

environmental impact indicators.  ASMGHG estimates several environmental impact measures 

including levels of greenhouse gas emission or absorption for carbon dioxide (CO2), methane 

(CH4), and nitrous oxide (N2O); pollutant loadings of nitrogen (N) and phosphorous (P); and soil 

erosion.  Pollutant and erosion outputs are calculated for each crop by management system based 

on a modified version of EPIC - the Erosion Productivity Impact Calculator (Sharpley and 

Williams, 1990). 

In terms of GHG emission mitigation strategies, ASMGHG considers:  

• Carbon sequestration from increases in soil organic matter (reduced tillage intensity and 
conversion of arable land to grassland) and from tree planting  
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• Carbon offsets from biofuel production (ethanol, power plant feedstock via production of 
switchgrass, poplar, and willow) 

• Methane emissions from enteric fermentation, livestock manure, and rice cultivation  

• Methane reductions from manure management changes 

• Nitrous oxide emissions from fertilizer usage and livestock manure  

• Direct carbon dioxide emissions from fossil fuel use (diesel, gasoline, natural gas, heating 
oil, liquefied petroleum gas) in tillage, harvesting, or irrigation water pumping as well as 
altered soil organic matter (cultivation of forested lands or grasslands)  

• Indirect carbon dioxide emissions from fertilizer manufacturing 

• Methane and nitrous oxide emission changes from biomass power plants 

 

2.2 National Water Pollution Control Assessment Model (NWPCAM) 

The National Water Pollution Control Assessment Model (NWPCAM; Little et al, 2003, RTI, 

2000, 2001, Bondelid et al 1999, 2000, Bingham et al., 2000, Van Houtven et al 1999) is a 

national-scale modeling system designed to generate water quality estimates for two levels of 

spatial detail.3  The first is a set of  ~630,000 miles of rivers and streams, referred to as the RF1 

level.  The second level of detail is a much finer level created by disaggregating the RF1 layer 

into more than 3 million miles of rivers and streams and referred to as the RF3 system.4 

NWPCAM combines data on pollutant loadings with the RF1 or RF3 river network to create a 

spatially based surface water modeling framework which is capable of simulating transport, fate, 

and decay processes of nutrients and pollutants within the nation’s waters. Specifically, 

NWPCAM uses the U.S. Geological Survey (USGS) conterminous United States Land Cover 

Characteristics (LCC) Data Set (Version 2).  The LCC data set defines 26 land-use classifications 

that are defined at a one square kilometer (1 km2) grid level.  The land-use coverage is overlaid 

on the hydrologic routing framework to associate each land-use cell with a specific river reach, 

watershed, and hydroregion.  Each land-use cell is assigned to the nearest routed reach for 

subsequent drainage area, stream discharge, and hydrologic routing purposes.  Loadings from 
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these land use cells are then assigned to their corresponding reach and routed through the national 

network via water quality modeling techniques.5   

The method used for estimating non-point source loadings for both nutrients and conventional 

pollutants in NWPCAM is based on a network of export coefficients applied on a watershed 

level.6  Export coefficients are empirical, aggregated parameters that describe the loading of a 

given nutrient or pollutant in terms of mass per unit time per unit area.  The specification of 

export coefficients requires estimates of both the unit loading and the area of land within a 

catchment categorized into one of many land use and/or land cover types.  Each land use type  

has its own unique export coefficient based on the land use classification and level of nutrients 

originating from the given land use.   

NWPCAM models in-stream concentrations of nitrogen (N), phosphorous (P), and erosion or 

total suspended solids (TSS).  Although erosion and TSS are not exactly the same, erosion is used 

as a proxy for TSS and will be referred to as such throughout the remaining discussion.  Total 

suspended solids are used as a surrogate indicator of water transparency to characterize 

recreational service flows provided by a water body.  Low TSS concentrations are associated with 

a high degree of water clarity.  High concentrations of TSS are generally associated with murky 

or turbid waters and are therefore important contributors to perceptions of poor water quality.  A 

simple net settling velocity was used to parameterize the interactions of particle size distributions 

with deposition and re-suspension.  The revised universal soil loss equation (RUSLE) was used to 

amend the export coefficients used for TSS loadings on agricultural land-use cells (USDA, 1997).  

NWPCAM’s nitrogen and phosphorous loadings were computed by land-use type and by 

ecoregion based on SPARROW (spatially referenced regression on watershed attributes; 

Alexander et al 2000, Alexander et al 2002), which is a statistical modeling approach for 

estimating major nutrient source loadings at a reach scale based on spatially referenced watershed 

attribute data.7  This has the advantage of developing estimates of export coefficients that were 
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spatially variable.   In this study NWPCAM incorporates simplified first-order kinetics, in-stream 

modeling for the 630,000 mile (RF1) national stream network.  Changes in loadings or land use 

as a result of proposed policies, regulations, or other environmental or social factors will result in 

a change in the export coefficients. NWPCAM models the national water quality impact of the 

changes. 

Results from NWPCAM are presented using a water quality index (WQI) designed to incorporate 

the impact of the modeled pollutants on overall water quality.  This index is based on past water 

quality valuation studies (McClelland 1974 and Vaughn 1986) and advancements in NWPCAM 

design.  McClelland (1974) developed a continuous composite WQI index based on nine 

individual measures of water quality, including biological oxygen demand (BOD), dissolved 

oxygen (DO), fecal coliform bacteria (FCB), total suspended solids (TSS), nitrates (NO3), 

phosphates (PO4), temperature, turbidity, and pH.  McClelland’s index converts the 

concentrations of these water quality measures (milligrams per liter) into a corresponding score 

on a continuous scale ranging between 0 and 100.  These scores were calculated by averaging the 

judgments from 142 water quality experts regarding the functional relationship between the 

conventional concentration measures and a 0-100 scale.  Weights for each of the nine water 

quality characteristics were designed to sum to one and were again based on the judgments of the 

water quality experts.  The scores and weights of the individual pollutant measures were 

combined in a multiplicative index of the following form: 

  (1) ∏
=

n

1i

wi
iq

where qi = water quality score ranging between 0 and 100 wi = weight for each of the i water 

quality parameters; i = 1,2..n  The index originally created by McClelland had to be modified for 

NWPCAM, which does not model temperature, turbidity, and pH.  The re-weighted WQI 

contains six water quality parameters (n = 6 in equation 1) and translates NWPCAM output into a 
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continuous WQI with values ranging between 0 and 100.8  These WQI values can then be 

converted into beneficial-use attainment categories based on past work by McClelland 1974 and 

Vaughn 1986.  These categories are discussed later in the results.        

 

2. Model Process and Technical Approach for Evaluating GHG Policy Scenarios 

To link GHG mitigation actions in agriculture to changes in water quality, we integrate changes 

in the ASMGHG environmental accounts for nitrogen (N), phosphorous (P), and erosion-total 

suspended solids (TSS) under alternative GHG prices as input to be used by NWPCAM.  In turn, 

NWPCAM was used to estimate changes in the incidence of nitrogen (N), phosphorous (P), and 

total suspended solids (TSS) in the nation’s waters along with estimates of changes in water 

quality.  We compared “baseline” conditions (circa late 1990s) with two scenarios (circa 2020), 

which reflect agricultural reactions to two different prices for GHG mitigation ($25 and $50 per 

tonne of C equivalent), as reflected in ASMGHG outputs (e.g., land use and agricultural 

practices).9  These hypothetical carbon prices were selected to represent values in the mid-range 

of prices typically evaluated for land-based GHG mitigation and not to find the optimal carbon 

price to reach a desired level of water quality improvement.  Rather, this research is aimed at 

estimating the environmental benefits additional to the GHG emission reductions.  An overview 

of the model system is presented in Figure 1 and discussed in detail below. 

INSERT FIGURE 1 

ASMGHG provides GHG scenario level data on changes in land-use, crop acreage and livestock 

holdings for 63 regions in the US.10  While this is a fairly fine level of spatial detail for economic 

analysis, it is not sufficiently detailed for water quality modeling.  Thus, additional spatial 

mapping was required to incorporate the results into NWPCAM.  For N, P, and TSS loadings 

from cropland, ASMGHG results were further broken down to the county level using an auxiliary 
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multiple objective programming model (Atwood et al 2000) which allocates the ASMGHG 63 

region level crop mix changes to counties in a fashion most consistent with the USDA’s Natural 

Resource Inventory (NRI) and Census of Agriculture observations on observed county level 

cropping patterns.  In turn the county level loadings are mapped to the water system reaches 

defined in NWPCAM through the spatially defined 1 km2 grid cells in the USGS LCC dataset.   

Because ASMGHG and NWPCAM use different land use categorizations (USDA NRI and USGS 

LCC respectively), we build a cross-link to ensure that land use categories used in ASMGHG are 

reasonably mapped to the land use/cover categories used in NWPCAM.11  The percentage change 

in loadings of the selected pollutants calculated in ASMGHG are processed in NWPCAM using 

procedures that account for NWPCAM’s need to include every 1km2 grid cell loading estimate, 

transport it to the nearest river reach, and then transport and decay the combined loadings 

(including for instance point sources) through the river network.  The change in loadings 

calculated under the alternative GHG prices are then used in conjunction with the export 

coefficients in NWPCAM. 12   

There are seven major steps and associated sub-steps in this integration process (Figure 1).  Each 

modeling step is described in turn below.   

• Step 1.  Set up the baseline versions of NWPCAM and ASMGHG.  In these versions 
NWPCAM includes data on reach level animal manure loadings, municipal, industrial, 
and combined sewer overflow loadings, non agricultural non point source, non-manure-
related, and agricultural NPS loadings.  ASMGHG contains a depiction of production and 
resultant N, P and TSS. 

• Step 2.  Run ASMGHG under prices of $0 for baseline conditions, $25 and $50 per tonne 
carbon equivalent to simulate GHG mitigation incentives.   

• Step 3.  Disaggregate the ASM loadings data to a county level using Atwood et al (2000). 

• Step 4:  Disaggregate the ASMGHG county level data to generate percentage changes in 
N, P and TSS loadings on a NWPCAM reach level. 

• Step 5 Run NWPCAM to compute baseline water quality indices. 

• Step 6.  Adjust the baseline NWPCAM agricultural non-point source data to reflect the 
percentage changes in cropland loadings from the ASMGHG GHG incentive scenarios.13   
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• Step 7. Run NWPCAM to derive changes in water quality indices due to the mitigation 
options selected in ASMGHG  

3. Model Results 

The outputs generated by integrating ASMGHG and NWPCAM are presented at the national and 

regional levels.  The baseline conditions representative of the late 1990s (no GHG price) are first 

estimated in the models and then compared to the two alternative incentive scenarios, circa 2020.  

These two scenarios reflect the different prices for sequestered or released GHG’s ($25 and $50 per 

tonne of C equivalent).  The introduction of these price incentives causes ASMGHG to change its 

equilibrium allocation of land use, tillage, fertilization, crop mix and other management practices, 

commodity production and consumption, trade flows, and environmental loadings.  The changes in 

environmental loadings are then transferred into NWPCAM to model the resulting changes in water 

quality.   

The national level results generated by ASMGHG are presented in Table 1.  Impacts of the two 

GHG prices are described in terms of three major categories:  (1) economic welfare, (2) GHG’s 

and, (3) environmental variables and land/use land cover.  The key economic results generated by 

the GHG incentive payments (at both GHG price levels) are: 

• Production of traditional agricultural commodities declines.  Changes in management 
practices from the status quo to those induced by GHG incentives lead to an overall 
reduction in traditional agricultural commodities (crops and livestock).  These reductions 
are partially offset by increases in non-traditional commodities (bio-fuel) and by forest 
plantations.    

• Agricultural prices rise.  The GHG policy-induced contraction in agricultural supply is 
only partly offset by an increase in imports.  Together, this leads to a rise in the price of 
traditional agricultural commodities. 

• Consumer welfare falls.  The rise in agricultural prices causes consumers to pay more 
for food and other agricultural products, thereby reducing their well-being, all else 
equal.14 

• Agricultural producer welfare rises.  The economic effect of a rise in producer prices, 
along with the payments for GHG reductions outweighs any productivity losses from 
adopting the GHG mitigating practices.  This causes the net income of farmers to rise 
relative to the base case.  
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• Export earnings drop.  By adopting more expensive practices, US producers raise their 
costs relative to the rest of the world. This leads to a decline in US producers’ share of 
world markets. 

 

INSERT TABLE 1  

Agricultural producers gain just over $900 million and $5.8 billion respectively under the low and 

high GHG price scenarios.  Taking into account consumer losses, the total welfare costs of the 

incentive system would be about $1.1–1.2 billion.  These costs need to be balanced against 

welfare gains in other parts of the economy in terms of reduced GHG damages, reduced 

mitigation costs in the nonagricultural sectors, and co-effects.  However, those welfare gains are 

not estimated in this study. 

Table 1 also shows total changes in net GHG emission resulting from the carbon pricing 

scenarios and agricultural practices.  Within ASMGHG, greenhouse gas emissions and emission 

reductions for all major sources, sinks and offsets from agricultural activities for which data were 

available or could be generated are accounted for.  As we will explain below, some of the GHG 

mitigation reported in Table 1 comes from activities for which corresponding water quality 

effects could not be estimated with the current modeling system.  Consequently, the discussion 

further below will focus on the GHG effects from just those activities which can be directly tied 

to water quality changes.  However, it is instructive to begin the discussion with this broader 

estimate of GHG mitigation from agriculture.   

National net agricultural GHG emissions (gross emissions less changes in sequestration and 

biofuel offsets) decline from about 104.2 MMTCE per year in the baseline to 14.9 MMTCE per 

year under the lower carbon pricing scenario (a GHGE reduction benefit of 89.3 MMTCE/yr).  At 

the high GHG price, agriculture becomes a net sink of –52.1 MMTCE/year (GHG mitigation of 

156.3 MMTCE/year).  The US Energy Information Administration (EIA) estimated the 1999 US 

GHG emissions to be 1,860 MMTCE (EIA 2002).  The reduction in net emissions resulting from 

12 



the $25 and $50 policy incentive could result in a 4.8% and 8.4% reduction in national emissions 

respectively.  All species of GHG modeled (CO2, CH4 and N20) are reduced by the incentive 

responses, but the effects are most dramatic for CO2 with low- or no-tillage crop management 

occurring at the low price and biofuel offsets at the higher price.   

The mitigation actions and environmental impacts resulting from the two GHG pricing scenarios 

are also presented in Table 1.  The results suggest a drop in the amount of traditionally cropped 

agricultural land under both GHG prices.  However, the number of cropped acres engaging in no 

till practices increases substantially under the carbon pricing scenarios.  Finally, because forest is 

a more carbon-intensive land use than agriculture, the amount of agricultural land afforested 

increases by 5.8 and 12.5 million acres with the price incentives. 

The modeled  changes in  these agriculture practices are  the foundation of the water quality 

analysis, due to the resultant changes in  loadings of nitrogen (N), phosphorous (P), and erosion 

or total suspended solids (TSS).  The ASMGHG results show a decline in loadings for nitrogen 

and phosphorous at the low price scenario, and a reduction in all loadings at the higher GHG 

price.  The most dramatic reduction in loadings is in TSS at the higher GHG price.  Results reveal 

a potential reduction in TSS loading of over 252 million tonnes (7 percent). 

Table 2 presents the changes in water quality at the national level and also at the disaggregated 

regional level.  These WQI values are weighted averages of reach-specific values, with the stream 

mile per reach constituting the weights.  That is, the WQI values in Table 2 are aggregated 

weighted averages and are not intended to suggest that all waters in the US or one of the sub-

regions have the WQI reported.   

INSERT TABLE 2 

To place the WQI generated in NWPCAM in the context of the Clean Water Act, a WQI between 

25 and 49 represents boatable waters, between 50 and 69 corresponds to fishable waters, and 
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between 70 and 94 are swimmable.15  From Table 2 we can see that the aggregate baseline water 

quality for the entire U.S. falls in the upper range of fishable, nearly reaching swimmable levels.  

This is, in some sense, a measure of average water quality nationwide.  The reductions in 

loadings that result from the GHG mitigation activities increase the national aggregate average 

water quality 1.38 points (about 2 percent) on a 1 to 100 scale.  These improvements move the 

aggregate water quality measure into the swimmable range. 

The map presented in Figure 2 corresponds to the $25/tonne scenario and visually summarizes the 

information presented in Table 2.  The unit of change presented in the maps is the change in the 

WQI from the baseline conditions.  The reductions in water quality (–40 to –1) represent the 

bottom 5 percent of all changes in water quality in the country.16  The remaining reaches are 

broken down into three additional categories; no change (0), a positive improvement (1–5) (90% 

of all changes in water quality fall within these middle ranges 0 and 1-5), and the top 5 percent of 

all reach-level improvements in the country (6-100).17   

An interesting result revealed in Table 2 is that, the average improvement in water quality on the 

national scale is of the same magnitude for both levels of CE prices.  Within the limited set of 

model runs we performed, these results offer some evidence of potential diminishing returns to 

water quality improvements.18  We will return to this issue in the discussion section.  Regional 

differences in WQI changes can also explain this result to some extent.  Some regions show a 

larger improvement in water quality under the smaller GHG price than the higher price, while the 

opposite is true in other regions. 

INSERT FIGURE 2   

National level aggregation masks the results that occur within the country.  To investigate this 

phenomenon we look at the regional breakouts of the two GHG pricing scenarios.  The regional 

results for the farmland impacts of GHG pricing are aggregated from the original 63 ASMGHG 
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regions into the 10 broader regions first presented in Table 2 and defined in Table 3.  We use 

these regional definitions to disaggregate our results. 

INSERT TABLE 3 

Table 4 presents GHG mitigation on cropland by each region under baseline and two GHG 

incentive prices ($25 and $50 per tonne).  It is important to note that the GHG mitigation 

estimates in Table 4 are only for the changes in cropland practices associated with the water 

quality changes modeled here.  Therefore the national GHG total in Table 4 is a subset of the 

national total in Table 1, because Table 1 includes the GHG mitigation from afforestation and 

livestock practices for which we were not able to estimate water quality impacts.   

The two regions producing the largest GHG reductions are the Corn Belt and Lake States.  The 

Corn Belt, which is heavily dominated by agriculture, reports the largest absolute GHG reduction 

at over 27 MMTCE.  Much of the GHG mitigation in this region is attributable to the adoption of 

conservation tillage practices.   The Lakes States report the second largest reduction in GHG.  

This result is not surprising based on the comparatively low costs of carbon sequestration in this 

region resulting from readily available marginal croplands and high rates of carbon accumulation 

in the region specific forest characteristics (Adams et al. 1999, Plantinga Mauldin and Miller 

1999). 

INSERT TABLE 4 

Table 5 presents the changes in N, P, and TSS cropland loadings resulting from the land use and 

agricultural management changes.  There are two discernible patterns in these results.  First, the 

largest change in loadings is for TSS where there is considerable regional heterogeneity among 

the level of loadings.  In addition to the loading differences among regions, there is also some 

significant heterogeneity for TSS at the two GHG prices.  For example, the Southeast, Northeast, 

and North Plains regions generate increased loadings of TSS at the low price, but substantially 

15 



reduce loadings at the higher price.  However, the opposite pattern is reported for the 

Appalachian region.  These stark inter-regional differences are not found in N and P.  The 

divergent patterns reflect the complex relationship between GHG incentives, changes in practices, 

crop mix and aggregate pollutant loadings.  

INSERT TABLE 5 

Second, while there is evidence of regional heterogeneity in the changes in N and P loadings 

associated with GHG mitigation, the overall changes are relatively small.  All of the regions show 

a small reduction or no change in the loadings of these pollutants from the baseline conditions at 

the low price.  The heterogeneity is more easily identified at the higher price where some of the 

regions that initially had no change in the baseline loadings show a slight reduction and, in some 

cases, an increase.  For example, the Southeast and North Plains regions show no change from the 

baseline loadings of nitrogen at the low price.  However, the higher GHG price reveals that the 

Southeast exhibits a reduction in nitrogen loadings while the North Plains shows an increase.  

Again, these are relatively small changes from the baseline conditions.  

Recall from Table 2 the weighted regional water quality indexes calculated by NWPCAM.  The 

majority of the improvements are occurring in five of the regions across the U.S., all of which 

improve by 2.5 WQI points or more.  The North Plains region had the lowest baseline WQI and 

realizes the largest improvement (8 percent) from land use transitions and reductions in loadings 

as modeled by ASMGHG.  The South Plains, Lake States, Corn Belt, and Delta States exhibit 

regional WQI increases of over three percent to round out the top 5 regions with the largest 

improvements in water quality.  These areas of improved WQI can clearly be identified in Figure 

3. These five regions show the largest collection of blue river reaches, or improvements in the 

WQI from the baseline conditions. 
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There is an interesting phenomenon that occurs with the WQI under the two GHG prices.  All of 

the regions show an improvement in water quality under the initial GHG pricing scenario.  

However, under the higher price scenario, the changes from the baseline conditions are about the 

same as at the lower GHG price.  This occurs because of an increased diversion of land from 

traditional cropping to trees and biofuels, which creates land scarcity in traditional agriculture and 

induces some intensification of cropping (and resulting loadings) on the remaining crop lands.  

Although there are still improvements under the higher GHG price, the results suggest that 

increased GHG mitigation may produce increased water quality improvements at a diminishing 

rate, at least for the prices investigated here.  Without evaluating a wider range of carbon prices 

(e.g. $2 - $200) however, it would be premature to deduce that the results presented here suggest 

positive but diminishing benefits from all GHG mitigation efforts on cropland.  Recall from Table 

1 that GHG mitigation on cropland is not substantially higher at the higher price either.   

This regional analysis also allows us comment on the hypoxia problems in the Gulf of Mexico.  

Hypoxia is a condition of low levels of dissolved oxygen in a water body.  This condition is 

caused by increased levels of nutrients such as N and P in tributary waters.  These nutrients often 

originate from increased agricultural run-off due to the loss of streamside wetlands and vegetation 

(Goolsby et al., 2000).  According to the 1997 Mississippi River/Gulf of Mexico Watershed 

Nutrient Task Force, an important step in solving the hypoxia problem lies in reducing the 

hypoxic zone in the gulf to be less than 5,000 square kilometers by the year 2015.  To achieve 

this goal it was estimated that the annual nitrogen loadings to the Gulf of approximately 1.5 

million tonnes, especially nitrates, would need to be reduced by 20 to 30 percent (Greenhalgh and 

Faeth, 2001).   

Table 6 reports changes in N loadings to the Gulf of Mexico.  Under the two pricing scenarios, 

NWPCAM results show potential nitrogen reductions of up to 144,000 and 160,000 tonnes per 

year, respectively.19   
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Converting the loadings to equivalent units of measure (1 metric tonne = 1.1022 short tons,) 

reveals that the reductions in nitrogen loadings resulting from the portfolio of GHG mitigation 

activities could play a role in addressing the hypoxia problem.  The predicted changes in 

management and associated pollutant loadings could account for up to an 8.7 and 9.7 percent 

reduction in annual loadings to the Gulf, or nearly one half to one-third of the reduction goals 

established by the Watershed Nutrient Task Force in 1997.  

INSERT TABLE 6 

4. Conclusions  

By linking an agricultural sector model with a national water quality model, we provide 

simultaneous estimates of GHG mitigation, sectoral response, regional production, and associated 

water quality co-effects under GHG mitigation incentives.  These results only cover a subset of 

land use activities (namely agriculture) and water pollutants, yet they suggest that GHG 

mitigation activities in agriculture can, on balance, generate water quality co-effects, rather than 

co-costs.  Figure 2 illustrated the nationwide changes in water quality resulting from the GHG 

pricing scenarios.  The map for the change in WQI under the GHG incentives provides much 

more “texture” as to where water quality changes are occurring than can be shown by tables or 

graphs.  The key water quality results are as follows:   

• Nationwide water quality increased 1.38 water quality index points (~2%) under both 
GHG pricing scenarios.  Water quality improves in every aggregate region in the country, 
although the level of improvement varies under the pricing scenarios.20 

• Five regions, all roughly East of the 100th meridian (North Plains, South Plains, Lake 
States, Corn Belt and the Delta States) experienced the largest water quality 
improvements ranging from about 3 to 8 percent.  

• Nitrogen loadings into the Gulf of Mexico could be reduced by over 9 percent, roughly 
one third to one half of the total reduction recommended by the Watershed Nutrient Task 
Force goals. 
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As Tables 2 and 3 and Figure 2 illustrate, there is considerable heterogeneity across regions and 

GHG incentive scenarios in terms of agricultural loadings and in-stream water quality.  These 

heterogeneous results reflect at least two complicating factors.  First, variations in regional 

comparative advantage in agricultural production and GHG mitigation cause inter-regional shifts 

in production activities in response to the GHG incentives.  This reflects the spatial and cross-

sectoral equilibrium aspects of the ASMGHG economic model.  The model allows prices of 

agricultural commodities to increase as agricultural supply falls because of the change in 

management practices and conversion of marginal croplands to forest.  In some circumstances 

(e.g., Appalachia under the higher GHG price scenario), the indirect response caused by these 

agricultural price effects may more than offset management responses due to GHG incentives, 

thereby leading to a net increase in the loadings of some pollutants.  Second, some activities that 

enhance GHG benefits have some offsetting water quality costs.  For example, runoff may 

increase on converted lands, or greater infiltration of water into soils may occur as the result of 

increased organic matter and water-holding capacity over time potentially increasing nitrate 

infiltration into ground water. 

It is possible for pollutant loadings to increase with the GHG incentives.  Recognize that 

establishment of a carbon price is a GHG incentive, not a loadings or water quality incentive.  

This incentive causes agricultural practices to change in ways that mitigate/conserve GHGs.  In 

the case of conservation tillage, the synergy is seemingly positive (more carbon in the soil, less 

erosion (TSS), and perhaps less N, P needed).  However, it is also possible that carbon prices 

cause farmers to intensify input use or switch to crops with higher nutrient requirements and 

therefore higher runoff.  So, on balance, we find positive co-effects, but this is an empirical 

finding, not a universal article of truth.  

We also find that going from the lower to the higher GHG price did not substantially improve 

water quality, potential evidence of diminishing returns over the price range considered ($25 - 
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$50 per tonne).  That is, while the initial GHG reduction results in a material improvement in the 

WQI, the larger GHG price improves water quality, but to a lesser degree than the initial impacts.  

Consider five explanations.  First, the direct GHG mitigation effects diminish as we move from 

the lower to the higher GHG price, so it is not too surprising that the water quality effects are 

diminishing as well.  Second, as mentioned earlier, the actual commodity being purchased is a 

reduction in GHG, not water quality improvements.  The water quality improvements are a by-

product or added benefit resulting from the proposed policy actions of establishing a carbon 

market.  Third, agricultural lands (linked to ASMGHG) are just one from a myriad set of point 

and non-point source loadings into the nation’s waters; therefore, the GHG mitigation activities in 

our analysis can only affect a fraction of total loadings. Fourth, as the GHG incentive price rises, 

more land is diverted from traditional agricultural production to biofuels, forests, and grasslands.  

The remaining crop land is farmed more intensively with increased inputs and this tends to 

moderate the water quality gains. Fifth, we have not considered the entire price range - 

significantly lower (e.g. $2) or  higher ($200) prices might have showed significant changes.  

That is, notwithstanding the previous four explanations, it also possible that there are model or 

process (economic or ecological) rigidities, and we simply did not find those thresholds.   

It is critical to review some qualifications to the analysis and results presented in this report.  

Perhaps the biggest temptation is to view Figure 2 as a source of microscopic or reach specific 

detail.  We must recognize the inherent traits of models such as ASMGHG and NWPCAM that 

are built on micro-level elements or cells.  Projections and output from these aggregated models 

are more accurate at the aggregate level than at the individual cell.  This is because the macro 

models are relying in a sense on the “law of large numbers.” In other words, we can assume that 

there is a fair degree of random error at the individual reach level, but the pluses and minuses 

cancel, so that regional averages are roughly correct.  As such, the modeling exercise is best 
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viewed as providing first-order geographically aggregated estimates of policy-induced GHG and 

water quality changes.   

Additionally, there are factors outside these model results that may have important environmental 

consequences.  For example, increased carbon stocks, conversion of croplands to grassland and 

increased reliance on biofuels are some of the inherent results of the changes in the management 

of agricultural lands with the new GHG prices.  These actions and associated results may increase 

long run soil productivity as they may increase its ability to retain nutrients and moisture, thus 

reducing the reliance on fertilizers and increasing its resistance to drought by reducing water 

requirements.  Moreover, changes in land use and land management can alter the biodiversity of 

the landscape’s flora and fauna.  The potential for these additional co-effects are important factors 

to be considered in future analyses. 

Although the study was successful in accomplishing its primary objectives, two areas warrant 

further attention in future research.  First, it could be critical to evaluate how loadings from 

livestock manure and afforestation influence the overall water quality results.  Second, it would 

be informative to monetize the co-effects through benefits transfer methods, as in Plantinga and 

Wu (2003) or using monetary estimates reported in Carson and Mitchell (1993).  Such monetized 

estimates would allow us to evaluate whether the benefits of water quality improvements 

sufficiently supplement GHG mitigation benefits to offset, or possibly outweigh, the cost of 

carbon payments. 
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Appendix A   NWPCAM Model Overview 
 
NWPCAM is a steady state mathematical model that simulates levels and changes in water 
quality resulting from changes in point and non-point source pollutant loadings into the surface 
water system of the conterminous U.S.  The model simulations incorporate such key features as 
stream flow, the input of point and non-point sources of pollutants, and the principal interactions 
of the constituents selected as state variables for their relevance to the key water quality issues. 
The water quality model is constructed by coupling theoretical equations that describe the various 
mechanisms affecting the behavior of the key water quality indicators.  NWPCAM incorporates 
the key processes and interactions for each of the following topics in discrete model components: 

• Temporal and spatial dimensions 
• Physical domain and transport processes 
• Stream flow and channel geometry 
• Point and non-point source loads 
• Water quality kinetics 
• Model performance measures 
• Water quality index (ladder) 

 
NWPCAM 1.1 performs both national- and watershed-level modeling of conventional pollutants 
in the major inland rivers and streams, larger lakes and reservoirs, and some estuarine waters in 
the lower 48 states of the U.S.21  To simulate the levels of the water quality indicators, NWPCAM 
models the following instream parameters: 

• dissolved oxygen concentration (DO) 
• dissolved oxygen saturation 
• percent dissolved oxygen saturation 
• dissolved oxygen deficit 
• fecal coliform (FC) 
• total suspended solids (TSS) 
•  5-day biochemical oxygen demand (BOD5) 
• Ultimate biochemical oxygen demand (BODU)  
• Total Kjeldahl nitrogen (TKN) 

 
The current NWPCAM framework is intended to capture a national-scale “snapshot” of water 
quality conditions resulting from the simulation of baseline conditions and different policy 
scenarios, and thus requires a much coarser spatial scale than that needed for a detailed model of 
individual watersheds. 
 
A.1 Key Model Dimensions 
 
A.1.1 Conservation of Mass Principle 
The model framework for NWPCAM is based on the principle of conservation of mass. The mass 
balance principle holds that all inputs and outputs of mass in a stream, river, lake, or estuary must 
be accounted for over a “control volume” of the waterbody. Within a reach of a river, physical 
inputs of material include the amount of mass brought into a reach by upstream boundary inflows, 
tributaries, and point and nonpoint source inputs from the watershed. Physical outputs of material 
from a reach include the amount of mass leaving a reach by stream flow across a downstream 
boundary. Within a reach of a river, additional inputs (sources) and outputs (sinks) of material are 
influenced by physical, biological, and geochemical kinetic processes. The form of the 
conservation of mass principle over a control volume (e.g., reach of a river) is expressed here as: 
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Rate of mass change in volume =   Rate of mass entering volume 
      -  Rate of mass leaving volume 
      + Rate of mass produced in volume 
      -  Rate of mass lost from volume 

 
A.1.2 Temporal Resolution 
As a steady-state model using the stream and river summer flow, temporal fluctuations in 
pollutant loads, stream flow, and ambient water quality conditions, occurring at higher 
frequencies (i.e., hours, days, weeks, months) than the much lower seasonal (summer) frequency, 
are not represented in NWPCAM.  Observed stream flow and ambient water quality data used in 
the steady-state model are based on data extracted for the summer months (July-September) to 
generate summary statistics as input data for the model. In contrast to stream flow and ambient 
water quality, municipal and industrial effluent loading data typically do not vary significantly 
during the course of a year.  Effluent flow and pollutant loading data extracted from EPA 
databases for all months (circa 1995) were assigned as annual mean values for input to the model. 
As a consequence of winter-summer seasonality in precipitation and runoff, nonpoint source 
loading of pollutants vary significantly on a seasonal basis.  However using the annual mean 
values for nonpoint loadings, much of the intra-annual variation is not captured in NWPCAM. 
 
A.1.3 Spatial Resolution 
The concentrations of water quality constituents can vary in three dimensions within natural 
waters.  However, for simplicity a one-dimensional (1-D) (laterally and vertically invariant) 
spatial representation was adopted for this framework.  In NWPCAM, the distributions of water 
quality constituents are spatially referenced to a 1-D longitudinal coordinate system measured as 
river miles along the transport path length of a river. The origin (river mile = 0) of the 1-D 
coordinate system is defined as the location of the river system where the river ultimately 
discharges into large, open waters (e.g, Gulf of Mexico, Atlantic Ocean, Pacific Ocean, 
Chesapeake Bay, Lake Michigan).   
 
EPA’s RF1 database is used as the foundation of the physical domain in NWPCAM to describe 
the connectivity network designed to efficiently route flow and pollutant loads coalescing from 
headwater streams to tributaries to large rivers.  Within the continental United States, RF1, 
accounts for 632,552 miles of rivers in approximately 68,000 reaches (of which 61,000 are in the 
flow path, e.g., not shoreline).  The mean length of an RF1 reach is about 10 miles with a 
drainage area of about 114 mi2.  The density of the streams and rivers included in RF1, was 
selected, in part, to ensure that the discharge locations of most of the municipal and industrial 
wastewater treatment plants included in the National Pollution Discharge Elimination System 
(NPDES) database were accurately represented in the Reach File database.   
 
A.2 Water Quality Model Framework 
Monitoring data have been used in NWPCAM as a source of input data, and to validate and 
calibrate the model. For example, as an input to the model, data from the PCS and NEEDS 
Survey databases provide point source loadings data, while USGS gauging station data provide 
stream flow and velocity data.  Monitoring data are also used in calibrating and validating the 
model. These data are used as a benchmark for evaluating model performance.   
 
A.2.1 Stream Flow and Channel Geometry 
Under the assumption of steady-state flow and 1-D transport in free-flowing streams and rivers, 
geometry (depth, width, cross-sectional area, and wetted perimeter) for each RF1 reach are 
estimated using the mean summer flows and velocity data estimated for each RF1 reach and the 
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“stable channel analysis” developed by the U.S. Bureau of Reclamation (Henderson, 1966). A 
reach is represented in the stable channel analysis with a 35-degree side slope trapezoidal cross 
section with mean channel depth, channel depth at the center of the reach, cross sectional area, 
wetted perimeter, and velocity assumed uniform over the downstream length of the laterally and 
depth-averaged RF1 reach. The stable channel analysis, based on bed shear and local depth, 
provides a methodology to estimate the mean depth and wetted perimeter of a reach as a function 
of reach cross-sectional area. Using the mean and low flow conditions reported by Gate’s (1982) 
and velocity data assigned to each RF1 reach, the cross-sectional area and mean depth in the 
reach were estimated from summer mean stream flow and velocity. 
 
A.2.2 Point Source and Nonpoint Source Loads 
The approach used in NWPCAM for estimating nonpoint source loadings for both 
nutrients and conventional pollutants is based on an export coefficient model that is 
applied on a watershed level.  Export coefficients are empirical aggregated parameters 
that describe the loading of a given nutrient or pollutant from a specific land use category 
in terms of mass per unit time per unit area.  The specification of export coefficients 
requires estimates of both the unit loading and the area of land within a catchment 
described in terms of different types or classes of land use and/or land cover.   

A.2.2.1 Point Source Loads 
Point sources represented in NWPCAM include municipal and industrial wastewater treatment 
plants and combined sewer overflows.  Pollutant discharges, obtained from the monitoring data 
described above, from municipal and industrial outfall pipes are represented in the model by 
estimates of annual mean loading rates input at a discrete location along the length of a stream or 
river.  Pollutant discharges from urban runoff and combined sewer overflows, accounted for by 
an urban network of multiple discrete outfall pipes discharging to one or more waterways, are 
aggregated and distributed uniformly to RF1 reaches within the urban land use portions of a 
watershed (see below). Pollutant loads for point sources are estimated for each of the following 
state variables selected for NWPCAM: 5-day biochemical oxygen demand (BOD5), Total 
Kjedhal nitrogen (TKN), Dissolved oxygen (DO), Total suspended solids (TSS) and Fecal 
coliform bacteria (FCB) 
 
Urban Runoff and Combined Sewer Overflows  
The public works infrastructure in every town and city includes an urban stormwater drainage 
system designed to collect and convey runoff from rainstorms and snow melt. Many older cities 
have urban drainage systems that convey both stormwater runoff and raw sewage.  The urban 
runoff and CSO loadings are included in the NWPCAM modeling framework and are based on 
data obtained from Lovejoy (1989) and Lovejoy and Dunkelberg (1990). 
 
A.2.2.2 Nonpoint Source Loads 
Nonpoint source loads, characterized as intermittent diffuse inputs distributed over an 
entire drainage basin, are related to hydrologic conditions, topography, physiography, and 
land uses of a watershed. In NWPCAM, pollutant loads for non-point sources were 
computed by land-use type by ecoregion based on SPARROW (SPAtially Referenced 
Regression On Watershed attributes; Alexander et al 2000, Alexander et al 2002) which is a 
statistical modeling approach for estimating major nutrient source loadings at a reach 
scale based on spatially referenced watershed attribute data.22  An optimization algorithm 
was developed to estimate non-manure loadings by comparing SPARROW non-manure 
non-point source estimates for cataloging units with modeled outputs.  The optimal 

25 



coefficient set was determined for both nitrogen and phosphorus for each ecoregion 
within a hydroregion.  This was accomplished by iteratively running an optimization 
routine using a genetic algorithm to estimate loading coefficients for major land use 
categories present in the ecoregion.  Non-point sources were delivered directly to the RF1 
reaches for hydrologic routing through the river/stream network.     

A.2.3 Water Quality Kinetics  
Each of the pollutants modeled in NWPCAM behaves differently, and must be modeled 
accordingly.  For example fecal coliform bacteria have a mortality rate that differs under various 
water quality conditions.  However with constituents such as TSS, there is no mortality rate, 
rather a settling loss phenomena occurs and must be modeled.  For all constituents included in 
NWPCAM, the model methodology accounts for the following phenomena (if it pertains to the 
specific pollutant) through detailed mathematical calculations: 

• Calculation of the Upstream Boundary 
• Rates of Oxidation/Decomposition/Reaeration/Mortality 
• Settling Loss 
• Removal Rate 

 
A.2.4 Dissolved Oxygen 
Dissolved Oxygen (DO) is included in the model as a surrogate indicator for aquatic health.  High 
levels of oxygen are characteristic of good water quality conditions that can support a high-
quality fishery and a high diversity of aquatic biota.  NWPCAM assumes that oxygen production 
from photosynthesis (P) and oxygen consumption from respiration (R) balance to a net 
production of zero (i.e., P = R and P - R = 0).  In NWPCAM, the contribution of oxygen from 
atmospheric re-aeration is accounted for by water temperature, velocity, and depth of the river 
channel.  
 
A.2.5 Ultimate Carbonaceous Biochemical Oxygen Demand 
Organic carbon is represented in the NWPCAM framework by the ultimate carbonaceous 
component of biochemical oxygen demand (CBODU). CBODU, a measure of the oxygen 
equivalent needed to completely decompose oxidizable organic carbon in wastewater effluent and 
surface waters.   Labile/refractory and dissolved/particulate fractions of total organic carbon are 
not differentiated in NWPCAM.  The first-order decomposition rate assigned to describe the 
decay of organic carbon thus represents a composite of slow (refractory) and fast (labile) decay 
rates. The in-stream removal of particulate organic matter is represented with a second loss term 
to account for settling of the particulate fraction of organic carbon. As treatment levels increase, 
particulate organic matter in the effluent is expected to be reduced to the extent that the in-stream 
BOD removal rate via settling is lowered to approach the in-stream decomposition rate. 
Differentiation of the rates of decomposition and settling removal loss is essential for NWPCAM 
to account for different treatment levels. The total loss rate of organic carbon (as CBODU) from 
the water column is determined by the sum of the loss due to decomposition and the loss due to 
settling out of particulate organic matter. Since the relative loss due to settling is greater in 
shallow waters, particularly in streams less than approximately 1 meter in depth, a depth-
dependent formulation for the removal rate is used in the model (Bowie et al., 1985; 
Hydroscience, 1971; 1972).  External loading of CBODU is represented as inputs to each RF1 
reach of a catalog unit by municipal and industrial point source dischargers, urban runoff, CSOs, 
and rural runoff.  
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A.2.6 Total Kjedhal Nitrogen 
Nitrogen is composed of both inorganic and organic forms with ammonia, nitrite, and nitrate 
being the inorganic constituents.  In NWPCAM the impact of nitrification on oxygen 
consumption is the component of the nitrogen cycle that is the most relevant for the design of the 
simplified Version model. TKN is defined as a state variable in NWPCAM to account for the 
nitrogenous component of the BOD demand (NBOD). Using the stoichiometric ratio for 
oxygen:nitrogen (4.57 grams O2 per grams of N), the loss of TKN via nitrification defines the 
equivalent oxygen loss in the model balance formulation for oxygen.  
 
Source terms for the oxidizable nitrogen submodel include external loads accounted for by 
municipal and industrial discharges, CSOs, and urban and rural runoff. In the absence of a 
national database to characterize benthic regeneration rates for ammonia, the stoichiometry for 
oxygen:nitrogen of 15.1:1 by weight (Redfield et al., 1963) is used to define the equivalent 
amount of ammonia nitrogen released by decomposition of organic carbon in the sediment bed.  
The benthic release of ammonia to the overlying water column is estimated from the 
reachdependent parameter values assigned for sediment oxygen demand (Di Toro, 1986; Di Toro 
et al., 1990). 
 
A.2.7 Total Suspended Solids 
In NWPCAM, suspended solids are used as a simplified surrogate indicator of water transparency 
as a recreational component to characterize beneficial uses of a waterbody. Low suspended solids 
are characteristic of a high degree of water clarity in contrast to high concentrations of suspended 
solids that are correlated to murky, turbid waters. 
 
The submodel component of NWPCAM for suspended solids functions in such a way that the 
complex sediment transport interactions of particle size distributions with deposition and 
resuspension are parameterized by a simple net settling velocity. With this assumption, no 
distinction is made in the model regarding the relative fractions of cohesive (clays and silts) and 
noncohesive (sands) particle sizes.  
 
A.2.8 Fecal Coliform Bacteria 
In NWPCAM, FCB is used as a proxy for the risk of exposure to waterborne diseases as the 
public health component to characterize beneficial uses of a waterbody. Low densities of FCB are 
characteristic of a low public health risk of exposure for waterborne diseases.  The submodel in 
NWPCAM for FCB is simplified in that the components of the mortality and net settling loss rate 
for FCB are parameterized by a simple temperature-dependent aggregate net loss rate. 
 
A.2.9 Estimating Mean Summer Streamflows and Velocities 
The RF1 data contains paired values of flow and velocity for mean annual and low flow (~7-day-
10-year) conditions. As explained above, the condition used in NWPCAM for is a mean summer 
flow (July-September).  The USGS stream gauges in the Hydro-Climatic Data Network (HCDN) 
were selected to estimate mean summer flows.  These gauges most accurately represent relatively 
natural hydrologic conditions as they are not influenced by controlled releases from reservoirs.  
For each HCDN gauge, the ratio of the mean summer flow to mean annual flow is computed. 
These ratios are then grouped across each ecoregion, and a mean is calculated. The result of this 
process is an ecoregion-level multiplier that is then applied to each cataloging unit that is 
represented by the dominate ecoregion within the unit. 
 
The methodology for assigning reach dependent flow and velocity is done on a reach basis, using 
the paired low flow-velocity and mean flow-velocity values to develop reach-specific 
coefficients.  Since, for each RF1 reach, there are paired values for flow and velocity.  When the 
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model is run under a summer flow condition, a corresponding summer velocity is computed by 
reach. 
 
A.2.10 Land Use information 
Mentioned earlier, pollutant loadings from the different land use types assigned to 
specific RF1 reach.  The basis for the land-use/land-cover spatial coverage used by 
NWPCAM is the U.S. Geological Survey (USGS) conterminous United States Land 
Cover Characteristics (LCC) Data Set (Version 2).  The LCC data set defines 26 land-use 
classifications.  Land-use/land-cover data are defined at a square kilometer cell grid level 
in the LCC.   

Each land-use cell is overlayed on counties as well as assigned to the nearest routed RF1 
reach for subsequent drainage area, stream discharge, and hydrologic routing purposes.  
The USGS developed the LCC data set by classifying 1990 NOAA Advanced Very High 
Resolution Radiometer (AVHRR) satellite time-series images.  Post-classification 
refinement was based on other data sets, including topography, climate, soils, and eco-
regions (Eidenshink, 1992).  The LCC data set is intended to offer flexibility in tailoring 
data to specific requirements for regional land-cover information.   

A.2.10.1 Integrating Land-Use Cells and RF1 
The image used to assign land-cover cells to an RF1 reach has a pixel size of 8-bit (1 
byte), representing an area of 1 km2.  The image contains 2,889 lines and 4,587 samples 
covering the entire conterminous United States.  Based on this information, it is possible 
to extract a specific area from the image into an ASCII file using a C-computing 
language routine.  This approach allows for importing only portions of the image, thereby 
reducing loading and processing time considerably compared to a full-image import with 
a commercial GIS package.  The ASCII file then is used to generate a point coverage in 
ARC/INFO, which is converted to geographic coordinates to process it with existing RF1 
reach coverages. 

Resolution of the land-use coverage data set is a square kilometer.  The coverage for the 
continental United States comprises approximately 7,686,100 land-use cells at the square 
kilometer cell grid scale.  The land-use coverage is overlaid on the RF1 hydrologic routing 
framework to associate each land-use cell with a specific RF1 reach.  Each land-use cell is 
assigned to the nearest routed RF1 reach for pollutant loadings, subsequent drainage area, stream 
discharge, and hydrologic routing purposes.  Information in the land-use/land-cover database 
includes the land-use/land-cover code for each cell, the watershed (HUC) code and county code 
in which the cell is located, the RF1 reach associated with the cell, and related information.  On a 
hydroregion basis, each land-use/land-cover cell is given a unique identification number for 
modeling purposes 
 
A.3 Changing Loadings for Policy Analysis 
The default conditions of the model input that define “Baseline” conditions are loadings based on 
circa 1990s data as derived from EPA, and other, databases. Alternative scenarios operate on the 
baseline loadings, either increasing or decreasing certain loadings, depending on the scenario. For 
the purposes of the paper presented here, the policy scenario is the presence of a carbon trading 
market.  The resulting changes in land use and forestry create associated changes in the in 
pollutant loadings.  Estimates of industrial loadings are left unchanged in the policy scenario. 
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Figure 1 Overview of Process for Linking ASMGHG and NWPCAM 
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Figure 2 Changes in Water Quality Indices (WQI) by Reach:  $25/Tonne Scenario Compared to 
Baseline 
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Note:  Positive values represent improved water quality. 
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Table 1 National Summary of Welfare, Agricultural, and Environmental Impacts under Three GHG Prices  

  Unit 

Baseline 
$0/Tonne of 

CE  
$25/Tonneof 

CE 
$50/Tonneof 

CE 
Welfare: 
U.S. producer welfare billion $ 30.93 31.84 36.73 
U.S. consumer welfare billion $ 1183.15 1181.49 1177.5 
Rest of the world 
welfare 

billion $ 
256.64 256.15 255.37 

Total social welfare 
(TSW) 

billion $ 
1470.72 1469.48 1469.59 

TSW less GHG 
payments 

billion $ 
1470.72 1469.86 1467 

Agricultural Activities: 
Crop production index Base = 

100 100 98.16 95.68 
All goods production 
index (includes 
biofuels) 

Base = 
100 

100 99.05 97.66 
Crop price index Base = 

100 100 102.65 108.42 
All goods price index Base = 

100 100 101.63 106.32 
U.S. export sales billion $ 16 15.48 15.14 
Land Use: 
Dry land 106 acres 240.78 240.65 227.01 
Irrigated land 106 acres 60.21 56.18 58.15 
Pasture land 106 acres 395.16 396.01 390.95 
Afforestation 106 acres 0 5.8 12.52 
Irrigation water use 106 acre-

feet 73.08 67.39 68.2 
Tillage Practices: 
Conventional 106 acres 203.32 68.93 54.08 
Conservation 106 acres 84.96 27.72 11.65 
No-till 106 acres 13.5 200.97 220.33 
Environment: 
Nitrogen 106 acres 7.88 7.64 7.41 
Phosphorus 106 acres 1.65 1.62 1.57 
Potassium 106 acres 2.41 2.41 2.39 
Pesticide  106 acres 7279.66 7345.05 6990.86 
Erosion (TSS) 106 acres 3525.63 3541.66 3272.82 
Greenhouse Gas: 
CH4 MMTCE 46.28 45.27 41.43 
CO2 MMTCE 29.53 –57.48 –119.75 
N2O MMTCE 28.4 27.14 26.22 
Total MMTCE 104.2 14.93 –52.10 
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Table 2  Regional Water Quality Indices (WQI) Under the Baseline and Alternative GHG Pricing 
Scenarios 

Change in WQI  

ASMGHG Region 
Total Length of Reach 

System (Mi.) Baseline WQI 
$25/Tonne  

of CE 
$50/Tonne  

of CE 

Northeast 45,082.80 74.16 0.12 0.02 

Lake States 39,994.20 65.16 2.64 2.66 

Corn Belt 64,636.20 57.64 2.57 2.55 

North Plains 63,724.30 50.29 3.96 3.97 

Appalachia 59,892.10 79.53 0.20 0.15 

Southeast 45,107.50 80.90 0.57 0.67 

Delta States 35,070.70 78.77 2.34 2.40 

South Plains 62,293.30 55.39 2.96 3.12 

Mountain 173,854.00 69.37 0.36 0.34 

Pacific 73,426.50 76.59 0.25 0.21 

Total U.S. 632,532.00 68.56 1.38 1.38 

Note 1: Total length of miles of the ASMGHG regions is greater than the total miles because 
some reaches are in more than one region. 
Note 2: Delta WQI values are scenario weighted sums minus baseline weighted sums, so positive 
values indicate water quality improvements. 

 

36 



Table 3 Regional Definitions 

ASMGHG Region States 

Northeast Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, 
New Jersey, New York, Pennsylvania, Rhode Island, Vermont 

Lake States Michigan, Minnesota, Wisconsin 

Corn Belt Illinois, Indiana, Iowa, Missouri, Ohio 

North Plains Kansas, Nebraska, North Dakota, South Dakota 

Appalachia Kentucky, North Carolina, Tennessee, Virginia, West Virginia 

Southeast Alabama, Florida, Georgia, South Carolina 

Delta States Arkansas, Louisiana, Mississippi 

South Plains Oklahoma, Texas 

Mountain Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming 

Pacific California, Oregon, Washington 
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Table 4 GHG (Sum of CO2, CH4, and N2O) Results from Cropland by Census Region in 
MMTCE 

Actual Value Absolute Change Percentage Change 

Region 
Million 
Acres Base 

$25/Tonne 
of CE 

$50/Tonne 
of CE 

$25/Tonne 
of CE 

$50/Tonne 
of CE 

$25/Tonne 
of CE 

$50/Tonne 
of CE 

Northeast 11.09 1.61 0.40 0.26 –1.21 –1.35 –74.95 –83.74 

Lake States 34.92 3.41 –4.88 –6.14 –8.29 –9.55 –242.96 –280.04 

Corn Belt 85.50 16.47 –10.73 –12.70 –27.20 –29.17 –165.13 –177.13 

North Plains 66.86 4.36 –6.74 –7.13 –11.10 –11.49 –254.54 –263.54 

Appalachia 14.39 2.50 0.68 0.74 –1.82 –1.77 –72.85 –70.60 

Southeast 9.44 0.67 –0.08 –0.16 –0.75 –0.83 –111.83 –124.24 

Delta States 18.06 4.38 2.94 1.99 –1.44 –2.39 –32.79 –54.54 

South Plains 28.03 4.48 –1.79 –1.62 –6.26 –6.10 –139.92 –136.24 

Mountain 21.68 4.52 1.97 1.77 –2.55 –2.74 –56.47 –60.75 

Pacific 11.03 4.88 2.60 2.41 –2.28 –2.47 –46.68 –50.59 

Total U.S. 301.00 47.28 –15.62 –20.59 –62.90 –67.87 –133.03 –143.55 
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Table 5 N, P, and TSS Loadings (Million Tonnes) from Cropland by Region

Actual Value Absolute Change Percentage Change 

Region 
Million 
Acres Base 

$25/Tonne 
of CE 

$50/Tonne 
of CE 

$25/Tonne 
of CE 

$50/Tonne 
of CE 

$25/Tonne 
of CE 

$50/Tonne 
of CE 

TSS         
Northeast 11.09 176.05 177.06 145.82 1.02 –30.22 0.58 –17.17 
Lake States 34.92 538.92 537.31 504.89 –1.60 –34.02 –0.30 –6.31 
Corn Belt 85.50 1073.47 1047.32 1053.20 –26.16 –20.27 –2.44 –1.89 
North Plains 66.86 420.33 420.83 407.70 0.50 –12.63 0.12 –3.00 
Appalachia 14.39 201.07 183.73 214.14 –17.34 13.08 –8.62 6.50 
Southeast 9.44 106.78 106.98 62.19 0.21 –44.59 0.19 –41.76 
Delta States 18.06 591.15 638.28 471.27 47.13 –119.89 7.97 –20.28 
South Plains 28.03 277.63 266.40 244.74 –11.23 –32.89 –4.04 –11.85 
Mountain 21.68 85.37 83.40 82.38 –1.97 –3.00 –2.31 –3.51 
Pacific 11.03 54.86 80.34 86.48 25.48 31.62 46.45 57.63 
Total U.S. 301.00 3,525.63 3,541.66 3,272.82 16.03 –252.81 0.45 –7.17 
Nitrogen         
Northeast 11.09 0.52 0.51 0.40 –0.01 –0.12 –1.94 –23.62 
Lake States 34.92 0.76 0.76 0.72 –0.01 –0.04 –0.81 –5.36 
Corn Belt 85.50 2.48 2.42 2.44 –0.06 –0.04 –2.36 –1.58 
North Plains 66.86 0.78 0.78 0.85 0.00 0.07 0.44 8.76 
Appalachia 14.39 0.63 0.63 0.74 0.00 0.11 0.13 18.14 
Southeast 9.44 0.28 0.29 0.22 0.00 –0.06 1.26 –21.27 
Delta States 18.06 0.52 0.49 0.39 –0.02 –0.12 –4.47 –23.65 
South Plains 28.03 0.66 0.60 0.55 –0.05 –0.11 –8.15 –16.69 
Mountain 21.68 0.96 0.87 0.82 –0.08 –0.14 –8.65 –14.14 
Pacific 11.03 0.29 0.27 0.27 –0.02 –0.02 –5.30 –7.60 
Total U.S. 301.00 7.88 7.64 7.41 –0.24 –0.47 –3.07 –5.98 
Phosphorus         
Northeast 11.09 0.08 0.08 0.06 0.00 –0.02 –1.88 –23.91 
Lake States 34.92 0.22 0.22 0.21 0.00 –0.01 0.40 –4.26 
Corn Belt 85.50 0.50 0.50 0.50 0.00 0.00 –0.74 0.27 
North Plains 66.86 0.23 0.24 0.24 0.00 0.01 2.01 3.90 
Appalachia 14.39 0.09 0.09 0.11 0.00 0.02 –0.35 16.18 
Southeast 9.44 0.06 0.06 0.05 0.00 –0.01 0.33 –20.74 
Delta States 18.06 0.10 0.10 0.08 0.00 –0.02 –0.03 –19.28 
South Plains 28.03 0.14 0.12 0.11 –0.02 –0.02 –12.62 –18.42 
Mountain 21.68 0.13 0.12 0.12 –0.01 –0.02 –7.93 –13.42 
Pacific 11.03 0.10 0.09 0.09 –0.01 –0.01 –5.10 –6.65 
Total U.S. 301.00 1.65 1.62 1.57 –0.03 –0.09 –1.97 –5.15 
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Table 6 Reduction in Loadings (Tonnes per Year) to the Gulf of Mexico under Alternative GHG 
Pricing Scenarios 

TSS N 

$25/Tonne  
of CE 

$50/Tonne  
of CE 

$25/Tonne  
of CE 

$50/Tonne  
of CE 

8,783,098 9,557,527 144,565 160,578 

Note:  Values are reductions in tonnes/yr.  A positive value is a reduction; a negative value is an 
increase. 
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Endnotes 
                       
1See for example Adams et al. (1993), Parks and Hardie (1995), Alig et al. (1997), Plantinga et al. (1999), 
Stavins (1999), Plantinga and Mauldin (2001).   
2 The 630,000 mile stream network is referred to as the Reach File 1.0 – or RF1 – level of resolution 
commonly used by the US Environmental Protection Agency and other federal and state agencies tracking 
water quality. 
3 All RTI reports are available upon request from corresponding author.  Multiple applications 
and reviews of the NWPCAM model can be found on the EPA website by searching for 
NWPCAM (http://oaspub.epa.gov/webi/meta_first_new2.try_these_first). 
4These reach files were designed by the US EPA Office of Water.  Information on these and other national 
hydrologic information can be found at the following web-address—
http://www.epa.gov/owowwtr1/monitoring/rf/rfindex.html
5 NWPCAM can report results at the RF1 or RF3 level.  Because RF3 is a sub-set of RF1, assigning each 1 
km2 land use cell to an RF3 reach thus also maps the cell to a RF1 reach. 
6 In the NWPCAM modeling framework loadings from the following loadings can be traced through the 
national river network; conventional pollutants (e.g. biochemical oxygen demand, total suspended solids, 
fecal coliform), nutrients (i.e. nitrogen, phosphorus), and toxic compounds (e.g. arsenic, cadmium).   
7More information regarding the SPARROW model can be found at the following web address 
http://water.usgs.gov/nawqa/sparrow/ 
8 New weights were calculated so that the ratios of the six remaining weights were retained and would still 
sum to one. 
9 1 metric tonne = 1.1022 short tons 
10Note, we do not factor in other sectors of the economy or non-US agricultural markets experiencing a C 
price.  
11We were unable to map 5 of the approximately 3000 counties because of imperfect overlap of the two 
model databases, reflecting somewhat incomplete coverage.   
12 For example, if the carbon price introduced in ASMGHG results in a 5% reduction in N loadings in a 
specific county, the nitrogen loadings to all river reaches in that county will also be reduced by 5%. This 
reduction in N is then modeled through the national river network.  It is beyond the scope of this report to 
provide further details concerning the full modeling processes and in-stream kinetics used in NWPCAM.  
More detail about NWPCAM (including an application) can be found online at: 
http://www.epa.gov/waterscience/economics/ and also at 
http://www.epa.gov/ost/guide/cafo/economics.html#envir
13 Publicly available and reliable livestock and forestry pollutant data are not available to evaluate the 
impacts of their respective activities.  Insufficient data and resources did not permit us to spatially 
disaggregate and model manure and forestry loadings.  It is unclear whether the net result of including 
these loadings would increase or decrease water quality in the net. 
14 Note this decline in consumer welfare applies only to the change in agricultural consumption.  Social 
benefits from a reduction in adverse impacts from climate change are not included in this calculation. 
15The passage of the Federal Water Pollution Control Act of 1972 (FWPCA-72) established national water 
quality objectives and identified a number of goals in order to ensure the achievement of these objectives.  
Later amendments to the FWPCA-72 lead to the passage of the Clean Water Act of 1977 (CWA).  Section 
1251of the Clean Water Act defines the goal of establishing “boatable and fishable” water quality 
conditions in the nation’s waters by 1985.  However, in the 1998 National Water Quality Inventory Report 
to Congress, it was reported that about 40 percent of the streams that were monitored by the EPA were not 
clean enough to be classified as fishable or swimmable.   
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16 Although the range here is large, it was developed to capture all changes in WQI which included a few 
outliers at the extreme low end of this range.  Most of the cases in which reach-level water quality declines 
show small reductions in WQI (less than 2 points).  
17 The changes in the two extremes of these ranges are composed mainly of outliers with large reductions 
or improvements in water quality.  For the reaches predicted to have water quality decline, only 903 were 
predicted to fall by more than 1 point.  A similar situation occurred for the improvements.  In this range 
only 2,882 reaches improved by more than 6 points.  The largest improvement was predicted to be 82 
points. 
18 Because of the fine detail and small differences in WQI under alternative incentive pricing scenarios, 
only the national map of RF1 reaches for the $25/tonne is presented. 
19These reductions in loadings account for nitrogen attenuation, or nitrogen loss in waterways in relation to 
channel width, by using streamflow-dependent first-order decay coefficients derived in the USGS 
SPARROW model. 
20There may well be individual reaches and streams in the RF1 network that suffer water quality 
impairment. 
21 In our analysis we used Version 1.1 of the NWPCAM model.  Thus, all references to NWPCAM in this 
appendix will be to Version 1.1. 
22 More information regarding the SPARROW model can be found at the following web address 
http://water.usgs.gov/nawqa/sparrow/ 
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